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Abstract. Micropolar fluids (MPF) can be useful in a variety of engineering purposes when 

traditional Newtonian fluid concepts are unable to represent the necessary behavior [18]. 

The possible uses of MPF flow in magnetic fields, including the creation of novel energy-

producing and health-care innovations, are being eagerly investigated by investigators [16]. 

Based on the non-similarity studies, the consequences of Hall current on the movement of 

magneto-hydrodynamics (MHD) MPF flow across a sliding vertical plate has been 

investigated in this study. A flow model to express time-dependent momentum, rotational 

momentum, and energy equations is developed using a boundary-layer approximation. The 

explicit finite difference method (EFDM) based Compaq Visual Fortran 6.6a 

computational tool is employed to solve the governing equations. The accuracy of the 

numerical technique was checked using a stability and convergence analysis. The results 

showed that the system converged at the Prandtl number, 𝑃𝑟 ≥ 0.25, when 𝜏 =
0.005, ∆𝑋 = 0.8 and ∆𝑌 = 0.2 and that the spin gradient viscosity (𝜆)  and vortex viscosity 

(Λ) depended on distinct values. The study's conclusions have been graphically represented 

for a range of known parameter values at different time points.   

Keywords: MHD Periodic Field, Micropolar fluid, Hall Current, Explicit Finite Difference 

Method 

AMS Mathematics Subject Classification (2020): 76E25 

1. Introduction 

The field of magneto fluid dynamics known as MHD studies the motion of electrically 

conducting fluids in both magnetic and electric fields. The study of astrophysics has 

perhaps contributed the most to our knowledge of such occurrences. It has long been 

believed that plasma or highly charged gases make up the great majority of the universe's 

matter. These experiments have contributed to the development of a large part of the 

fundamental understanding of electromagnetic fluid dynamics. Within the discipline of 

plasma physics, MHD examines the effects of electromagnetic fields on a continuous, 

electrically conducting fluid. A conducting fluid traveling across a magnetic field interacts 
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with the field to produce MHD processes. Consequently, when a fluid flows across a 

transverse magnetic field, an electromagnetic force is generated. As a result, the fluid's 

movement is resisted by a combination of the magnetic field and current. Additionally, by 

producing its own magnetic field, the current warps the initial magnetic field. Applying an 

electric field perpendicular to the magnetic field is one method of creating a pumping or 

opposing force on the fluid. MHD waves, as well as upstream and downstream wave 

phenomena, can be caused by disturbances in the fluid or the magnetic field that propagates 

across both. The in-depth investigation of these phenomena, which also occur in nature and 

are generated by technological devices, is the science of MHD.  

The fluid constituents' local structure and micro-motions create tiny effects in a 

class of fluids known as MPF. These fluids are made of a diluted suspension of stiff 

macromolecules that move independently to sustain stress and body moments under the 

effect of spin inertia. The presence of rotating micro-constituents in MPF can alter the 

flow's hydrodynamics and cause it to become noticeably non-Newtonian. A lot of research 

has been done on the dynamics of MPF because of Eringen's theory [1]. The impact of 

local rotating inertia and coupled pressures from realistic micro-rotation action are 

considered in this theory. Liquid crystals, suspensions, turbulence, and polymeric fluids 

are all covered under this theory. Numerous applications in the physical world and 

engineering have made this phenomenon well-known. The movement of a MPF through a 

stretching wall was examined by Na and Pop [2]. A MPF contained in a stretched sheet 

was the subject of an investigation by Desseaux and Kelson [3]. Hady [4] investigated the 

heat transfer (HT) solution including injection from a non-isothermal stretched sheet to a 

MPF. Convective HT in an electrically conducting MPF at a stretching surface with a 

uniform free stream was studied by researchers Abo-Eldahab and Ghonaim [5]. 

Mohammadein and Gorla [6] investigated viscous dissipation, internal heat generation, and 

a prescribed uniform surface temperature or wall heat flux in a laminar boundary layer of 

a MPF across a linearly stretched sheet. However, the effect of a magnetic field on the MPF 

problem has attracted a lot of attention lately. A numerical analysis of the boundary layer 

of a horizontal plate submerged in a MPF was provided by Mohammadein and Gorla [7]. 

Heat transport was examined in the presence of a magnetic field that caused buoyant stream 

wise pressure gradients and vectored surface mass transfer. They looked into how surface 

friction and HT rates were affected by buoyancy, material properties, mass transfer, and 

magnetic field. The Hall effect is the creation of a magnetic field perpendicular to the 

electric current flowing through an electrical conductor when the current is transverse to a 

voltage differential (the Hall voltage). Small magnetic fields are barely affected by the Hall 

term when Ohm's law is applied. The analysis of the impact of large magnetic fields on the 

flow of electrically conducting fluid, given by Sutton and Sherman [8], however, reveals 

that the electromagnetic force has an audible effect and induces anisotropic electrical 

conductivity in the plasma. Because of the plasma's anisotropic electrical conductivity, the 

Hall current travels through it. When the magnetic field is strong or the collision frequency 

is low, the Hall effect acts, producing a substantial Hall parameter. Other technical 

applications, including MHD power production, MHD accelerators, laboratory plasma 

flows, and other astronomical and geophysical scenarios, depend on how Hall current 

affects fluid flow and HT in spinning channels. The impact of Hall current on MHD flow 

in parallel plate channels in a rotating system has thus been studied by numerous 

researchers. The effects of Hall current on MHD Couette flow between parallel plates in a 
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rotating system were examined 

by Mandal & Mandal [9] and 

Ghosh [10]. Hydromagnetic 

convection in a rotating fluid 

layer with Hall current was 

investigated by Raghavachar 

and Gothandaraman [11]. 

