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Abstract. In this paper, we establish the existence of ajumifixed point for weak
contractions in the context of b-metric spaces. firtan theorem is supported with an
illustrative example. The line of research is thedg of generalizations of Banach’s
contraction mapping principle in spaces which aoeemgeneral than metric spaces.
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1. Introduction and mathematical preliminaries

The concept of b-metric space was introduced byhBakn [4] which was further used
by Czerwik in [8]. It is one of the several genaaions of metric spaces which have
appeared in recent literatures as, for instancadiap metric spaces [2,6,12], G-metric
spaces [14,16], fuzzy metric spaces [10], etc. & fieore works on b-metric spaces can
be foundin [3,11,13]. In the following we descrittee essential features of the spaces
which are relevant to our studies in this paper.

Definition 1.1. Let X be a non-empty set and let= 1 be a given real number. A
function
d:X xX - R, , is called a b-metric provided that, foral,z € X,

1) d(x,y) =0iff x =1y,

2) d(x,y) =d(y,x),

3) d(x,z) <s[d(x,y)+d(y,2)].
A pair (X,d) is called a b-metric space. I = 1, then it reduces to the usual metric
space.

Example 1.2. The spack, (0 <p <1),
Ly ={(tn) € R+ Xiiqlxy|P < oo},
Together with the functiod: [, X [, > R,

1
d(x:y) = (Z?LO=1|xn _ynlp)p,
wherex = x,, ,y =y, € L,is a b-metric space.It can be shown that
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d(xy) < 2 [d(x,y) +d(7,2)]

Example 1.3. The L, (0 <p <1) of all real functionsx(t),t €[0,1] such that

1
follx(t)lp dt < o , is a b-metric space if we taki€x,y) = [follx(t) —y(@®)IP dt]’” for
each,y € L,.

Definition 1.4. Let (X,d) be a b-metric space. Then a sequengg in X is called a
Cauchy sequence if and only if for all> 0 there existn(¢) € N such that for each
m = n(e), d(xy, ¥) < &.

Definition 1.5. Let (X, d) be a b-metric space. Then a sequdngg in Xis convergent if
and only if for alle > 0, there exists € X such thatd(x,, x) < ¢ whenevem = n(¢)
wheren(e) € N.

In this case we write
lim,_,q x, = x.

In this paper, we study weak contraction which rnigeimediate between a
contraction and a non-expansion. It was detaimstifi Hilbert spaces by Alber et al [1]
and then was adopted to metric spaces by Rhoadé&s. Hurther the concept was
elaborated in a good number of papers [5,7,9]falltoch are metric spaces.

Our result is a unique fixed point result in b-neefipaces for weak contractions.
The definition of weak contraction is suitably mfoeti for the b-metric spaces. The main
result is supported with an example.

Definition 1.6. The b-metric space is complete if every Cauchyusege in it is
convergent.

2. Mainresults
Theorem 2.1. Let (X,d,s) be a complete b-metric space an& 1be a given real
number. Lef: X — X be a mapping such that
d(Tx,Ty) <d(,y) —@(dx,Y)) i, (2.1)
where ®:R, - R, is a function such thalim,,_,. inf®(t,) > (s — 1)l whenever
limsupt, =1 > 0,then T has a unique fixed point.
Proof. Letx, € X be any element. We constructthe sequengebyx,, = Tx,_; ,n >
1.
Thend (x,, Xp41) = Ad(Txp_1,Txy)
S d(xp_1,%7) — P(A(Xp_1,Xp)) ceeienennnnn (2.2)
which implies d(xp, xp11) < d(p_1, %) (using property @b)
It follows that {d(x,,_1,x,)} is @ monotone decreasing sequence of non-negagale
numbers and henex,,_;,x,) = | asn — oo,
Sincel > 0 we have
lim;, e Inf @(d(Xp_1,%7)) >0 oo, (2.3)
Taking limit in (2.2) we get
[ <1—- lim inf (Cb(xn_l,xn))

