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Abstract. Micropolar fluids (MPF) can be useful in a variety of engineering purposes when
traditional Newtonian fluid concepts are unable to represent the necessary behavior [18].
The possible uses of MPF flow in magnetic fields, including the creation of novel energy-
producing and health-care innovations, are being eagerly investigated by investigators [16].
Based on the non-similarity studies, the consequences of Hall current on the movement of
magneto-hydrodynamics (MHD) MPF flow across a sliding vertical plate has been
investigated in this study. A flow model to express time-dependent momentum, rotational
momentum, and energy equations is developed using a boundary-layer approximation. The
explicit finite difference method (EFDM) based Compag Visual Fortran 6.6a
computational tool is employed to solve the governing equations. The accuracy of the
numerical technique was checked using a stability and convergence analysis. The results
showed that the system converged at the Prandtl number, B. > 0.25, when 7 =
0.005,AX = 0.8and AY = 0.2 and that the spin gradient viscosity (1) and vortex viscosity
(A) depended on distinct values. The study's conclusions have been graphically represented
for a range of known parameter values at different time points.

Keywords: MHD Periodic Field, Micropolar fluid, Hall Current, Explicit Finite Difference
Method

AMS Mathematics Subject Classification (2020): 76E25

1. Introduction

The field of magneto fluid dynamics known as MHD studies the motion of electrically
conducting fluids in both magnetic and electric fields. The study of astrophysics has
perhaps contributed the most to our knowledge of such occurrences. It has long been
believed that plasma or highly charged gases make up the great majority of the universe's
matter. These experiments have contributed to the development of a large part of the
fundamental understanding of electromagnetic fluid dynamics. Within the discipline of
plasma physics, MHD examines the effects of electromagnetic fields on a continuous,
electrically conducting fluid. A conducting fluid traveling across a magnetic field interacts
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with the field to produce MHD processes. Consequently, when a fluid flows across a
transverse magnetic field, an electromagnetic force is generated. As a result, the fluid's
movement is resisted by a combination of the magnetic field and current. Additionally, by
producing its own magnetic field, the current warps the initial magnetic field. Applying an
electric field perpendicular to the magnetic field is one method of creating a pumping or
opposing force on the fluid. MHD waves, as well as upstream and downstream wave
phenomena, can be caused by disturbances in the fluid or the magnetic field that propagates
across both. The in-depth investigation of these phenomena, which also occur in nature and
are generated by technological devices, is the science of MHD.

The fluid constituents' local structure and micro-motions create tiny effects in a
class of fluids known as MPF. These fluids are made of a diluted suspension of stiff
macromolecules that move independently to sustain stress and body moments under the
effect of spin inertia. The presence of rotating micro-constituents in MPF can alter the
flow's hydrodynamics and cause it to become noticeably non-Newtonian. A lot of research
has been done on the dynamics of MPF because of Eringen's theory [1]. The impact of
local rotating inertia and coupled pressures from realistic micro-rotation action are
considered in this theory. Liquid crystals, suspensions, turbulence, and polymeric fluids
are all covered under this theory. Numerous applications in the physical world and
engineering have made this phenomenon well-known. The movement of a MPF through a
stretching wall was examined by Na and Pop [2]. A MPF contained in a stretched sheet
was the subject of an investigation by Desseaux and Kelson [3]. Hady [4] investigated the
heat transfer (HT) solution including injection from a non-isothermal stretched sheet to a
MPF. Convective HT in an electrically conducting MPF at a stretching surface with a
uniform free stream was studied by researchers Abo-Eldahab and Ghonaim [5].
Mohammadein and Gorla [6] investigated viscous dissipation, internal heat generation, and
a prescribed uniform surface temperature or wall heat flux in a laminar boundary layer of
a MPF across a linearly stretched sheet. However, the effect of a magnetic field on the MPF
problem has attracted a lot of attention lately. A numerical analysis of the boundary layer
of a horizontal plate submerged in a MPF was provided by Mohammadein and Gorla [7].
Heat transport was examined in the presence of a magnetic field that caused buoyant stream
wise pressure gradients and vectored surface mass transfer. They looked into how surface
friction and HT rates were affected by buoyancy, material properties, mass transfer, and
magnetic field. The Hall effect is the creation of a magnetic field perpendicular to the
electric current flowing through an electrical conductor when the current is transverse to a
voltage differential (the Hall voltage). Small magnetic fields are barely affected by the Hall
term when Ohm's law is applied. The analysis of the impact of large magnetic fields on the
flow of electrically conducting fluid, given by Sutton and Sherman [8], however, reveals
that the electromagnetic force has an audible effect and induces anisotropic electrical
conductivity in the plasma. Because of the plasma's anisotropic electrical conductivity, the
Hall current travels through it. When the magnetic field is strong or the collision frequency
is low, the Hall effect acts, producing a substantial Hall parameter. Other technical
applications, including MHD power production, MHD accelerators, laboratory plasma
flows, and other astronomical and geophysical scenarios, depend on how Hall current
affects fluid flow and HT in spinning channels. The impact of Hall current on MHD flow
in parallel plate channels in a rotating system has thus been studied by numerous
researchers. The effects of Hall current on MHD Couette flow between parallel plates in a
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rotating system were examined