Ghosh and Bhattacharjee [12] 

investigated the effects of Hall 

on MHD flow in a revolving 

channel when an inclined 

magnetic field was present. The 

unsteady flow of a non-

Newtonian fluid in a rotating 

apparatus in relation to Hall 

current effects was examined 

by Hayat et al. [13]. Ghosh et 

al. [14] examined the impact of Hall effects on HT and MHD flow in a rotating channel. 

Using an infinite vertical porous plate, Arifuzzaman et al. [15] investigated the high order 

chemically reactive MPF. It has been demonstrated that vortices affect many facets, 

including energy production, transportation, environmental preservation, and medical 

advancements. Therefore, one of the most notable aspects of scientific and technical 

research in these areas is the capacity to predict, control, and optimize such vortices. 

Encouraged by all those possible uses, Ahmad et al. [16] have introduced a study to 

uncover the significance of vortices in MPF. Their findings indicate that at a certain 𝑅𝑒, 

magnetic number, 𝑀 causes a reduction of 45% in the 𝑁𝑢and a decline of one percent in 

the skin friction coefficient (𝐶𝑓𝑅𝑒). The 𝑁𝑢 and 𝐶𝑓𝑅𝑒, however, rise when the 𝑅𝑒 is raised 

at a constant 𝑀. It implies that an elevated velocity results in enhanced thermal transfer 

and wall shear stress, which destabilizes the flow and could lead to turbulence. An analysis 

of thermal radiation, chemical reaction, hall and ion slip effects on MHD oscilatory rotating 

MPFF has been performed by M. Veera krishna et al. [17] and their analysis let us know 

that raising the hall and ion slip factors causes the velocity and micro-rotation 

characteristics to grow, however raising the viscosity ratio and chemical reaction parameter 

has the opposite effect. The distributions of temperatures are supposed to rise with the 

thermal emission variable, however the opposite is seen as the oscillation frequency rises. 

Additionally, the concentration rises as the chemical reaction parameter increases and falls 

as the Schmidt number increases. A very recent investigation of MPF over a permeable 

stretching sheet is done by Kumar et al. [18] and they reveal that as couple stress increases, 

the velocity and temperature profiles get better; micro-rotation gets worse; velocity 

minimizes due to rising porosity; and concentration drops as Schmidt number and chemical 

reaction variables rise.  Jalili et al [19] discovered in their study that as the magnetic 

parameter rose, the velocity profile and micro-rotation velocity also rose. Moreover, raising 

the rotation parameter raises the velocity. Additionally, the 𝑃𝑟 and Brownian motion have 

a direct impact on the temperature profile, while the 𝑅𝑒 and 𝑆𝑐 have an opposite effect. 

According to other findings, raising the Reynolds number, 𝑅𝑒 and thermophoretic 
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parameter causes the concentration value to decrease.  The substantial effect of the Hall 

current on flow characteristics, which improves velocity fields and changes the heat 

source's appearance [20].  Additionally, the study demonstrates that a heat source raises 

temperature fields and velocity, especially in micro-rotational profiles and the magnetic 

parameter accelerates micro-rotation, while vortex viscosity (Λ), which exhibits distinct 

characteristics from linear velocity, increases velocity with specific temperature and 

concentration. 

Our main goal is therefore to investigate how the suction parameter affects HT on an 

infinite vertical plate that is transporting an unstable MPF. The model has been solved using 

the explicit finite difference method. A detailed examination of the temperature, velocity, and 

angular velocity over the boundary layer is presented and the corresponding graphs are shown. 

 

2. Mathematical model 

This study examines the unstable two-dimensional (plane) free convection of a MPF with 

HT flow, residing in a semi-infinite area of space enclosed by an infinite vertical limiting 

space. The heated plate is followed along the x-axis in an upward direction, and the y-axis 

is taken normal to it. A MPF with a temperature of 𝑇 is present in the plate. In the transverse 

direction of the flow, a magnetic field of uniform strength B is applied. In order for the 

induced magnetic field to be ignored in comparison to the applied magnetic field and for 

𝐵 = (0, 𝐵0, 0)  to occur, where 𝐵0  is the uniform magnetic field acting normal to the plate, 

the flow's magnetic Reynolds number is assumed to be small enough. In Figure 1, the flow 

arrangement and coordinate system are displayed. With the Boussinesq approximation 

applied, the flow of an unstable incompressible MPF can be expressed as follows: 

 

Momentum Equation: 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (𝜐 +

𝜒

𝜌
)
𝜕2𝑢

𝜕𝑦2
+
𝜒

𝜌

𝜕Ω

𝜕𝑦
+ 𝑔𝛽(𝑇 − 𝑇∞) −

1

𝜌

𝐵0
2𝜎𝑒

(1+𝑚2)
(𝑤𝑚 + 𝑢) sin2 (

𝜋𝑥

𝜐
)(1) 

 

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
= (𝜐 +

𝜒

𝜌
)
𝜕2𝑤

𝜕𝑦2
+
1

𝜌

𝐵0
2𝜎𝑒

(1 + 𝑚2)
(𝑢𝑚 − 𝑤)        (2) 

 

Angular momentum Equation: 

𝜕Ω

𝜕𝑡
+ 𝑢

𝜕Ω

𝜕𝑥
+ 𝑣

𝜕Ω

𝜕𝑦
=
𝛾

𝜌𝑗

𝜕2Ω

𝜕𝑦2
−
𝜒

𝜌𝑗
(2Ω +

𝜕𝑢

𝜕𝑦
)                          (3) 

Energy Equation: 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
+
1

𝑐𝑝
(𝜐 +

𝜒

𝜌
) (
𝜕𝑢

𝜕𝑦
)
2

                                     (4) 

 

Initial and boundary conditions are 

𝑡 ≤ 0 ,         𝑢 = 0, 𝑤 = 0 , Ω = 0,          𝑇 → 𝑇∞           every where                   (5) 

