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Abstract. In this study, we investigate the time-fractional diffusion—convection-reaction
equation and develop an approximate numerical solution using the Natural Decomposition
Method (NDM). The proposed approach employs the Natural transform in conjunction
with the Caputo fractional derivative operator, followed by the application of the Riemann—
Liouville fractional integral. Nonlinear terms are efficiently treated through Adomian
polynomials, which facilitate decomposition and enhance computational tractability. The
findings demonstrate that the Natural approach provides high accuracy with comparatively
fast convergence. All symbolic and numerical computations, as well as graphical
illustrations, are performed using MATLAB. To validate the effectiveness and
applicability of the method, several illustrative examples are presented, confirming its
reliability in solving fractional partial differential equations. The results underscore the
potential of the NDM as a powerful tool for addressing a broad class of fractional
diffusion—convection reaction problems.
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1. Introduction

The mathematical equation describing diffusion difficulties has attracted the attention of
numerous academics over the years. Cherniha and Serov [1] provided a fresh analysis and
accurate solutions for non-linear diffusion equations. New modification equations were
derived by Kuske and Mileniski [2] for the hexagon-style in reaction-diffusion systems.
These systems exhibit more non-linearities than Smith-Hohenberg models or Rayleigh-
Bernard convection. Matano et al. [3] investigated the interaction and diffusion equations
using the spatially heterogeneous interaction term. If this reaction's term coefficient is far
higher than the dispersion coefficient, the strong interface between two separate phases
will be visible. They demonstrated that the motion equation for this interface includes a
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drift term even though drift was absent from the original diffusion equations. The
researchers in [4] investigated the uniqueness and existence of the solution to the self-
similarity of diffusion equation. A study was performed to examine fast gas flow models
by heating various materials using a microwave and by porous media. A nonlinear
diffusion-advection-reaction model is being investigated in[5]and[6-7]. According
to[8][9][10], the general theory of this model focused on existence, uniqueness and
regularity. In particularly, we consider the nonlinear fractional PDE that describes an
arrangement that can be better understood by looking at the solutions of fractional-order
DEs. Fractional derivatives offer more accurate representations of real-world issues than
integer-order derivatives. Because of their numerous uses in science, fractional PDEs have
proven to be a useful tool for describing the diffusion processes[11], viscoelasticity and
electrical phenomena [12]. The Fractional PDE was discovered that, when taken along the
time scaling limit, fractional time derivatives typically appear as infinitesimal generators
of the time evolution. Therefore, the need to clarify the ideas of equilibrium, stability states,
and temporal evolution at the long-term limit justifies the significance of looking into
fractional equations. To find the approximate solutions, a variety of effective approaches
have been presented for solving fractional partial differential equations. The double
Laplace formulas for partial fractional derivatives were developed by the authors in[13],
and they can be used to solve a fractional heat equation under specific initial and boundary
conditions. They use the fractional complex transform approach in[14] to study the
transport equations in fractal porous media. Numerous authors have studied fractional
order PDEs in recent years using a variety of techniques, including the variational iteration
method(VIM) in [15-16], the homotopy perturbation method in [17-18] and [19], the
Laplace transform(LT) and Laplace homotopy perturbation method in [20], and the
homotopy analysis technique in [21].

We apply the Natural decomposition method (NDM) to fractional derivatives, and use
it to solve initial wvalue fractional differential equations. The authors of
[26],[28],[29],[30]and [31] examined a number of Natural transform (NT) properties,
using this knowledge to create simple and effective methods for handling ordinary and
partial differential equations. There is clearly a desire to learn more about this change and
apply it to a variety of mathematical and physical research challenges. The NT, which is
linear and bilateral with scale and unit preserving properties[26], can be utilized to solve a
wide range of difference and differential equation problems without the need for a new
frequency domain. We use the NT to solve the generic form. of nonlinear time-Fractional
diffusion equation

2w(x,t) = wy(x,t) — aw,(x,t) — fw(x,t), for 0 <1 <1 1)
Here 87 is the fractional Caputo derivative (FCD) of order a respect on the time variable.
and I},"lis the fractional integral of Riemann-Liouville in the time variable of order 1 — 4,
defined for every summable function w as

t
Rowlx,t) = Lj(t - DM w(x, T)dr (2)
0 ’ 1—1(/1) ) .
0
Then the FCD of order A respect on the time variable is given as follows

t
tw(x,t) = I(}_’lwt(x, t) = ﬁ _[ (t — 1) w.(x,T)dT. 3)
0
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The Mittag-Leffler function(MLF) [27]is an essential function that is widely used in
fractional calculus. The MLF solves non-integer order DEs in the same way as the
exponential does for integer order DEs. The exponential function is actually a very
particular variation—among an infinite number—of this function that appears to be used
by everyone. Eq.(1) provides the conventional definition of Mittag-Leffler.