by Mandal & Mandal [9] and

Ghosh [10]. Hydromagnetic

convection in a rotating fluid

layer with Hall current was

investigated by Raghavachar

and Gothandaraman  [11]. —_—y
Ghosh and Bhattacharjee [12]
investigated the effects of Hall
on MHD flow in a revolving
channel when an inclined
magnetic field was present. The
unsteady flow of a non-
Newtonian fluid in a rotating
apparatus in relation to Hall
current effects was examined
by Hayat et al. [13]. Ghosh et
al. [14] examined the impact of Hall effects on HT and MHD flow in a rotating channel.
Using an infinite vertical porous plate, Arifuzzaman et al. [15] investigated the high order
chemically reactive MPF. It has been demonstrated that vortices affect many facets,
including energy production, transportation, environmental preservation, and medical
advancements. Therefore, one of the most notable aspects of scientific and technical
research in these areas is the capacity to predict, control, and optimize such vortices.
Encouraged by all those possible uses, Ahmad et al. [16] have introduced a study to
uncover the significance of vortices in MPF. Their findings indicate that at a certain Re,
magnetic number, M causes a reduction of 45% in the Nuand a decline of one percent in
the skin friction coefficient (CrRe). The Nu and CfRe, however, rise when the Re is raised
at a constant M. It implies that an elevated velocity results in enhanced thermal transfer
and wall shear stress, which destabilizes the flow and could lead to turbulence. An analysis
of thermal radiation, chemical reaction, hall and ion slip effects on MHD oscilatory rotating
MPFF has been performed by M. Veera krishna et al. [17] and their analysis let us know
that raising the hall and ion slip factors causes the velocity and micro-rotation
characteristics to grow, however raising the viscosity ratio and chemical reaction parameter
has the opposite effect. The distributions of temperatures are supposed to rise with the
thermal emission variable, however the opposite is seen as the oscillation frequency rises.
Additionally, the concentration rises as the chemical reaction parameter increases and falls
as the Schmidt number increases. A very recent investigation of MPF over a permeable
stretching sheet is done by Kumar et al. [18] and they reveal that as couple stress increases,
the velocity and temperature profiles get better; micro-rotation gets worse; velocity
minimizes due to rising porosity; and concentration drops as Schmidt number and chemical
reaction variables rise. Jalili et al [19] discovered in their study that as the magnetic
parameter rose, the velocity profile and micro-rotation velocity also rose. Moreover, raising
the rotation parameter raises the velocity. Additionally, the Pr and Brownian motion have
a direct impact on the temperature profile, while the Re and Sc have an opposite effect.
According to other findings, raising the Reynolds number, Re and thermophoretic
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parameter causes the concentration value to decrease. The substantial effect of the Hall
current on flow characteristics, which improves velocity fields and changes the heat
source's appearance [20]. Additionally, the study demonstrates that a heat source raises
temperature fields and velocity, especially in micro-rotational profiles and the magnetic
parameter accelerates micro-rotation, while vortex viscosity (A), which exhibits distinct
characteristics from linear velocity, increases velocity with specific temperature and
concentration.