𝑡 > 0 ,  

𝑢 = 0, 𝑤 = 0 , Ω = 0,           𝑇 → 𝑇∞              at   𝑥 = 0

𝑢 = 0, 𝑤 = 0 , Ω = −𝑠
𝜕𝑢

𝜕𝑦
,       𝑇 = 𝑇𝑤          at   𝑦 = 0

𝑢 = 0, 𝑤 = 0 , Ω = 0,           𝑇 → 𝑇∞              as   𝑦 → ∞}
 

 
              (6) 
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where the velocity components in the 𝑥, 𝑦 and 𝑧 directions are 𝑢, 𝑣 and 𝑤, respectively,  𝑔 

represents the acceleration due to gravity, 𝜌
 

 indicates the density, 𝜐 represents the 

kinematic viscosity, 𝛽 identifies the coefficient of volume expansion. The fluid 

temperature in the free stream, the plate temperature, and the fluid temperature inside the 

thermal boundary layer are denoted by the letters 𝑇,   𝑇𝑤 and 𝑇∞. Additionally 𝑘 represents 

the thermal conductivity of the medium, 𝐶𝑝 symbolize the specific heat at constant 

pressure, Ω  be the micro-rotation component, 𝜎𝑒 indicates the electrical conductivity, 𝛾 

declare the spin gradient viscosity, 𝜒 represents the vortex viscosity, 𝑗 indicates the micro-

inertia per unit mass and other symbols have their usual meaning. 𝑠 be an arbitrary  

constant. Since the microelements in a concentrated particle flow near the wall are unable 

to rotate, we obtain 𝐺 = 0 for 𝑠 = 0, which denotes the no-spin condition. The scenario 

𝑠 = 1/2 denotes weak concentration and the vanishing of the stress tensor's anti-symmetric 

portion. At the wall, the fluid velocity equals the particle spin in a suspension of small 

particles. An example of turbulent boundary layer flow is the case 𝑠 = 1. 

 

3. Mathematical framework 

The governing equations (1)–(4) must be made dimensionless since the finite difference 

method will be used to solve them under the initial circumstances (5) and the boundary 

conditions (6). The following dimensionless quantities are newly introduced for this 

purpose:  

𝑋 =
𝑥𝑈𝑜
𝜐
, 𝑌 =

𝑦𝑈𝑜
𝜐
, 𝑈 =

𝑢

𝑈𝑜
, 𝑉 =

𝑣

𝑈𝑜
,𝑊 =

𝑤

𝑈𝑜
, 𝜏 =

𝑡𝑈𝑜
2

𝜐
, Γ =

Ωυ

𝑈𝑜
2 , 𝜃 =

𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

 

 

With regard to dimensionless variables, the following nonlinear coupled PDEs are 

obtained: 
𝜕𝑈

𝜕𝜏
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌

= (1 + ∆)
𝜕2𝑈

𝜕𝑌2
+ ∆

𝜕Γ

𝜕𝑌
+ 𝐺𝑟𝜃 −

𝑀

1 +𝑚2
sin2(𝜋𝑋) (𝑈 +𝑚𝑊)             (7) 

𝜕𝑊

𝜕𝜏
+ 𝑈

𝜕𝑊

𝜕𝑋
+ 𝑉

𝜕𝑊

𝜕𝑌
= (1 + ∆)

𝜕2𝑊

𝜕𝑌2
+

𝑀

1 +𝑚2
(𝑚𝑈 −𝑊)                       (8) 

𝜕Γ

𝜕𝜏
+ 𝑈

𝜕Γ

𝜕𝑋
+ 𝑉

𝜕Γ

𝜕𝑌
= Λ

𝜕2Γ

𝜕𝑌2
− 𝜆 (2Γ +

𝜕𝑈

𝜕𝑌
)                             (9) 

𝜕θ

𝜕𝜏
+ 𝑈

𝜕θ

𝜕𝑋
+ 𝑉

𝜕θ

𝜕𝑌
=
1

Pr

𝜕2θ

𝜕𝑌2
+ (1 + Δ)𝐸𝑐 (

𝜕𝑈

𝜕𝑌
)
2

                              (10) 

with the matching beginning and boundary conditions being 

𝜏 ≤ 0 ,         𝑈 = 0, 𝑊 = 0 , Γ = 0,          𝜃 = 0          every where              (11) 

𝜏 > 0 ,  

𝑈 = 0, 𝑊 = 0 , Γ = 0,          𝜃 = 0                at   𝑋 = 0

𝑈 = 0, 𝑊 = 0 , Γ = −𝑠
𝜕𝑈

𝜕𝑌
,          𝜃 = 1     at   𝑌 = 0

𝑈 = 0, 𝑊 = 0 , Γ = 0,           𝜃 = 0                 as   𝑌 → ∞

}            (12) 

where 𝐺𝑟, 𝜆, Λ,𝑀, 𝑃𝑟 , ∆, 𝐸𝑐  and 𝑠  stand for the Grashof number, spin gradient viscosity, 

vortex viscosity, magnetic parameter, Prandlt number, microrotation number, Eckert 

number and suction parameter respectively. 
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4. Numerical solutions 

In this section, we attempt to solve the governing second order nonlinear coupled 

dimensionless partial differential equations with the associated initial and boundary 

conditions. From the concept of the 

above discussion, for simplicity the 

explicit finite difference method has 

been used to solve equations (7) − (10) 
subject to the conditions given by (11) 
and (12). To obtain the difference 

equations the region of the flow is 

divided into a grid or mesh of lines 

parallel to 𝑋 and 𝑌 axes where 𝑋-axis is 

taken along the plate and 𝑌-axis is 

normal to the plate.  

Here we consider that the plate of height 

𝑋𝑚𝑎𝑥(= 100) i.e. 𝑋 varies from 

0 to 100 and regard 𝑌𝑚𝑎𝑥(= 25) as 

corresponding to 𝑌 → ∞ i.e.𝑌 varies 

from 0 to 25. There are 𝑚 = 100 and 

𝑛 = 100 grid spacings in the 𝑋 and 𝑌 directions respectively as shown in Figure. 2.   