tk
Ex(6) = kz-o—r(’lk T A0 (4)
The exponential function represents the case 1 =1,
5= e ="
RPN sk ®)
In addition, it is usual to represent the MLF using two arguments, A and g, so that
E t=Z—, A>0,u>0. 6

The Natural transform (NT) is defined over the set of function
Itl .
A= {a) (x,)|3C,€1,6, >0, |w(x, t)| < Cet ,if t € (—1)) % [0,00)}

as given by the following formula

—st

N[w(x, t)] = %f w(x,t)e P dt, s,p € (0,) (7)

0
In Belgacem et al. [26], demonstrated that the NT represents the theoretical dual to the LT.
As aresult, one should be able to compete with it on a large scale for solving of the problem.
Many of the NT's unique qualities are discussed and summarized in [26][28]. The NT of
the fractional derivative introduced by Caputo is stated by

N[f){la)(x, t)] = ;—ZN[a)(x, 3]

& ga-1-k gy (x,0)
_Z TR , (n—1<21< n). (8)
k=0

2. Analysis of Natural Adomian Decomposition Method (NADM)
The nonlinear The time-Fractional diffusion-convection equation (1) is defined together
with an initial”

w(x,0) = ¢(x). 9
use the NADM to Eq.(1), then it transforms into

N[G{lw(x, t)] = N[wy, (%, t) — aw,(x,t) — uw(x,t) + Y(w)], te(0,t")

! "‘15,1—1—kw(k)(x, 0)
p_AN[w(x’ t)] - kzzo p,l_k
= N[wy, (x, t) — awy (x,t) — pw(x, t) + Y(w)],
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1 n-1

A-1-k, (k)
S Nl 5] = Z s p(;)_k (x,0)

-:?\?[wxx (x,t) — aw,(x, t) — pw(x, t) + Y(w)]

Then we obtain

AL A-1-k, ()
p s w™(x,0)
N[ou(x,t)]z—s/1 E

A-k
k=0 p

A
+ 5 N[ (x, 1) = @y (%, 1) — po (%, £) + P(w)] (10)
By applying the convolution theorem and the inverse Natural transform to both sides of

equation (10), we can now obtain
1 n-—1

A-1-k, (k)
(P S 0 (x,0)
— 1
a)(x, t) =N <572 p)l—k

k=0
yl
p

+ S—AN[wxx(x, t) — aw,(x,t) + pw(x, t) + ‘P(w)]),

n-l A-1-k, (K
S ™ (x,0
w(x,t>=N-1< > pl_k( )) (11)
kiO

pl
s
N (i Nlwy (3, £) — @y (x, £) + pw(x, ) + ‘P(w)]).

It may be expressed in the form,anda =1 ,u =1

AL -1k, (®
. [p s w™(x,0)
w(x,t) = N1 <S7 E e )

k=0

A
+ N— (Z [wxx(x t) wx(x t)+ w(x t) + kp(w)])

We now represent the solution as the infinite series given below

w(x,t) = Z wy(x, 1), (12)
where the nonlinear term lP(w)ls decomposed as the following
Y(w(x,t) = Z B, (wg, wy, ..., wy), (13)

where B,, can be calc_ulated
B = |5 (Z kan)] (14)
Substltutlon of Eq. (12) and (13) in Eqg.(11) leads to

/1 1-k 4 (K) 0
an(x ) =N (_Z pfk(x )) (15)

k=0
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p*
+N_1 (S_N z(wn)xx Z(wn)x + z wy + Z B ((1)0,0)1, - wn)])
By comparing both S|des of the Eq. (15) we get
wo(x,t) = ¢(x),

A
wl(x: t) =N"! (%N[¢xx — ¢+ o+ BO((I))]);

A
wy(x,t) =N1 <Z7N[(w1)xx —(w1)x t 0y + Bl(uO'ul)]>

A
1P
wp(x,t) =N ! S_AN((wn—l)xx — (Wp-1)x + Wp—1 + By(ug,uy, ..., un))

Finally, the analytical solution w(x, t) is approximated using a truncated series:
w(x, t) = lim @n(x,t), (16)

where @, (x,t) = Xii-, wk(x t) is the sequence of partial sums to the series Eq.(15).