Our main goal is therefore to investigate how the suction parameter affects HT on an
infinite vertical plate that is transporting an unstable MPF. The model has been solved using
the explicit finite difference method. A detailed examination of the temperature, velocity, and
angular velocity over the boundary layer is presented and the corresponding graphs are shown.

2. Mathematical model

This study examines the unstable two-dimensional (plane) free convection of a MPF with
HT flow, residing in a semi-infinite area of space enclosed by an infinite vertical limiting
space. The heated plate is followed along the x-axis in an upward direction, and the y-axis
is taken normal to it. A MPF with a temperature of T is present in the plate. In the transverse
direction of the flow, a magnetic field of uniform strength B is applied. In order for the
induced magnetic field to be ignored in comparison to the applied magnetic field and for
B = (0, By, 0) to occur, where By, is the uniform magnetic field acting normal to the plate,
the flow's magnetic Reynolds number is assumed to be small enough. In Figure 1, the flow
arrangement and coordinate system are displayed. With the Boussinesq approximation
applied, the flow of an unstable incompressible MPF can be expressed as follows:

Momentum Equation:

u u _ x\ 9%u xaﬂ 1 Bfage . o (TX
+ Yt y—(v+p)ay2 pay+ 9B(T —Ty) p—(1+m2)(wm+u)sm (U)(l)

ow dw  ow no*w 1 Béo,
=(v+9) @n-w) (2

p) 9y T T m)

Angular momentum Equation:

o0 N o0 ey 00 yora x (ZQ 6u> @)
ot “ox " "dy pjoy? pj dy
Energy Equation:
6T+ 6T+ oT kaT+1( +)()<(’)u)2 A
Jat “ d0x ay pcy, 0y? ¢y v p/ \dy )
Initial and boundary conditions are
t<o0, u=20, w=0, Q=0, T - Ty every where (5)
u=20, w=20, 0 =0, T - Ty at x=0\
du
t>0, u=0, w=0, Q=—s@, T=T, at y=0f (6)
u=20, w=20, 0=0, T ->T, as y—> o
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where the velocity components in the x, y and z directions are u, v and w, respectively, g
represents the acceleration due to gravity, p indicates the density, v represents the
kinematic viscosity, B identifies the coefficient of volume expansion. The fluid
temperature in the free stream, the plate temperature, and the fluid temperature inside the
thermal boundary layer are denoted by the letters T, T,, and T,,. Additionally k represents
the thermal conductivity of the medium, C, symbolize the specific heat at constant
pressure, ) be the micro-rotation component, o, indicates the electrical conductivity, y
declare the spin gradient viscosity, y represents the vortex viscosity, j indicates the micro-
inertia per unit mass and other symbols have their usual meaning. s be an arbitrary
constant. Since the microelements in a concentrated particle flow near the wall are unable
to rotate, we obtain G = 0 for s = 0, which denotes the no-spin condition. The scenario
s = 1/2 denotes weak concentration and the vanishing of the stress tensor's anti-symmetric
portion. At the wall, the fluid velocity equals the particle spin in a suspension of small
particles. An example of turbulent boundary layer flow is the case s = 1.