It is assumed that ∆𝑋, ∆𝑌 are constant mesh sizes along 𝑋 and 𝑌 directions 

respectively and taken as follows, 

    ∆𝑋 = 1.00(0 ≤ 𝑥 ≤ 100)  
     ∆𝑌 =0.25(0≤ 𝑦 ≤ 25)  
with the smaller time-step, ∆𝜏 = 0.005 

Let 𝑈́, 𝑉́,   𝑊́, Γ́  &   𝜃́ denote the values of  𝑈, 𝑉, 𝑊, Γ  &  𝜃 at the end of a time-step 

respectively. Using the explicit finite difference approximation we have, 

(
𝜕𝑈

𝜕𝜏
)
𝑖,𝑗
=
𝑈𝑖,𝑗́ − 𝑈𝑖,𝑗

∆𝜏
, (

𝜕𝑈

𝜕𝑋
)
𝑖,𝑗
=
𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗

∆𝑋
, (

𝜕𝑈

𝜕𝑌
)
𝑖,𝑗
=
𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

∆𝑌
 

(
𝜕𝑉

𝜕𝑌
)
𝑖,𝑗
=
𝑉𝑖,𝑗 − 𝑉𝑖,𝑗−1

∆𝑌
, (

𝜕𝑊

𝜕𝜏
)
𝑖,𝑗
=
𝑊𝑖,𝑗́ − 𝑊𝑖,𝑗

∆𝜏
, (

𝜕𝑊

𝜕𝑋
)
𝑖,𝑗
=
𝑊𝑖,𝑗 −𝑊𝑖−1,𝑗

∆𝑋
 

(
𝜕𝑊

𝜕𝑌
)
𝑖,𝑗
=
𝑊𝑖,𝑗+1 −𝑊𝑖,𝑗

∆𝑌
, (

𝜕Γ

𝜕𝜏
)
𝑖,𝑗
=
Γ𝑖,𝑗́ − Γ𝑖,𝑗

∆𝜏
, (

𝜕Γ

𝜕𝑋
)
𝑖,𝑗
=
Γ𝑖,𝑗 − Γ𝑖−1,𝑗

∆𝑋
 

(
𝜕Γ

𝜕𝑌
)
𝑖,𝑗
=
Γ𝑖,𝑗+1 − Γ𝑖,𝑗

∆𝑌
, (

𝜕θ

𝜕𝜏
)
𝑖,𝑗
=
θ𝑖,𝑗́ − θ𝑖,𝑗

∆𝜏
, (

𝜕θ

𝜕𝑋
)
𝑖,𝑗
=
θ𝑖,𝑗 − θ𝑖−1,𝑗

∆𝑋
 

(
𝜕θ

𝜕𝑌
)
𝑖,𝑗
=
θ𝑖,𝑗+1 − θ𝑖,𝑗

∆𝑌
, (

𝜕2𝑈

𝜕𝑌2
)
𝑖,𝑗

=
𝑈𝑖,𝑗+1 − 2𝑈𝑖,𝑗 + 𝑈𝑖,𝑗−1

(∆𝑌)2
 

(
𝜕2𝑊

𝜕𝑌2
)
𝑖,𝑗

=
𝑊𝑖,𝑗+1 − 2𝑊𝑖,𝑗 +𝑊𝑖,𝑗−1

(∆𝑌)2
, (

𝜕2Γ

𝜕𝑌2
)
𝑖,𝑗

=
Γ𝑖,𝑗+1 − 2Γ𝑖,𝑗 + Γ𝑖,𝑗−1

(∆𝑌)2
 

(
𝜕2𝜃

𝜕𝑌2
)
𝑖,𝑗

=
𝜃𝑖,𝑗+1 − 2𝜃𝑖,𝑗 + 𝜃𝑖,𝑗−1

(∆𝑌)2
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From the system of partial differential equations (7) − (10) with substituting 

the above relations into the corresponding differential equation we obtain an appropriate 

set of finite difference equations, 

𝑈́𝑖,𝑗 −𝑈𝑖,𝑗

∆𝜏
+ 𝑈𝑖,𝑗

𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗

∆𝑋
+ 𝑉𝑖,𝑗

𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

∆𝑌

= (1 + ∆)
𝑈𝑖,𝑗+1 − 2𝑈𝑖,𝑗 + 𝑈𝑖,𝑗−1

(∆𝑌)2
+ 𝐺𝑟𝜃𝑖,𝑗 

   + 
Γ𝑖,𝑗+1 − Γ𝑖,𝑗

∆𝑌
−

𝑀

1 +𝑚2
sin2(𝜋𝑋) (𝑈𝑖,𝑗 +𝑚𝑊𝑖,𝑗)            (13) 

𝑊́𝑖,𝑗 −𝑊𝑖,𝑗

∆𝜏
+ 𝑈𝑖,𝑗

𝑊𝑖,𝑗 −𝑊𝑖−1,𝑗

∆𝑋
+ 𝑉𝑖,𝑗

𝑊𝑖,𝑗+1 −𝑊𝑖,𝑗

∆𝑌
= (1 + ∆)

𝑊𝑖,𝑗+1 − 2𝑊𝑖,𝑗 +𝑊𝑖,𝑗−1

(∆𝑌)2
 

 + 
𝑀

1 +𝑚2 (𝑚𝑈𝑖,𝑗 −𝑊𝑖,𝑗)               (14) 

Γ́𝑖,𝑗 − Γ𝑖,𝑗

∆𝜏
+ 𝑈𝑖,𝑗

Γ𝑖,𝑗 − Γ𝑖−1,𝑗

∆𝑋
+ 𝑉𝑖,𝑗

Γ𝑖,𝑗+1 − Γ𝑖,𝑗

∆𝑌
= Λ

Γ𝑖,𝑗+1 − 2Γ𝑖,𝑗 + Γ𝑖,𝑗−1
(∆𝑌)2

 