3. Numerical experiments
Example 3.1. Let the one-dimensional parabolic fractional diffusion equation:
02w(x,t) = Wy (x,t)
w(x,0) =sin(x) '
From Eq.(15), we using NDM

0<a1<1 (17)

wo(x, t) = sin(x)

wp(x,t) = N7t p N{(wn 1)xx}>

A l
w1(x,t) = |\ <i_1 N{(wo)xx}> =N"! <57 N{—Siﬂ(X)})

. p? _ _ sin(x)t*
=N"1 S—AN(—sm(x)) =TT+ D

I sin(x)t?4
wy(x,t) =N <— N{(w1)xx}> i+ D)

sin(x)t34
rGA+ 1)
sin(x)t*4
r@i+ 1)

pl
w3(x,t) = Nt <_ N{(wz)xx}> ==
wy(x,t) = < N{(w3)xx}>

In the same way
sin(x)t>4

_, (P’
w5(x, t) =N 1 (S_A N{(w4)xx}> = _m
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1 ’ : _+\n
wp(x,t) =Nt <Z_)“ N{(wn—1)xx}) = %

Using the sequence of partial sums
n

Qn(x, t) = Z W (x,t) = wo(x, t) + w1 (x, t) + -+ wy(x, 1)

k=0
By substituting the above solutions, it is transformed into

2
@n(x,t) = sin(x) [1 + NEEED)
18
"Tear D Tmi+ D (18)
Using the one-parameter MLF, the problem’s solution
. o @ (=thF

1%1_{130 @n(x, t) = sin(x) ZMM'
Then from Eq.(16)

w(x,t) = sin(x) Ey1(—t*). (19)

The Eq. (19) for 2 = 1 is approximate to the form w(x, t) = sin(x) et which is the exact
solution of Eq.(17) for A = 1.

Example 3.2. Let the one-dimensional parabolic fractional diffusion equation:
02w(x,t) = Wyr (2, 1) + 205 (x, 1)
w(x,0) =e™* '
From Eq. (15), we using NDM

0<aA<1 (20)

wo(x,t) =e™*
A
wn(x,0) = N7? (’57 N{(@n)ax + 2<wn_1)x}>.
A —x+ A
Wi () = N1 (% N{(@o)ae + 2(w0>x}> - T

1 X422
wy(x,t) = I\ (759_/1 N{(w1)xx + Z(wl)x}> = I“Eth-l-l)

1 —xt3 A
w5 (x,£) = N1 (% N{(@2)xx + Z(wz)x}) - G

1 —xp4
w0y, t) = N7? (% N{(@5 ) + Z(wg)x}) = GiTD

In the same way

2 —x¢51
ws(x,t) =N71 <Z_)‘ N{(wg)xx + 2(w4)x}> = _m'
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A -X A\n
(P e (=t")
wp(x,t) = N7* (s_’1 N{(wn-1)xx + 2(wn—1)x}> “TmitD
From the sequence of partial sums
n

(pn(x' t) = z wk(x; t) = wO(x! t) + wl(xl t) +oeet wn(x, t)
k=0
By substituting the above solutions, it is transformed into

) =e *[1— o
on(x,0) = e [ A+ TC2A+D = Tmaitl)
Using the one-parameter MLF, the problem’s solution”

R S =
dmen =€) TkAitT D

w(x,t) = e_xEM(—t ’1). (22)
The Eq.(22) for A = 1 is approximate to the form w(x, t) = e~**%) which is the exact
solution of Eq.(20) for A = 1.

(21)

Then from Eq.(16)

4. Numerical results and discussion

The numerical solution of the Cauchy problem(CP) represented the time-fractional
diffusion-advection equation (1) with the initial condition w,(x) = ¢(x), can be described
and illustrated in above three application examples. The numerical values in Figure 1
represents the approximate solution w(x, t) of the CP(17) in Example 3.1. The numerical
solution approximated to the exact solution wgyact given by equation (19) through
different values of t and x = 1,0.9,0.8 and 0.7; with values A = 0.7,0.8,0.9 and 1 for
Example 3.1. In Figure 1, we observe that the approximate solution for Example 3.1
decreases when t increases and for fixed values of x. In Figure 2, the approximate solution
w(x,t) of the CP(17) in Example 3.1 show the graph through different values of x, t when
A=1,0.9,0.8 and 0.7; respectively. Therefore, both graphs in Figure 1 and Figure 2
comes close to the exact solution wgyaer for 0 < A < 1. Now, the approximate solution
w(x,t) of the CP(20) to Example 3.2 is described in Figure 3. The numerical values
approach to the exact solution wgy,ct given by the equation (22) through different values
of tand x = 0.75, 1.5, 2.25, 3.00; with values A = 1.0,0.9,0.8 and 0.7; for Example 3.2.
Figure 3, we observe that the approximate solution for Example 3.2 decreases when t
increases for fixed values of x, for 0 <A1 < 1. In Figure 4, the approximate solution
w(x,t) of the CP(20) in Example 3.2 show the graph of the approximate solution among
different values of x,t when 1 = 1,0.9,0.8 and 0.7; respectively. We can determine from
the preceding reasoning and the numerical answers that the absolute error is extremely tiny,
indicating that the suggested NDM is very successful in providing the analytical solutions
for the time-fractional diffusion-convection problem with ease and without the need for
any assumptions.
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0.25q .
a (@) Exact Solution
o wirA=1
————— w for A = 0.9
L R
0.2 N — ——wfor A =08
,\ ———wilor A =07
E
0151
0.1