3. Mathematical framework
The governing equations (1)—(4) must be made dimensionless since the finite difference
method will be used to solve them under the initial circumstances (5) and the boundary
conditions (6). The following dimensionless quantities are newly introduced for this
purpose:

xU, yUo,

X = Y = U=
v

u tU2 Qv T — T,
v u,’

W=—t\r="CT="—0=
Tu T T

V= ,0 =
Uz Ty — T

%
u,’
With regard to dimensionless variables, the following nonlinear coupled PDEs are
obtained:

6U+U6U+V6U
dt ax ' ay
—(1+A)62U+Aar G0 in2(X) (U + mWw) 7
= ayz TGy T el T s (@) U+ m @)
ow UaW VaW—(1+A)aZW —— (mU - W) 8
o Cax T oy T+mz " (®)
c’)F_l_Uc’)F Var_AaZF /1(21" c’)U) 9
gt 9X 9y  ay2 Y )
06,9, 00 10 +AE(au)2 10
gt 90X~ dY P.ayY? A+ DE\Gy 10

with the matching beginning and boundary conditions being

<0, U=0, wW=0, =0, 6=0 every where an
U=0, W=0, =0, 6=0 at X=0
ou
>0, U=0, wW=0, F——sa—y =1 at Y=0 (12)
U=0, wW=20, r=0, 6=0 as Y - o

where G,,A,A,M, P, A E. and s stand for the Grashof number, spin gradient viscosity,
vortex viscosity, magnetic parameter, Prandlt number, microrotation number, Eckert
number and suction parameter respectively.
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4. Numerical solutions
In this section, we attempt to solve the governing second order nonlinear coupled
dimensionless partial differential equations with the associated initial and boundary
conditions. From the concept of the
above discussion, for simplicity the ==
explicit finite difference method has
been used to solve equations (7) — (10) o
subject to the conditions given by (11)
and (12). To obtain the difference | Griin | i) | GEiED
equations the region of the flow is [ ' l ' j
divided into a grid or mesh of lines 7 el Y I
parallel to X and Y axes where X-axis is N 1 l l
taken along the plate and Y-axis is =
normal to the plate.
Here we consider that the plate of height iz
Xmax(=100) ie. X varies from o sy
0to100 and regard Y, (=25) as — 4L 22 {
corresponding to Y — oo i.e.Y varies o - . -
from 0 to 25. There are m = 100 and Fig-2- Finite difference space giid.
n = 100 grid spacings in the X and Y directions respectively as shown in Figure. 2.

It is assumed that AX, AY are constant mesh sizes along X and Y directions
respectively and taken as follows,

AX = 1.00(0 < x < 100)
AY =0.25(0< y < 25)

with the smaller time-step, At = 0.005
Let U, V, W, I' & 6 denote the values of U, V, W, T' & @ at the end of a time-step
respectively Using the explicit finite difference approximation we have,

X

(i-1j-1) (-1 (i-1j+1)

I
o
1

( ) _ Uy, Uy (3_U> Uiy = Ui (5_U) _Uijr1— Ui
Jat i,j At ’ X i,j AX ’ ay i,j AY
(f”_V) Vi Vi (O_W) _ Wy = Wiy (C”_W) W= Winay
d ij AY ’ Jat ij At ’ X ij AX
(6_W)  Wije =W (E) L, =T (E) Ly —Tiog;

d i,j AY ’ Jat i,j At ’ X i,j AX

(ﬂ) _ T — Ty (6_6) _ 0, — i) (6_6) _ 8= 0ima
d i,j AY ’ at i,j At ’ X i,j AX

(@) 0ij+1— 8y <52U> _Uije1 =203+ Ui ja
iy AY o), (ay)?

R4 Wi = 2W i+ Wiy d°T T =20+ T
Y2 ’ (AY)2 ’ Y2 . (AY)2

629 _ 91"]'4_1 - 291"1' + gi,j—l

aY? ’ (AY)?
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From the system of partial differential equations (7) — (10) with substituting
the above relations into the corresponding differential equation we obtain an appropriate
set of finite difference equations,