 −𝜆 (2Γ𝑖,𝑗 +
𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

∆𝑌
)             (15) 

θ́𝑖,𝑗 − θ𝑖,𝑗

∆𝜏
+ 𝑈𝑖,𝑗

θ𝑖,𝑗 − θ𝑖−1,𝑗

∆𝑋
+ 𝑉𝑖,𝑗

θ𝑖,𝑗+1 − θ𝑖,𝑗

∆𝑌
=
1

𝑃𝑟

θ𝑖,𝑗+1 − 2θ𝑖,𝑗 + θ𝑖,𝑗−1
(∆𝑌)2

 

+(1 + Δ)𝐸𝑐 (
𝑈𝑖,𝑗+1−𝑈𝑖,𝑗

∆𝑌
)
2
                  (16) 

Corresponding initial and boundary conditions are 

             𝑈𝑖,𝑗
0 = 0                 𝑤𝑖,𝑗

0 = 0                         Γ𝑖,𝑗
0 = 0                             𝜃𝑖,𝑗

0 = 0           (17) 

             𝑈0,𝑗
𝑛 = 0                𝑤0,𝑗

𝑛 = 0                         Γ0,𝑗
𝑛 = 0                            𝜃0,𝑗

𝑛 = 0 

      𝑈𝑖,0
𝑛 = 0                 𝑤𝑖,0

𝑛 = 0                  Γ𝑖,0
𝑛 = −𝑠

𝑈𝑛𝑖,𝑗+1−𝑈
𝑛
𝑖,𝑗

∆𝑌
        𝜃𝑖,0

𝑛 = 1    (18)  

    𝑈𝑖,𝐿
𝑛 = 0             𝑤𝑖,𝐿

𝑛 = 0                        Γ𝑖,𝐿
𝑛 = 0                    𝜃𝑖,𝐿

𝑛 = 0     𝑤ℎ𝑒𝑟𝑒, 𝐿 → ∞ 

Here the subscripts 𝑖 and 𝑗 designate the grid points with 𝑥 and 𝑦 coordinates 

respectively and the superscript 𝑛 represents a value of time, 𝜏 = 𝑛𝛥𝜏 where 𝑛 =
0,1,2,3,… .. From the initial condition (17), the values of 𝑈,𝑊, 𝛤 and 𝜃 are known at 𝜏 =
0. During any one time-step, the coefficients 𝑈𝑖,𝑗 and 𝑉𝑖,𝑗 appearing in equations (13) −

(16) are treated as constants. Then at the end of any time-step Δ𝜏, the new angular 

velocity Γ́, the new temperature 𝜃́, the new primary velocity 𝑈́, the new secondary 

velocity 𝑊́  at all interior nodal points may be obtained by successive applications of 

equations (15), (16), (13), and (14) respectively. This process is repeated in time and 

provided the time-step is sufficiently small, 𝑈, 𝑉, 𝑊, Γ  &  𝜃 should eventually 

converge to values which approximate the steady-state solution of equations (7) − (10). 
The numerical values of the Shear stress, Couple shear stress and Nusselt number are 

evaluated by a five-point approximate formula for the derivative, and then the average 

Shear Stress, Couple stress and Nusselt number are calculated by the use of Simpson’s 1/3 

integration formula. These converged solutions are shown graphically in Figure 3 to 

Figure 22. 
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5. Stability and convergence analysis 

Since an explicit procedure is being used, the analysis will remain incomplete unless we 

discuss the stability and convergence of the finite difference scheme. For the constant mesh 

sizes the stability criteria of the scheme may be established as follows: 

The general terms of the Fourier expansion for 𝑈, 𝑊, Γ  &  𝜃  at a time arbitrarily called 

𝑡 = 0 are all 𝑒𝑖𝛼𝑋𝑒𝑖𝛽𝑌, apart from a constant, where 𝑖 = √−1. At a time 𝑡 = 𝜏, these terms 

become 

𝑈:     𝜓(𝜏)𝑒𝑖𝛼𝑋𝑒𝑖𝛽𝑌

𝑊:     𝜙(𝜏)𝑒𝑖𝛼𝑋𝑒𝑖𝛽𝑌

Γ:    γ(𝜏)𝑒𝑖𝛼𝑋𝑒𝑖𝛽𝑌

𝜃:    Θ(𝜏)𝑒𝑖𝛼𝑋𝑒𝑖𝛽𝑌 }
 
 

 
 

                                                                                                              (19) 

     and after the time-step these terms will become 

𝑈́:     𝜓́(𝜏)𝑒𝑖𝛼𝑋𝑒𝑖𝛽𝑌

𝑊́:     𝜙́(𝜏)𝑒𝑖𝛼𝑋𝑒𝑖𝛽𝑌

Γ́:    γ́(𝜏)𝑒𝑖𝛼𝑋𝑒𝑖𝛽𝑌

𝜃́:    Θ́(𝜏)𝑒𝑖𝛼𝑋𝑒𝑖𝛽𝑌 }
 
 

 
 

                                                                                                            (20) 

Substituting (19) and (20) into equations (13) − (16), regarding the coefficients 𝑈 and 

𝑉 as constants over any one time-step, we obtain the following equations upon 

simplification, 

𝜓́(𝜏) −  𝜓(𝜏)

∆𝜏
+ 𝑈

𝜓(𝜏)(1 − 𝑒−𝑖𝛼∆𝑋)

∆𝑋
+ 𝑉

𝜓(𝜏)(𝑒𝑖𝛽∆𝑌 − 1)

∆𝑌
= 𝐺𝑟Θ́(𝜏) + 

(1 + ∆)
2𝜓(𝜏)(𝑐𝑜𝑠𝛽∆𝑌 − 1)

