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Abstract. In this paper, we establish the existence of a unique fixed point for weak 
contractions in the context of b-metric spaces. The main theorem is supported with an 
illustrative example. The line of research is the study of generalizations of Banach’s 
contraction mapping principle in spaces which are more general than metric spaces. 
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1.  Introduction and mathematical preliminaries 
The concept of b-metric space was introduced by Bakhtin in [4] which was further used 
by Czerwik in [8]. It is one of the several generalizations of metric spaces which have 
appeared in recent literatures as, for instances, partial metric spaces [2,6,12], G-metric 
spaces [14,16], fuzzy metric spaces [10], etc. A few more works on b-metric spaces can 
be foundin [3,11,13]. In the following we describe the essential features of the spaces 
which are relevant to our studies in this paper. 
 
Definition 1.1. Let � be a non-empty set and let � ≥ 1 be a given real number. A 
function 
�:� × � → 	
 , is called a b-metric provided that, for all�, 
, � ∈ �, 

1) ���, 
� = 0	iff  � = 
, 
2) ���, 
� = ��
, ��, 
3) ���, �� ≤ �[���, 
� + ��
, ��]. 

A pair ��, �� is called a b-metric space. If  � = 1, then it reduces to the usual metric 
space. 
 
Example 1.2. The space��		�0 < � < 1�,  
��	 = {���	� ⊂ ℝ ∶ 	∑ |��|�$

�%& < ∞}, 
Together with the function �: �� × �� → ℝ
 

   ���, 
� = �∑ |�� 	− 
�|�$�%& �
*
+, 

where� = ��	, 
 = 
�	 	 ∈ 	 ��is a b-metric space.It can be shown that  
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   ���, 
� ≤ 	 &,+	 [���, 
� + ��
, ��] 
 
Example 1.3. The -�	�0 < � < 1� of all real functions ��.�, . ∈ [0,1] such that 

/ |��.�|�&
0 �. < ∞ , is a b-metric space if we take ���, 
� = 1/ |��.� − 
�.�|�&

0 �.2
*
+ for 

each�, 
 ∈ -�. 
 
Definition 1.4. Let ��, �� be a b-metric space. Then a sequence {��} in � is called a 
Cauchy sequence if and only if for all 3 > 0 there exist 5�3� ∈ 6 such that for each 
7 ≥ 5�3�, ����	, 
�� < 3. 
 
Definition 1.5. Let ��, �� be a b-metric space. Then a sequence {��	} in �is convergent if 
and only if for all 3 > 0, there exists � ∈ � such that ����, �� < 3 whenever 5 ≥ 5�3� 
where 5�3� ∈ 6. 
 
In this case we write   
lim�→$ �� = �. 

In this paper, we study weak contraction which is intermediate between a 
contraction and a non-expansion. It was detained first in Hilbert spaces by Alber et al [1] 
and then was adopted to metric spaces by Rhoades  [15]. Further the concept was 
elaborated in a good number of papers [5,7,9] all of which are metric spaces. 

Our result is a unique fixed point result in b-metric spaces for weak contractions. 
The definition of weak contraction is suitably modified for the b-metric spaces. The main 
result is supported with an example. 

 
Definition 1.6. The b-metric space is complete if every Cauchy sequence in it is 
convergent. 
 
2. Main results 
Theorem 2.1. Let ��, �, �� be a complete b-metric space and � ≥ 1	be a given real 
number. Let <: � → � be a mapping such that 

��<�, <
� ≤ ���, 
� − =����, 
��….………….….(2.1) 
where Φ:ℝ
 → ℝ
 is a function such that lim�→$ inf =�.�	� > �� − 1�� whenever 
lim sup .� ≥ � > 0, then T has a unique fixed point. 
Proof. Let �0 ∈ �	 be any element. We constructthe sequence{��} by��	 = <��C&		, 5 ≥
1. 
   Then ����, ��
&� = ��<��C&, <��� 
     ≤ ����C&, ��� − =�����C&, ����…………(2.2)  
which implies ����, ��
&� < ����C&, ���        (using  property of Φ) 
It follows that {����C&, ���} is a monotone decreasing sequence of non-negative real 
numbers and hence ����C&, ��� → �			as 5 → ∞.  
Since � > 0 we have  

lim�→$ inf 	=�����C&, ���� > 0…………………...(2.3) 
 Taking limit in (2.2) we get  

� ≤ � − lim
�→$

inf 	E=���C&, ���F	 
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which is a contradiction by (2.3).  
Therefore,  lim�→$ ����C&, ��� = 0……………………………………………….…(2.4) 
We next prove that {��}is  a Cauchy sequence. 
If possible, let{��} be not a Cauchy sequence. Then there exists 3 > 0, G > 0, for which 
there exists two sequences {7�G�}and {5�G�} with 5�G� > 7�G� > G such that 
 �E�H�I�, ���I�F ≥ 3        