-

Uij — Ui Uij— Uiy Uij+1— Uy
ar tUiTay  tYu Ty
Uijr1 —2U;; + Ui jq
VP M
+ = s’ (X) Uy + mWyy)  (13)
W — W, Wij—Wi_1; Wijr1—Wi; Wijer = 2Wi; + Wi ;4
g4y, J 4y, J = (1+4)—= J - L
At WA LT AY 1+24) (AY)?
+ —1 n m2 (mUi,j - Wi,j) (14)
I~ T Iij =Ty lijer =T Tijer =20+ TG54
ZRL A J 4y, -k J = p-L J 7L
ar YU ax  TYWT ay (AY)?
Uij+1— Ui
, -2 (zri,j + T) (15)
0;; —0;; LU 0ij —08iq Ly Oij41 =05 1054, —20;; 40,4
At WA LT AY P. (AY)?
s N\2
+(1+ A)E, (FEEE) (16)
Corresponding initial and boundary conditions are
U, =0 wi; =0 =0 60 =0 (17)
Ul =0 wlly =0 Iy =—s 22U gn =1 (18)
Uiy =0 wip =0 I[L=0 6, =0 where,L -

Here the subscripts i and j designate the grid points with x and y coordinates
respectively and the superscript n represents a value of time, T = ndt where n =
0,1,2,3, ..... From the initial condition (17), the values of U, W, I" and 6 are known at 7 =
0. During any one time-step, the coefficients U; ; and V; ; appearing in equations (13) —
(16) are treated as constants. Then at the end of any time-step Az, the new angular
velocity I, the new temperature &, the new primary velocity U, the new secondary
velocity W at all interior nodal points may be obtained by successive applications of
equations (15), (16), (13),and (14) respectively. This process is repeated in time and
provided the time-step is sufficiently small, U, V, W, T & 6 should eventually
converge to values which approximate the steady-state solution of equations (7) — (10).
The numerical values of the Shear stress, Couple shear stress and Nusselt number are
evaluated by a five-point approximate formula for the derivative, and then the average
Shear Stress, Couple stress and Nusselt number are calculated by the use of Simpson’s 1/3
integration formula. These converged solutions are shown graphically in Figure 3 to
Figure 22.
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5. Stability and convergence analysis
Since an explicit procedure is being used, the analysis will remain incomplete unless we
discuss the stability and convergence of the finite difference scheme. For the constant mesh
sizes the stability criteria of the scheme may be established as follows:
The general terms of the Fourier expansion for U, W, T' & 6 at a time arbitrarily called
t = 0 are all e!®Xe'FY apart from a constant, where i = /—1. Atatime t = t, these terms
become
U: P(r)elXelfY
W:  ¢(r)el*Xeifr
[: y(r)elaXeifY
9: O(1)eleXeibY |
and after the time-step these terms will become
U: l/’}(T)elaXeLBY
W: ¢(r)ei*Xeibr
[: y(r)elaXeifY
6: O(1)eiaXeibY |
Substituting (19) and (20) into equations (13) — (16), regarding the coefficients U and
V' as constants over any one time-step, we obtain the following equations upon
simplification,

(19)

(20)

Y@ - Y@ | Y@ -e ) p@)(eF —1)
e +U % + V( » AY) = G,0(1) +
2y(t)(cosBAY — 1) y(o)(e? —1 M
(1+A) 1) A NG ,; T (¥(@) +me(r)) (21)
¢@) - 9@ d@(A-—e ) p@(eF -1)
w0 26(2) cospAY +1I)/ o
T)(CcOoS —
A+0) == +7 2 (mp(@) ~ (@) (22)
V@O - y@ y@@A—e ) y(@) (e -1)
e U AX + AY B (e 1)
2y(t)(cospAY — 1) Y(r)(er? —1
@ar)? -2 {Zy(r) + G } (23)
0(n)— 0(x)  O(@m(1—e ¥) o()(eY —1)
At +U AX + AY B (e 1)
1 20(t)(cosBAY — 1) Y(r)(er? —1
P_r 1)? + (1 + A)E, { AV } (24)
The equations (21), (22), (23) and (24) can be written in the following form
Y =AY + Bop + Cy + DO (25)
$(1) = Ep + Fyp (26)
i/(f} =Gy + HY 27)
0() =10+]Jy (28)