n—oo
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which is a contradiction by (2.3).
Therefore, lim, e A(0n_1,%7) = 0 it e e e e e e (2.4)
We next prove thdtx, }is a Cauchy sequence.
If possible, lefx,,} be not a Cauchy sequence. Then there exist®, k > 0, for which
there exists two sequendgs(k)}and{n(k)} with n(k) > m(k) > k such that
Ay Xngo)) = €
d (Xm(iy Xno)-1) < €
Then, for all> 0,
£ < d(Xm, Xngio)
< s[d(Xm@iy Xngo-1) + A(Xngo-1,Xn(w))]
<se+ d(xn(k)—llxn(k))
Taking limit infimum of the above inequality, wetain
e < limy e infd(xm(k),xn(k))
< limy_,., sup d(xm(k),xn(k)) S SE it (2.5)
Again, for allk > 0,
d(Xmo -1 Xn0-1) < S[A(Xm Xm0 -1) + d(Xm ey Xngo-1)]
< 5d(Xmao-1, %m@)) + 52 (Xmai, Xng) + A (g, Xngo-1)]
And
d(Xmey (o) < S1A(Xmewy Xmgo-1) + d(ma0 -1 Xn0o)]
< 5 d(Xm @iy Xm@)-1) + S [d(Xmg) -1, Xngy-1) + d(En()-1, Xn))]
Taking infimum of the above inequalities and fra2m{ and (2.5) we get,
Siz < limk_,oo infd(xm(k)_l,xn(k)_l)
< limy_,, sup d(xm(k)_l, xn(k)_l)
< se¢
Now from (1.1) puttingc = xp,x)—1@Nd = xp k)1, We obtain
d(Xmiy Xney) < A(Xmae)-1%ni0-1) — L@ (Xmpo -1, X -1))
Consequently,
d)(d(xm(k)—ltxn(k)—l)) =< d(xm(k)—l'xn(k)—l) - d(xm(k)txn(k))
Taking limit supremum on both sides
]ll—{lgo sup d)(d (xm(k)—l' xn(k)—l))
< lim sup d (-1 Xngy-1) = Jim infd (xmey, Xnao)
<se—e=(s—1)e
But by (2.5) and property df,
limyco sUp @ (d Xk, Xn(iey)) > (s — 1)e, which is a contradiction.
Therefore{x, }is a Cauchy sequence and henge- x € X since(X, d) is complete.
Then
d(x, Tx) < s[d(x, Xpe1) + dCns1, TH)]
= s[d(x, xn+1) + d(Txn: TX)]
:Sd(x: xn+1) + Sz[d(xn: X) - d)(d(xn: X))]
< sd(x, xp41) + 52d(x,, %)
Takingn — oo in the above inequality we obtain
d(x,Tx) = 0that isx = Tx.
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If x andy are two fixed points of T, thed\(x, y) > 0 and
d(x,y) = d(Tx,Ty)
=d(X, Y) - (D(d(x, J’))
< d(x,y) , (by property ofd)
which is a contradiction. Therefare= y,which shows that the fixed point is unique.

Example 2.2. Let X = [0,1] be equipped with the b-metrit(x,y) = |x — y|? for all
x,y € X. It can be checked that for ally,z € X we have
d(x,y) <2[d(x,z) +d(z,y)].
Then(X, d) is a b-metric space with parameter 2 and it is complete.
LetT: X — X be defined as

Tx =x—xz—2 ,x €[0,1]
And ®: R, — R, be defined as

o® = ,te01].
Then forx,y € X,

= |(x-2)- (-2
2 2y |2
- (£

2

xZ y2

< lx—yl? _% 2 2

=d(x,y) — ®(d(x,y))
We conclude that inequality (2.1) remains validdoand consequently by an application
of theorem (2.1), T has a unique fixed point. Iséen that 0 is the unique fixed point of
T.
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