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Abstract. In this study, we investigate the time-fractional diffusion–convection-reaction 

equation and develop an approximate numerical solution using the Natural Decomposition 

Method (NDM). The proposed approach employs the Natural transform in conjunction 

with the Caputo fractional derivative operator, followed by the application of the Riemann–

Liouville fractional integral. Nonlinear terms are efficiently treated through Adomian 

polynomials, which facilitate decomposition and enhance computational tractability. The 

findings demonstrate that the Natural approach provides high accuracy with comparatively 

fast convergence. All symbolic and numerical computations, as well as graphical 

illustrations, are performed using MATLAB. To validate the effectiveness and 

applicability of the method, several illustrative examples are presented, confirming its 

reliability in solving fractional partial differential equations. The results underscore the 

potential of the NDM as a powerful tool for addressing a broad class of fractional 

diffusion–convection reaction problems. 
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1. Introduction 

The mathematical equation describing diffusion difficulties has attracted the attention of 

numerous academics over the years. Cherniha and Serov [1] provided a fresh analysis and 

accurate solutions for non-linear diffusion equations. New modification equations were 

derived by Kuske and Mileniski [2] for the hexagon-style in reaction-diffusion systems. 

These systems exhibit more non-linearities than Smith-Hohenberg models or Rayleigh-

Bernard convection.  Matano et al. [3] investigated the interaction and diffusion equations 

using the spatially heterogeneous interaction term. If this reaction's term coefficient is far 

higher than the dispersion coefficient, the strong interface between two separate phases 

will be visible. They demonstrated that the motion equation for this interface includes a 
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drift term even though drift was absent from the original diffusion equations. The 

researchers in [4] investigated the uniqueness and existence of the solution to the self-

similarity of diffusion equation. A study was performed to examine fast gas flow models 

by heating various materials using a microwave and by porous media. A nonlinear 

diffusion-advection-reaction model is being investigated in[5]and[6-7]. According 

to[8][9][10], the general theory of this model focused on existence, uniqueness and 

regularity. In particularly, we consider the nonlinear fractional PDE that describes an 

arrangement that can be better understood by looking at the solutions of fractional-order 

DEs. Fractional derivatives offer more accurate representations of real-world issues than 

integer-order derivatives. Because of their numerous uses in science, fractional PDEs have 

proven to be a useful tool for describing the diffusion processes[11], viscoelasticity and 

electrical phenomena [12]. The Fractional PDE was discovered that, when taken along the 

time scaling limit, fractional time derivatives typically appear as infinitesimal generators 

of the time evolution. Therefore, the need to clarify the ideas of equilibrium, stability states, 

and temporal evolution at the long-term limit justifies the significance of looking into 

fractional equations. To find the approximate solutions, a variety of effective approaches 

have been presented for solving fractional partial differential equations. The double 

Laplace formulas for partial fractional derivatives were developed by the authors in[13], 

and they can be used to solve a fractional heat equation under specific initial and boundary 

conditions. They use the fractional complex transform approach in[14] to study the 

transport equations in fractal porous media. Numerous authors have studied fractional 

order PDEs in recent years using a variety of techniques, including the variational iteration 

method(VIM) in [15-16], the homotopy perturbation method in [17-18] and [19], the 

Laplace transform(LT) and Laplace homotopy perturbation method in [20], and the 

homotopy analysis technique in [21].
 

     We apply the Natural decomposition method (NDM) to fractional derivatives, and use 

it to solve initial value fractional differential equations. The authors of 

[26],[28],[29],[30]and [31]  examined a number of Natural transform (NT) properties, 

using this knowledge to create simple and effective methods for handling ordinary and 

partial differential equations. There is clearly a desire to learn more about this change and 

apply it to a variety of mathematical and physical research challenges. The NT, which is 

linear and bilateral with scale and unit preserving properties[26], can be utilized to solve a 

wide range of difference and differential equation problems without the need for a new 

frequency domain. We use the NT to solve the generic form. of nonlinear time-Fractional 

diffusion equation 

𝜕𝜏
𝜆𝜔(𝑥, 𝑡) = 𝜔𝑥𝑥(𝑥, 𝑡) − 𝛼𝜔𝑥(𝑥, 𝑡) − 𝛽𝜔(𝑥, 𝑡),        for   0 < 𝜆 ≤ 1              (1) 

Here 𝜕𝜏
𝜆 is the fractional Caputo derivative (FCD) of order α respect on the time variable. 