where
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A-l—U—(l—e‘“"AX) V (e‘ﬂ”—1)+(1+A)(Ay)2(cosﬁAY—1)
M
y _1+m2AAT
m T .
B=—-——At C=A—(e‘ﬁAY—1)D=GAT
1+
—iaAX AY
_1—U—(1 e laAX) — V (e‘ﬂ 1)+(1+A)(Ay)2(cosﬁAY—1)
M
y 1+m2A "
m
_ —iaAX AY
= TaoE 1—U—(1—el“) V (e‘ﬂ —1)+A(Ay)2(cosﬁAY—1)
— 2AAT
H——/l—(e‘BAY 1),
AT, . 1 2At
I—1—U— 1 — e @dX) _y— (eiBAY _q AY —
7 )=V ay(e )+P(Ay)2<cosﬁ 1)
At - 2
=(1+A)E Ay _q
J=(+ >C(Ay)2(e )

and these equations (25) — (28) are expressed in matrix notation,

[Y] 4 B ¢ Dl[y
qS|=FE00 ¢
|]/ H 0 G 0|y (29)
lgl L/ 0 0 1]le
thatis, n=Tn
rp] A B C D 0
. _ | _|F E 0 0 _|o
where 7 7 T=1y o G 0and n y
) J 0 0 I ¢}

For obtaining the stability condition we have to find out eigenvalues of the amplification
matrix T but this study is very difficult since it is a fourth order square matrix and all

the elements of T are different. Hence the problem requires that the Eckert Number E,

is assumed to be very small that is tends to zero. Under this consideration we have ] = 0
and the amplification matrix becomes

A B C D
r—|F E 00

H 0 G 0

0 0 0 I
After simplification of the matrix T we get,
A B C D A0 0 O A—42 B C D
F E 0 0 012 0 0 F E-12 0 0
Hoco[oo/‘to_o’:Hoa—Ao_O
0 0 0 I 0 0 0 2 0 0 0 1-2
={(A-ND)E-A)—-BF}(G-ADNI-1)=0
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So the eigenvalues are 1, = G, 4, =1 And
(A—AN)(E -1 —BF=0
= AE—AA—AE+A*—BF =0
= A2 —(A+E)JA+AE—-BF =0
_A+E+./(A+E)? — (4AE — 4BF)
B 2
_A+E+.\(A—E)?+4BF
B 2
A+E+./(A—E)? +4BF A+E—./(A—E)?+4BF
Az = > and A, = >
For stability, each eigenvalue 4;, 1,, 1; and A, must not exceed unity in modulus.
Hence the stability condition is
A+E+./(A—E)? + 4BF <1
> <

Gl<1, |Il<1,

A+E—./(A—E)? +4BF
2

Now we assume that U is everywhere nonnegative and V is everywhere nonpositive.
Thus
G=(1—-a—-b- AZC) + ae X 4 pelBAY 4 A2c cosBAY — 2AAT

h A LA L L
where, a = AX = AY and ¢ = (AY)Z
The coefficients a, b and c are all real and nonnegative. We can demonstrated that the
maximum modulus of G occurs when adX = mm and BAY = nm, where m and n are
integers and hence G is real. The value of |G| is greater when both m and n are odd
integers, in which case
G=(0-a—b—A2c)—a—b—A2c —21A7
= G=1-2(a+ b+ A2c + AA7)
To satisfy the first condition |G| < 1, the most negative allowable value is G = —1
Therefore the first stability condition is
2@+ b+ A2c+ AAT) <2

and

<1 forall a,p

that is,
U ar + |V + AN—= 28t + 1A 30
Al I A7)z T< (30)
Likewise, the second condltlon |]| < 1 requires that
e AT 2 At <1 -
AX AY P. (AY)2 = G
Hence the stability conditions of the problem are as furnished below
At 2AT
— — A 2
UAX+|V| (AY)2+/1T (32)
At
U—+ |V| (33)

<1
AX AY P. (AY)2 =
Since from the initial condition, U =V = 0 at t = 0 so the equations (32) and (33) gives
P, = 0.25 and parameter A and A depended arbitrary values of each other.
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Hence the convergence criteria of the problem are P. > 0.25 and Aand A depended
different values of each other.