(∆𝑌)2
+ ∆

γ(𝜏)(𝑒𝑖𝛽∆𝑌 − 1)

Δ𝑌
−

𝑀

1 +𝑚2 (𝜓(𝜏) + 𝑚𝜙(𝜏))     (21) 

𝜙́(𝜏) −  𝜙(𝜏)

∆𝜏
+ 𝑈

𝜙(𝜏)(1 − 𝑒−𝑖𝛼∆𝑋)

∆𝑋
+ 𝑉

𝜙(𝜏)(𝑒𝑖𝛽∆𝑌 − 1)

∆𝑌
= 

(1 + ∆)
2𝜙(𝜏)(𝑐𝑜𝑠𝛽∆𝑌 − 1)

(∆𝑌)2
+

𝑀

1 +𝑚2 (𝑚𝜓(𝜏) − 𝜙(𝜏))                           (22) 

γ́(𝜏) −  γ(𝜏)

∆𝜏
+ 𝑈

γ(𝜏)(1 − 𝑒−𝑖𝛼∆𝑋)

∆𝑋
+ 𝑉

γ(𝜏)(𝑒𝑖𝛽∆𝑌 − 1)

∆𝑌
= 

Λ
2γ(𝜏)(𝑐𝑜𝑠𝛽∆𝑌 − 1)

(∆𝑌)2
− 𝜆 {2γ(𝜏) +

𝜓(𝜏)(𝑒𝑖𝛽∆𝑌 − 1)

∆𝑌
}            (23) 

Θ́(𝜏) −  Θ(𝜏)

∆𝜏
+ 𝑈

Θ(𝜏)(1 − 𝑒−𝑖𝛼∆𝑋)

∆𝑋
+ 𝑉

Θ(𝜏)(𝑒𝑖𝛽∆𝑌 − 1)

∆𝑌
= 

1

𝑃𝑟

2Θ(𝜏)(𝑐𝑜𝑠𝛽∆𝑌 − 1)

(∆𝑌)2
+ (1 + Δ)𝐸𝑐 {

𝜓(𝜏)(𝑒𝑖𝛽∆𝑌 − 1)

∆𝑌
}          (24) 

The equations (21), (22), (23) and (24) can be written in the following form 

𝜓́ = 𝐴𝜓 + 𝐵𝜙 + 𝐶𝛾 + DΘ                                         (25) 

𝜙́(𝜏) = 𝐸𝜙 + 𝐹𝜓                                                (26) 
γ́(𝜏) = 𝐺𝛾 + 𝐻𝜓                                               (27) 
Θ́(𝜏) = 𝐼Θ + J𝜓                                           (28) 

where 
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𝐴 = 1 − 𝑈
Δ𝜏

Δ𝑋
(1 − 𝑒−𝑖𝛼∆𝑋) − 𝑉

Δ𝜏

Δ𝑌
(𝑒𝑖𝛽∆𝑌 − 1) + (1 + Δ)

2Δ𝜏

(∆𝑌)2
(𝑐𝑜𝑠𝛽∆𝑌 − 1)

−
𝑀

1 +𝑚2
Δ𝜏 

𝐵 = −
𝑀𝑚

1 +𝑚2
Δ𝜏, 𝐶 = Δ

Δ𝜏

Δ𝑌
(𝑒𝑖𝛽∆𝑌 − 1), 𝐷 = 𝐺𝑟Δ𝜏 

𝐸 = 1 − 𝑈
Δ𝜏

Δ𝑋
(1 − 𝑒−𝑖𝛼∆𝑋) − 𝑉

Δ𝜏

Δ𝑌
(𝑒𝑖𝛽∆𝑌 − 1) + (1 + Δ)

2Δ𝜏

(∆𝑌)2
(𝑐𝑜𝑠𝛽∆𝑌 − 1)

−
𝑀

1 +𝑚2
 

𝐹 =
𝑀𝑚

1 +𝑚2
, 𝐺 = 1 − 𝑈

Δ𝜏

Δ𝑋
(1 − 𝑒−𝑖𝛼∆𝑋) − 𝑉

Δ𝜏

Δ𝑌
(𝑒𝑖𝛽∆𝑌 − 1) + Λ

2Δ𝜏

(∆𝑌)2
(𝑐𝑜𝑠𝛽∆𝑌 − 1)

− 2𝜆Δ𝜏 

𝐻 = −𝜆
Δ𝜏

Δ𝑌
(𝑒𝑖𝛽∆𝑌 − 1), 

𝐼 = 1 − 𝑈
Δ𝜏

Δ𝑋
(1 − 𝑒−𝑖𝛼∆𝑋) − 𝑉

Δ𝜏

Δ𝑌
(𝑒𝑖𝛽∆𝑌 − 1) +

1

Pr

2Δ𝜏

(∆𝑌)2
(𝑐𝑜𝑠𝛽∆𝑌 − 1) 

𝐽 = (1 + Δ)𝐸𝑐
Δ𝜏

(Δ𝑌)2
(𝑒𝑖𝛽∆𝑌 − 1)

2
 

and these equations (25) − (28) are expressed in matrix notation, 

[
 
 
 
𝜓́

𝜙́
𝛾́

Θ́]
 
 
 

= [

𝐴 𝐵 𝐶 𝐷
𝐹 𝐸 0 0
𝐻 0 𝐺 0
𝐽 0 0 𝐼

] [

𝜓
𝜙
𝛾
Θ

]                                                                              (29) 

that is, 𝜂́ = 𝑇𝜂 

where 𝜂́ =

[
 
 
 
𝜓́

𝜙́
𝛾́

Θ́]
 
 
 

,   𝑇 = [

𝐴 𝐵 𝐶 𝐷
𝐹 𝐸 0 0
𝐻 0 𝐺 0
𝐽 0 0 𝐼

] and   𝜂 = [

𝜓
𝜙
𝛾
Θ

] 