 �E�H�I�, ���I�C&F < 3 
Then, for all > 0 ,          
   3 ≤ �E�H�I�, ���I�F 
   		≤ �[�E�H�I�, ���I�C&F + �E���I�C&, ���I�F] 
   ≤ �3 + �E���I�C&, ���I�F 
Taking limit infimum of the above inequality, we obtain     
     3 ≤ limI→$ inf �E�H�I�, ���I�F 
   				≤ limI→$ sup�E�H�I�, ���I�F ≤ �3……………………..(2.5) 
Again, for all G > 0, 
 		�E�H�I�C&, ���I�C&F ≤ �[�E�H�I�, �H�I�C&F + �E�H�I�, ���I�C&F] 
  		≤ ��E�H�I�C&, �H�I�F + �,[�E�H�I�, ���I�F + �E���I�, ���I�C&F] 
And           
   �E�H�I�, ���I�F ≤ �[�E�H�I�, �H�I�C&F + �E�H�I�C&, ���I�F] 

		≤ �	�E�H�I�, �H�I�C&F + �,[�E�H�I�C&, ���I�C&F + �E���I�C&, ���I�F] 
Taking infimum of the above inequalities and from (2.4) and (2.5) we get, 
   

J
KL ≤ limI→$ inf �E�H�I�C&, ���I�C&F    

   ≤ limI→$ sup�E�H�I�C&, ���I�C&F 
   ≤ �3 
Now from (1.1) putting � = �H�I�C&and
 = ���I�C&, we obtain  

�E�H�I�, ���I�F ≤ �E�H�I�C&, ���I�C&F − =��E�H�I�C&, ���I�C&F� 
 Consequently, 

=��E�H�I�C&, ���I�C&F� ≤ �E�H�I�C&, ���I�C&F − �E�H�I�, ���I�F 
Taking limit supremum on both sides  

lim
I→$

sup=��E�H�I�C&, ���I�C&F�
≤ lim
I→$

sup �E�H�I�C&, ���I�C&F − lim
I→$

inf �E�H�I�, ���I�F	
	 	 	 ≤ �3 − 3 = �� − 1�3     
But by (2.5) and  property of Φ, 
limI→$ sup=��E�H�I�, ���I�F� > �� − 1�3, which is a contradiction. 
Therefore {��}is  a Cauchy sequence and hence ��	 → � ∈ �	 since ��, ��	is complete.  

Then          
   ���, <�� ≤ �[���, ��
&� + ����
&, <��] 

    = �[���, ��
&� + ��<��, <��] 
    =	����, ��
&� + �,[����, �� − =�����, ���] 
    ≤ ����, ��
&� + �,����, �� 
Taking 5 → ∞ in the above inequality we obtain  
    ���, <�� = 0	that is � = <�. 
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If �	and 
 are two fixed points of T, then ���, 
� > 0	and  
   ���, 
� = ��<�, <
� 
    =	���, 
� − =����, 
�� 
    < ���, 
� , (by property of Φ) 
which is a contradiction. Therefore� = 
,which shows that the fixed point is unique. 
 
Example 2.2. Let � = [0,1] be equipped with the b-metric ���, 
� = |� − 
|, for all 
�, 
	 ∈ �. It can be checked that for all �, 
, �	 ∈ � we have  
    ���, 
� ≤ 2[���, �� + ���, 
�]. 
Then ��, �� is a b-metric space with parameter � = 2 and it is complete. 
Let <:� → � be defined as  

   <� = � − NL
, 		 , � ∈ [0,1] 

And Φ:	ℝ
 → ℝ
 be defined as  

   Φ�t� = QL
, 		 , . ∈ [0,1]. 

Then for �, 
	 ∈ �, 

   ��<�, <
� = RS� − NL
, T −	S
 −

UL
, TR

,
 

  = R�� − 
� −	SN
L

, −
UL
, TR

,
 

  ≤	 |� − 
|, − &
, R
NL
, −

UL
, R
V
 

  = ���, 
� − =����, 
�� 
We conclude that inequality (2.1) remains valid for Φ and consequently by an application 
of theorem (2.1), T has a unique fixed point. It is seen that 0 is the unique fixed point of 
T.            
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