0 0.2 04 0.6 0.8 1

wlx. t)

] Oj2 0‘,4 0_‘6 018 :| 0 D“\ D.‘Z DI] 0‘4 0‘5 D.‘B DT? DTB DIQ -
t t
Figure 1. For Example 3.1, (i) x = 0.25; (ii) x = 0.50; (iii) x = 0.75; (iv) x = 1.0; and
among different values of t when A = 0.7,0.8, 0.9,1.0; it shows the graphs of the
approximated solutions.
(i) (i)

:.u(:!:‘ !’)
wir, b}

.'..)[:1:‘!’}
wlm, 1)

T t Fi
Figure 2. For Example 3.1, (i) a = 0.7; (ii) a = 0.8; (iii) a = 0.9; (iv) a = 1.0; and for
various values of x and t; it shows the graphs of the approximated solutions.
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A=07 A=108 4=109 Absolute Error

X t w w w Wrract  |@ — Wgrace|
0.25 0.16764 0.17597 0.18441 0.19267 0.00826
0.25 0.50 0.13503 0.13912 0.14414 0.15005 0.00591
0.75 0.11396 0.11404 0.11494 0.11686 0.00192
1.00 0.09886 0.09573 0.08304 0.09101 0.00203
0.25 0.32486 0.34100 0.35736 0.37337 0.01601
0.50 0.50 0.26168 0.26959 0.27932 0.29078 0.01146
0.75 0.22084 0.22099 0.22274 0.22646 0.00372
1.00 0.19158 0.18551 0.18029 0.17637 0.00323
0.25 0.57018 0.59851 0.627228 0.65533 0.02811
1.00 0.50 0.45929 047317 0.490252 0.51037 0.02012
0.75 0.38762 0.38786 0.390952 0.39748 0.00653
1.00 0.33626 0.32561 0.316449 0.30056 0.00689

Table 1. For Example 3.1, A = 0.7,0.8,0.9; and the exact solution (A = 1.0) and for

specific values of x.

Exact Solution
o wilrA=1
————— wfor A =09
wilorA=108
———wlor A=07

0.2

(iid)

0.4

0.6 0.8 1 0 0.2

wilz, 1)

0.4

0.6 0.8
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Figure 3. For Example 3.1, (i) x = 0.25; (ii) x = 0.50; (iii) x = 0.75; (iv) x = 1.0; and
among different values of t when A = 0.7, 0.8, 0.9,1.0; it shows the graphs of the
approximated solutions.

(i (i)

T t

Figure 4. For Example 3.1, (i) a = 0.7; (ii) a = 0.8; (iii) a = 0.9; (iv) a = 1.0; and for
various values of x and t; it shows the graphs of the approximated solutions.

A=07 =108 A=109 Absolute Error

X t w w w Wgxact @ — Wgyact|
0.25 0.038774 0.082085 0173774 0.03878 0.00826
0.25 0.50 0.030197 0.063928 0.135335 0.03020 0.00581
0.75 0.023518 0.049787 0.105399 0.02352 0.00192
1.00 0.018316 0.038774 0.082085 0.01832 0.00203
0.25 0.32486 0.34100 0.35736 0.37337 0.01601
0.50 0.50 0.26168 0.26959 0.27932 0.20078 0.01148
0.75 0.22084 0.22099 0.22274 0.22646 0.00372
1.00 0.19158 0.18551 0.18029 0.17637 0.00323
0.25 0.57018 0.59851 0.627228 0.65533 0.02811
1.00 0.50 0.45929 0.47317 0.490252 0.51037 0.02012
0.75 0.38762 0.38786 0.390952 0.39748 0.00653
1.00 0.33626 0.32561 0.316449 0.30956 0.00588

Table 2. For Example 3.1, A = 0.7, 0.8, 0.9; and the exact solution (A = 1.0) and for
specific values of x.
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5. Conclusion

The approximate numerical solution for the time-fractional diffusion-convection equation
considered by using the (NDM). The fractional integral of Riemann-Liouville(RL) used in
conjunction with the NT of the Caputo fractional derivative operator in the suggested
method. Adomian polynomials are particularly handled for easily managing the nonlinear
term. The fractional derivatives are characterized by the Caputo(C) and Riemann-
Liouville(RL) sense. It is found that the NDM is rapid and accurate. All computations and
graphics were performed in MATLAB. To prove the usefulness and validity of the
proposed method, illustrative examples are provided.
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