and 𝑰𝟎
𝟏−𝝀is the fractional integral of Riemann-Liouville in the time variable of order 1 − 𝜆, 

defined for every summable function 𝜔 as 

𝐼0
𝜆𝜔(𝑥, 𝑡) =

1

Γ(𝜆)
∫(𝑡 − 𝜏)𝜆−1𝜔(𝑥, 𝜏)𝑑𝜏.                                                                 (2)

𝑡

0

 

Then the FCD of order 𝜆 respect on the time variable is given as follows 

𝜕𝜏
𝜆𝜔(𝑥, 𝑡) = 𝐼0

1−𝜆𝜔𝑡(𝑥, 𝑡) =
1

Γ(1 − 𝜆)
 ∫ (𝑡 − 𝜏)−𝜆𝜔𝜏(𝑥, 𝜏)𝑑𝜏.                                  (3)

𝑡

0
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The Mittag-Leffler function(MLF) [27]is an essential function that is widely used in 

fractional calculus. The MLF solves non-integer order DEs in the same way as the 

exponential does for integer order DEs. The exponential function is actually a very 

particular variation—among an infinite number—of this function that appears to be used 

by everyone. Eq.(1) provides the conventional definition of Mittag-Leffler. 

𝔼𝜆(𝑡) = ∑
𝑡𝑘

Γ(𝜆𝑘 + 1)

∞

𝑘=0

,      𝜆 > 0.                                                           (4) 

The exponential function represents the case  𝜆 = 1, 

𝔼1(𝑡) = ∑
𝑡𝑘

Γ(𝑘 + 1)
= 𝑒𝑡

∞

𝑘=0

.                                                                     (5) 

In addition, it is usual to represent the MLF using two arguments, 𝜆 and 𝜇, so that 

𝔼𝜆,𝜇(𝑡) = ∑
𝑡𝑘

Γ(𝜆𝑘 + 𝜇)

∞

𝑘=0

,      𝜆 > 0, 𝜇 > 0.                                              (6) 

The Natural transform (NT) is defined over the set of function  

𝔸 =  {𝜔 (𝑥, 𝑡)|∃𝐶, 𝜖1, 𝜖2  > 0, |𝜔(𝑥, 𝑡)| < 𝐶𝑒
|𝑡|
𝜇𝑗   , 𝑖𝑓 𝑡 ∈ (−1)𝑗 × [0, ∞)} 

as given by the following formula 

ℕ[𝜔(𝑥, 𝑡)] =
1

𝑝
∫ 𝜔(𝑥, 𝑡)𝑒

−𝑠𝑡
𝑝

∞

0

𝑑𝑡,          𝑠, 𝑝 ∈ (0, ∞)                                              (7) 

In Belgacem et al. [26], demonstrated that the NT represents the theoretical dual to the LT. 

As a result, one should be able to compete with it on a large scale for solving of the problem. 

Many of the NT's unique qualities are discussed and summarized in [26][28].  The NT of 

the fractional derivative introduced by Caputo is stated by 

ℕ[𝜕𝜏
𝜆𝜔(𝑥, 𝑡)] =

𝑠𝛼

𝑝𝛼
ℕ[𝜔(𝑥, 𝑡)]

− ∑
𝑠𝛼−1−𝑘𝜔(k)(𝑥, 0)

𝑝𝛼−𝑘
 , (𝑛 −  1 < 𝜆 ≤  𝑛).                                   (8)

𝑛−1

𝑘=0

 

2. Analysis of Natural Adomian Decomposition Method (NADM) 

The nonlinear The time-Fractional diffusion-convection equation (1) is defined together 

with an initial” 

𝜔(𝑥, 0) = 𝜙(𝑥).                                                                                      (9) 
use the NADM to Eq.(1), then it transforms into 

         
ℕ[𝜕𝜏

𝜆𝜔(𝑥, 𝑡)] = ℕ[𝜔𝑥𝑥(𝑥, 𝑡) − 𝛼𝜔𝑥(𝑥, 𝑡) − 𝜇𝜔(𝑥, 𝑡) + Ψ(𝜔)],     𝑡 ∈ (0, 𝑡∗) 

𝑠𝜆

𝑝𝜆
ℕ[𝜔(𝑥, 𝑡)] − ∑

𝑠𝜆−1−𝑘𝜔(k)(𝑥, 0)

𝑝𝜆−𝑘
   

𝑛−1

𝑘=0

= ℕ[𝜔𝑥𝑥(𝑥, 𝑡) − 𝛼𝜔𝑥(𝑥, 𝑡) − 𝜇𝜔(𝑥, 𝑡) + Ψ(𝜔)], 
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𝑠𝜆