6. Results and discussion

For the purpose of discussing the results of the problem, the approximate solutions are
obtained for various parameters with small values of Eckert number. In order to analyze
the physical situation of the model, we have computed the steady state numerical values of
the non-dimensional primary velocity U, secondary velocity W, angular velocity T and
temperature 6 within the boundary layer for different values of magnetic parameter(M),
Grashof number(G,), Prandtal number(B.), Spin gradient viscosity (1), Micro Rotation
number (A), Vortex viscosity (A), Hall current (m) and Eckert number(E,). The graphs
are represented with some constant parameters M = 2.0,m = 0.5,A= 0.5,A=1.0,4 =
0.10,E. = 0.01,B. = 1.0,G, = 5.00,s = 0.05. In the figure-3, the effect of primary
velocity profiles has been shown for different data of M. It is examined that the field of
velocity decreases for increasing M. The curve to curve fluctuation for velocity profiles
diminishes 24.19%, 20.97% and 11.57% as M changes from 1.00 to 25.0 respectively at
T = 5.00. Similarly in figure-4, velocity profiles are decreases when raises the values of
P.. Figures 5-6 describe that the increase of velocity profiles with respect to increasing the
parameter values of G, and m.

25
i 1.5
- . _ Pr=05
r B [ — — =~ Pl
I M=4.00 St U Pr=l5i
5| * e A |
> | |- M=5.00 z
81s5f - 8 !
s | s
E 1 E
= B =
o o 05
0.5
1 NN
oL ] N R Vl“\\'.":‘.;-;-t.= ol 1 T e T T
0 2 4 6 8 0 2 4 6 8 10 1z
Coordinate Variable Coordinate Variable
Figure 3: The impact of M on U Figure 4: The impact of B. on U
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Figure 5: The impact of G, on U

Coordinate Variable

Figure 6: The impact of m on U

We discussed the effects of secondary velocity profile (SVP) for different parameter values
in the Figures 7-10. The impression of M, B. , G, and m in secondary velocity field, we
observed that the SVP decreases due to rising of M and P, respectively in Figure 7 and
Figure 8. Also in Figure 9 and Figure 10, SVP increases with the raise of G, and m
respectively. The angular velocity profiles (AVPs) are illustrated for different values of
M, P. , G, and m. The AVP increases with the increase of M and P, shown in Figures 11-
12 and decreases with the increase of G, and m which are shown in Figures 13 and Figure

14.
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Figure 7: The impact of M on W
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Now we analyzed the skin friction (Figures 15 to 18) and Nusselt number (Nu) (Figures
19 to 22) for different parameters data. From Figures 15 and 16, they are noticed to have
an increase values of M and B. in the reduction of the skin friction and fro the Figure 17
and Figure 18, we observed that the skin friction distribution increase with the increasing
of G, and m.

The MHD effects on Nu is illustrated in Figures 19 to 22. Figure 19 represented
that the Nu profiles is detected to be increased for the increase of M and Figure 20, Figure
21 and Figure 22 which are illustrated Nu profiles decrease with the increase of B, G, and
m respectively.
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Conclusions
this paper, the numerical solution of unsteady MHD MPF flow past a moving vertical

plate with periodic field and Hall current effects is analyzed. The principal observations
are given below:

e Itis observed that the primary velocity profiles decrease for increasing data of M
and PB.. Moreover increasing G, and m caused the primary velocity profiles to
increase.
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The behaviour of SVP decrease for M and B,.. Also increase for G, and m.

e AVP increases qualitatively with the increasing values of M and B. and decreases
with increasing values of G, and m.

e The skin friction distribution is falling for M and B, and raising for G,. and m.

e Nu isan increasing function of M and decreases for B., G,- and m.
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