For obtaining the stability condition we have to find out eigenvalues of the amplification 

matrix T but this study is very difficult since it is a fourth order square matrix and all 

the elements of T are different. Hence the problem requires that the Eckert Number cE  

is assumed to be very small that is tends to zero. Under this consideration we have 𝐽 = 0 

and the amplification matrix becomes 

𝑇 = [

𝐴 𝐵 𝐶 𝐷
𝐹 𝐸 0 0
𝐻 0 𝐺 0
0 0 0 𝐼

] 

After simplification of the matrix T  we get, 

[

𝐴 𝐵 𝐶 𝐷
𝐹 𝐸 0 0
𝐻 0 𝐺 0
0 0 0 𝐼

] − [

𝜆 0 0 0
0 𝜆 0 0
0 0 𝜆 0
0 0 0 𝜆

] = 0,⟹ [

𝐴 − 𝜆 𝐵 𝐶 𝐷
𝐹 𝐸 − 𝜆 0 0
𝐻 0 𝐺 − 𝜆 0
0 0 0 𝐼 − 𝜆

] = 0 

⟹ {(𝐴 − 𝜆)(𝐸 − 𝜆) − 𝐵𝐹}(𝐺 − 𝜆)(𝐼 − 𝜆) = 0 
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So the eigenvalues are 𝜆1 = 𝐺, 𝜆2 = 𝐼 And 

(𝐴 − 𝜆)(𝐸 − 𝜆) − 𝐵𝐹 = 0  

⟹ 𝐴𝐸 − 𝜆𝐴 − 𝜆𝐸 + 𝜆2 −𝐵𝐹 = 0 

⟹ 𝜆2 − (𝐴 + 𝐸)𝜆 + 𝐴𝐸 − 𝐵𝐹 = 0 

⟹ 𝜆 =
𝐴 + 𝐸 ± √(𝐴 + 𝐸)2 − (4𝐴𝐸 − 4𝐵𝐹)

2
 

⟹ 𝜆 =
𝐴 + 𝐸 ± √(𝐴 − 𝐸)2 + 4𝐵𝐹

2
 

∴ 𝜆3 =
𝐴 + 𝐸 +√(𝐴 − 𝐸)2 + 4𝐵𝐹

2
         and     𝜆4 =

𝐴 + 𝐸 − √(𝐴 − 𝐸)2 + 4𝐵𝐹

2
 

For stability, each eigenvalue 𝜆1, 𝜆2, 𝜆3 𝑎𝑛𝑑  𝜆4 must not exceed unity in modulus. 

Hence the stability condition is 

|𝐺| ≤ 1, |𝐼| ≤ 1, |
𝐴 + 𝐸 + √(𝐴 − 𝐸)2 + 4𝐵𝐹

2
| ≤ 1  

and    |
𝐴 + 𝐸 −√(𝐴 − 𝐸)2 + 4𝐵𝐹

2
| ≤ 1  for all  𝛼, 𝛽 

Now we assume that 𝑈 is everywhere nonnegative and 𝑉 is everywhere nonpositive.    

Thus 

 𝐺 = (1 − 𝑎 − 𝑏 − Λ2𝑐) + 𝑎𝑒−𝑖𝛼∆𝑋 + 𝑏𝑒𝑖𝛽∆𝑌 + Λ2𝑐 𝑐𝑜𝑠𝛽Δ𝑌 − 2𝜆Δ𝜏 

where,    𝑎 = 𝑈
Δ𝜏

Δ𝑋
 , 𝑏 = |𝑉|

Δ𝜏

Δ𝑌
   and  𝑐 =

Δ𝜏

(Δ𝑌)2
 

The coefficients 𝑎, 𝑏 and 𝑐 are all real and nonnegative. We can demonstrated that the 

maximum modulus of 𝐺 occurs when 𝛼𝛥𝑋 = 𝑚𝜋 and 𝛽𝛥𝑌 = 𝑛𝜋, where 𝑚 and 𝑛 are 

integers and hence 𝐺 is real. The value of |𝐺| is greater when both 𝑚 and 𝑛 are odd 

integers, in which case   

𝐺 = (1 − 𝑎 − 𝑏 − Λ2𝑐) − 𝑎 − 𝑏 − Λ2𝑐 − 2𝜆Δ𝜏 
⟹ 𝐺 = 1 − 2(𝑎 + 𝑏 + Λ2𝑐 + 𝜆Δ𝜏) 
To satisfy the first condition |𝐺| ≤ 1, the most negative allowable value is 𝐺 = −1 

Therefore the first stability condition is  

2(𝑎 + 𝑏 + Λ2𝑐 + 𝜆Δ𝜏) ≤ 2 

that is, 

𝑈
Δ𝜏

Δ𝑋
+ |𝑉|

Δ𝜏

Δ𝑌
+ Λ

2Δ𝜏

(Δ𝑌)2
+ 𝜆Δ𝜏 ≤ 1                                                      (30) 

Likewise, the second condition |𝐽| ≤ 1 requires that 

𝑈
Δ𝜏

Δ𝑋
+ |𝑉|

Δ𝜏

Δ𝑌
+
2

Pr

Δ𝜏

(Δ𝑌)2
≤ 1                                                       (31) 

Hence the stability conditions of the problem are as furnished below 

𝑈
Δ𝜏

Δ𝑋
+ |𝑉|

Δ𝜏

Δ𝑌
+ Λ

2Δ𝜏

(Δ𝑌)2
+ 𝜆Δ𝜏 ≤ 1                                                  (32) 

𝑈
Δ𝜏

Δ𝑋
+ |𝑉|

Δ𝜏

Δ𝑌
+
2

Pr

Δ𝜏

(Δ𝑌)2
≤ 1                                                      (33) 

Since from the initial condition, 𝑈 = 𝑉 = 0 𝑎𝑡  𝜏 = 0 so the equations (32) and (33) gives 

𝑃𝑟 ≥ 0.25 and parameter Λ and 𝜆  depended arbitrary values of each other. 
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Hence the convergence criteria of the problem are 𝑃𝑟 ≥ 0.25 and Λ and 𝜆  depended 

different values of each other. 