𝑝𝜆
ℕ[𝜔(𝑥, 𝑡)] = ∑

𝑠𝜆−1−𝑘𝜔(k)(𝑥, 0)

𝑝𝜆−𝑘
   

𝑛−1

𝑘=0

+ ℕ[𝜔𝑥𝑥(𝑥, 𝑡) − 𝛼𝜔𝑥(𝑥, 𝑡) − 𝜇𝜔(𝑥, 𝑡) + Ψ(𝜔)] 
Then we obtain 

ℕ[𝜔(𝑥, 𝑡)] =
𝑝𝜆

𝑠𝜆
∑

𝑠𝜆−1−𝑘𝜔(k)(𝑥, 0)

𝑝𝜆−𝑘
   

𝑛−1

𝑘=0

 

+
𝑝𝜆

𝑠𝜆 ℕ[𝜔𝑥𝑥(𝑥, 𝑡) − 𝛼𝜔𝑥(𝑥, 𝑡) − 𝜇𝜔(𝑥, 𝑡) + Ψ(𝜔)]                                                             (10) 

 By applying the convolution theorem and the inverse Natural transform to both sides of 

equation (10), we can now obtain 

𝜔(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
∑

𝑠𝜆−1−𝑘𝜔(k)(𝑥, 0)

𝑝𝜆−𝑘
   

𝑛−1

𝑘=0

+
𝑝𝜆

𝑠𝜆
ℕ[𝜔𝑥𝑥(𝑥, 𝑡) − 𝛼𝜔𝑥(𝑥, 𝑡) + 𝜇𝜔(𝑥, 𝑡) + Ψ(𝜔)]), 

𝜔(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
∑

𝑠𝜆−1−𝑘𝜔(k)(𝑥, 0)

𝑝𝜆−𝑘
   

𝑛−1

𝑘=0

)                                                               (11)

+ ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ[𝜔𝑥𝑥(𝑥, 𝑡) − 𝛼𝜔𝑥(𝑥, 𝑡) + 𝜇𝜔(𝑥, 𝑡) + Ψ(𝜔)]). 

It may be expressed in the form, and 𝛼 = 1 ,𝜇 = 1 

  𝜔(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
∑

𝑠𝜆−1−𝑘𝜔(k)(𝑥, 0)

𝑝𝜆−𝑘
   

𝑛−1

𝑘=0

)

+ ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ[𝜔𝑥𝑥(𝑥, 𝑡) − 𝜔𝑥(𝑥, 𝑡) + 𝜔(𝑥, 𝑡) + Ψ(𝜔)]). 

We now represent the solution as the infinite series given below 

𝜔(𝑥, 𝑡) = ∑ 𝜔𝑛(𝑥, 𝑡),

∞

𝑛=0

                                                                        (12) 

where the nonlinear term Ψ(𝜔)is decomposed as the following  

Ψ(𝜔(x, t)) = ∑ Bn(𝜔0, 𝜔1, … , 𝜔n),

∞

n=0

                                                                            (13) 

where Bn can be calculated  

Bn =
1

n!
[
dn

dλ
Ψ (∑ λk𝜔n

∞

n=0

)].                                                                             (14) 

 

Substitution of Eq. (12) and (13) in Eq.(11) leads to 

∑ 𝜔𝑛(𝑥, 𝑡)

∞

𝑛=0

= ℕ−1 (
𝑝𝜆

𝑠𝜆
∑

𝑠𝜆−1−𝑘𝜙(k)(𝑥, 0)

𝑝𝜆−𝑘
   

𝑛−1

𝑘=0

)                                                  (15 ) 
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+ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ [∑(𝜔n)xx

∞

n=0

− ∑(𝜔n)x

∞

n=0

+ ∑ 𝜔n

∞

n=0

+ ∑ Bn(𝜔0, 𝜔1, … , 𝜔n)

∞

n=0

]) 

By comparing both sides of the Eq. (15), we get  
𝜔0(𝑥, 𝑡) = 𝜙(𝑥),                                                                                     

𝜔1(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ[𝜙𝑥𝑥 − 𝜙𝑥 + 𝜙 + B0(ϕ)]),                                                   

𝜔2(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ[(𝜔1)𝑥𝑥 − (𝜔1)𝑥 + 𝜔1 + B1(u0, u1)])                                       

⋮                                                                            

𝜔𝑛(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ((𝜔𝑛−1)𝑥𝑥 − (𝜔𝑛−1)𝑥 + 𝜔𝑛−1 + Bn(u0, u1, … , un))) .                             