 

6. Results and discussion 

For the purpose of discussing the results of the problem, the approximate solutions are 

obtained for various parameters with small values of Eckert number. In order to analyze 

the physical situation of the model, we have computed the steady state numerical values of 

the non-dimensional primary velocity 𝑈, secondary velocity 𝑊, angular velocity Γ and 

temperature 𝜃 within the boundary layer for different values of magnetic parameter(𝑀), 
Grashof number(𝐺𝑟), Prandtal number(𝑃𝑟), Spin gradient viscosity (𝜆), Micro Rotation 

number (Δ), Vortex viscosity (Λ), Hall current (𝑚) and Eckert number(𝐸𝑐). The graphs 

are represented with some constant parameters 𝑀 = 2.0,𝑚 = 0.5, ∆= 0.5, Λ = 1.0, 𝜆 =
0.10, 𝐸𝑐 = 0.01, 𝑃𝑟 = 1.0, 𝐺𝑟 = 5.00, 𝑠 = 0.05 . In the figure-3, the effect of primary 

velocity profiles has been shown for different data of  𝑀. It is examined that the field of 

velocity decreases for increasing 𝑀. The curve to curve fluctuation for velocity profiles 

diminishes 24.19%, 20.97% and 11.57% as 𝑀 changes from 1.00 to 25.0 respectively at 

𝜏 = 5.00. Similarly in figure-4, velocity profiles are decreases when raises the values of 

𝑃𝑟. Figures 5-6 describe that the increase of velocity profiles with respect to increasing the 

parameter values of 𝐺𝑟 and 𝑚.   

                                

Figure 3: The impact of 𝑀 on 𝑈 Figure 4: The impact of 𝑃𝑟 on 𝑈 
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Figure 5: The impact of 𝐺𝑟 on 𝑈 Figure 6: The impact of 𝑚 on 𝑈 

We discussed the effects of secondary velocity profile (SVP) for different parameter values 

in the Figures 7-10. The impression of 𝑀, 𝑃𝑟 , 𝐺𝑟 and 𝑚 in secondary velocity field, we 

observed that the SVP decreases due to rising of 𝑀 and 𝑃𝑟  respectively in Figure 7 and 

Figure 8. Also in Figure 9 and Figure 10, SVP increases with the raise of 𝐺𝑟 and 𝑚 

respectively.  The angular velocity profiles (AVPs) are illustrated for different values of 

𝑀, 𝑃𝑟 , 𝐺𝑟 and 𝑚. The AVP increases with the increase of 𝑀 and 𝑃𝑟 shown in Figures 11-

12 and decreases with the increase of 𝐺𝑟 and 𝑚 which are shown in Figures 13 and Figure 

14.  

  

Figure 7: The impact of 𝑀 on 𝑊 Figure 8: The impact of 𝑃𝑟 on 𝑊 
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Figure 9: The impact of 𝐺𝑟 on 𝑊 Figure 10: The impact of 𝑚 on 𝑊 

 

Now we analyzed the skin friction (Figures 15 to 18) and Nusselt number (𝑁𝑢) (Figures 

19 to 22) for different parameters data. From Figures 15 and 16, they are noticed to have 

an increase values of 𝑀 and 𝑃𝑟  in the reduction of the skin friction and fro the Figure 17 

and Figure 18, we observed that the skin friction distribution increase with the increasing 

of 𝐺𝑟 and 𝑚. 

The MHD effects on 𝑁𝑢 is illustrated in Figures 19 to 22. Figure 19 represented 

that the 𝑁𝑢  profiles is detected to be increased for the increase of 𝑀 and Figure 20, Figure 

21 and Figure 22 which are illustrated 𝑁𝑢 profiles decrease with the increase of 𝑃𝑟, 𝐺𝑟 and 

𝑚 respectively. 
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Figure 11: The impact of 𝑀 on Γ Figure 12: The impact of 𝑃𝑟 on Γ 

  

Figure 13: The impact of 𝐺𝑟 on Γ Figure 14: The impact of 𝑚 on Γ 
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Figure 15: The impact of 𝑀 on 𝐶𝑓 Figure 16: The impact of 𝑃𝑟 on 𝐶𝑓 

  

Figure 17: The impact of 𝐺𝑟 on 𝐶𝑓 Figure 18: The impact of 𝑚 on 𝐶𝑓 
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Figure 19: The impact of 𝑀 on 𝑁𝑢 Figure 20: The impact of 𝑃𝑟 on 𝑁𝑢 

  

Figure 21: The impact of 𝐺𝑟 on 𝑁𝑢 Figure 22: The impact of 𝑚 on 𝑁𝑢 

 

7. Conclusions 

In this paper, the numerical solution of unsteady MHD MPF flow past a moving vertical 

plate with periodic field and Hall current effects is analyzed. The principal observations 

are given below: 

 It is observed that the primary velocity profiles decrease for increasing data of 𝑀 

and 𝑃𝑟. Moreover increasing 𝐺𝑟 and 𝑚 caused the primary velocity profiles to 

increase.  
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 The behaviour of SVP decrease for 𝑀 and 𝑃𝑟. Also increase for 𝐺𝑟 and 𝑚. 

 AVP increases qualitatively with the increasing values of 𝑀 and 𝑃𝑟 and decreases 

with increasing values of 𝐺𝑟 and 𝑚. 

 The skin friction distribution is falling for 𝑀 and 𝑃𝑟 and raising for 𝐺𝑟 and 𝑚. 

 𝑁𝑢 is an increasing function of 𝑀 and decreases for 𝑃𝑟, 𝐺𝑟 and 𝑚.     
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