 

Finally, the analytical solution 𝜔(𝑥, 𝑡) is approximated using a truncated series: 

𝜔(𝑥, 𝑡) = lim
𝑛→∞

𝜑𝑛(𝑥, 𝑡),                                                                                  (16)   

where  𝜑𝑛(𝑥, 𝑡) = ∑ 𝜔𝑘(𝑥, 𝑡)𝑛
𝑘=0  is the sequence of partial sums to the series Eq.(15). 

 

3. Numerical experiments  
Example 3.1. Let the one-dimensional parabolic  fractional diffusion equation: 

  
𝜕𝜏

𝜆𝜔(𝑥, 𝑡) = 𝜔𝑥𝑥(𝑥, 𝑡)

𝜔(𝑥, 0) = sin (𝑥)
 ,      0 < 𝜆 ≤ 1                                                           (17) 

From Eq.(15), we using NDM 

𝜔0(𝑥, 𝑡) = sin (𝑥) 

𝜔𝑛(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ{(𝜔𝑛−1)𝑥𝑥}), 

𝜔1(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ{(𝜔0)𝑥𝑥}) = ℕ−1 (

𝑝𝜆

𝑠𝜆
ℕ{−sin (𝑥)}) 

= ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ(−sin (𝑥))) = −

sin (𝑥)𝑡𝜆

Γ(𝜆 + 1)
. 

𝜔2(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ{(𝜔1)𝑥𝑥}) =

sin (𝑥)𝑡2𝜆

Γ(2𝜆 + 1)
. 

𝜔3(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ{(𝜔2)𝑥𝑥}) = −

sin (𝑥)𝑡3𝜆

Γ(3𝜆 + 1)
. 

𝜔4(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ{(𝜔3)𝑥𝑥}) =

sin (𝑥)𝑡4𝜆

Γ(4𝜆 + 1)
. 

In the same way 

𝜔5(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ{(𝜔4)𝑥𝑥}) = −

sin (𝑥)𝑡5𝜆

Γ(5𝜆 + 1)
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.
.
.
 

𝜔𝑛(𝑥, 𝑡) = ℕ−1 (
𝑝𝜆

𝑠𝜆
ℕ{(𝜔𝑛−1)𝑥𝑥}) =

sin (𝑥)(−𝑡𝜆)𝑛

Γ(n𝜆 + 1)
. 

Using the sequence of partial sums  

𝜑𝑛(𝑥, 𝑡) = ∑ 𝜔𝑘(𝑥, 𝑡)

𝑛

𝑘=0

= 𝜔0(𝑥, 𝑡) + 𝜔1(𝑥, 𝑡) + ⋯ + 𝜔𝑛(𝑥, 𝑡)  

By substituting the above solutions, it is transformed into 

𝜑𝑛(𝑥, 𝑡) = sin(𝑥) [1 +
𝑡𝜆

Γ(𝜆 + 1)

+
𝑡2𝜆

Γ(2𝜆 + 1)
…

(−𝑡𝜆)𝑛

Γ(n𝜆 + 1)
]                                                                        (18) 

Using the one-parameter MLF, the problem’s solution 

lim
𝑛→∞

𝜑𝑛(𝑥, 𝑡) = sin (𝑥) ∑
(−𝑡𝜆)𝑘

Γ(k𝜆 + 1)

∞

𝑘=0
.  

Then from Eq.(16) 

𝜔(𝑥, 𝑡) = sin(𝑥) 𝐸𝜆,1(−𝑡𝜆).                                                           (19)  

The Eq. (19) for 𝜆 = 1 is approximate to the form 𝜔(𝑥, 𝑡) = sin(𝑥) 𝑒−𝑡 which is the exact 

solution of Eq.(17) for 𝜆 = 1.  

 

Example 3.2. Let the one-dimensional parabolic  fractional diffusion equation: 

𝜕𝜏
𝜆𝜔(𝑥, 𝑡) = 𝜔𝑥𝑥(𝑥, 𝑡) + 2𝜔𝑥(𝑥, 𝑡) 

𝜔(𝑥, 0) = 𝑒−𝑥   
 .         0 <  𝜆 ≤ 1                                            (20) 

From Eq. (15), we using NDM 

𝜔0(𝑥, 𝑡) = 𝑒−𝑥 

𝜔𝑛(𝑥, 𝑡) = ℕ−1 (
𝑝 𝜆

𝑠  𝜆
ℕ{(𝜔𝑛−1)𝑥𝑥 + 2(𝜔𝑛−1)𝑥}), 

𝜔1(𝑥, 𝑡) = ℕ−1 (
𝑝 𝜆

𝑠  𝜆
ℕ{(𝜔0)𝑥𝑥 + 2(𝜔0)𝑥}) = −

𝑒−𝑥𝑡  𝜆

Γ( 𝜆 + 1)
. 

𝜔2(𝑥, 𝑡) = ℕ−1 (
𝑝 𝜆

𝑠  𝜆
ℕ{(𝜔1)𝑥𝑥 + 2(𝜔1)𝑥}) =

𝑒−𝑥𝑡2 𝜆

Γ(2 𝜆 + 1)
. 

𝜔3(𝑥, 𝑡) = ℕ−1 (
𝑝 𝜆

𝑠  𝜆
ℕ{(𝜔2)𝑥𝑥 + 2(𝜔2)𝑥}) = −

𝑒−𝑥𝑡3 𝜆

Γ(3 𝜆 + 1)
. 

𝜔4(𝑥, 𝑡) = ℕ−1 (
𝑝 𝜆

𝑠  𝜆
ℕ{(𝜔3)𝑥𝑥 + 2(𝜔3)𝑥}) =

𝑒−𝑥𝑡4 𝜆

Γ(4 𝜆 + 1)
. 

In the same way 

𝜔5(𝑥, 𝑡) = ℕ−1 (
𝑝 𝜆

𝑠  𝜆
ℕ{(𝜔4)𝑥𝑥 + 2(𝜔4)𝑥}) = −

𝑒−𝑥𝑡5 𝜆

Γ(5 𝜆 + 1)
. 

.

.

.
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𝜔𝑛(𝑥, 𝑡) = ℕ−1 (
𝑝 𝜆

𝑠  𝜆
ℕ{(𝜔𝑛−1)𝑥𝑥 + 2(𝜔𝑛−1)𝑥}) =

𝑒−𝑥(−𝑡  𝜆)𝑛

Γ(n 𝜆 + 1)
. 

From the sequence of partial sums  

𝜑𝑛(𝑥, 𝑡) = ∑ 𝜔𝑘(𝑥, 𝑡)

𝑛

𝑘=0

= 𝜔0(𝑥, 𝑡) + 𝜔1(𝑥, 𝑡) + ⋯ + 𝜔𝑛(𝑥, 𝑡)  

By substituting the above solutions, it is transformed into 

𝜑𝑛(𝑥, 𝑡) = 𝑒−𝑥 [1 −
𝑡  𝜆

Γ( 𝜆 + 1)
+

𝑡2 𝜆

Γ(2 𝜆 + 1)
± ⋯

(−𝑡  𝜆)𝑛

Γ(n 𝜆 + 1)
]                          (21) 

Using the one-parameter MLF, the problem’s solution”  

     lim
𝑛→∞

𝜑𝑛(𝑥, 𝑡) = 𝑒−𝑥 ∑
(−𝑡  𝜆)𝑘

Γ(k 𝜆 + 1)

∞

𝑘=0
.  

Then from Eq.(16) 

𝜔(𝑥, 𝑡) = 𝑒−𝑥𝐸 𝜆,1(−𝑡  𝜆).                                                               (22)  

The Eq.(22) for 𝜆 = 1 is approximate to the form 𝜔(𝑥, 𝑡) = 𝑒−(𝑥+𝑡) which is the exact 

solution of Eq.(20) for 𝜆 = 1.  

 

4. Numerical results and discussion  
The numerical solution of the Cauchy problem(CP) represented the time-fractional 

diffusion-advection equation (1) with the initial condition ω0(x) = ϕ(x), can be described 

and illustrated in above three application examples. The numerical values in Figure 1 

represents the approximate solution ω(x, t) of the CP(17) in Example 3.1. The numerical 

solution approximated to the exact solution  ωExact  given by equation (19) through 

different values of t  and x = 1, 0.9, 0.8 and 0.7; with values 𝜆 = 0.7, 0.8, 0.9  and 1 for 

Example 3.1. In Figure 1, we observe that the approximate solution for Example 3.1 

decreases when t increases and for fixed values of x.  In Figure 2, the approximate solution  

ω(x, t) of the CP(17) in Example 3.1 show the graph through different values of x, t when  

𝜆 = 1, 0.9, 0.8 and 0.7; respectively. Therefore, both graphs in Figure 1 and Figure 2 

comes close to the exact solution  ωExact for 0 <  𝜆 ≤ 1. Now, the approximate solution  

ω(x, t) of the CP(20) to Example 3.2 is described in Figure 3. The numerical values 

approach to the exact solution  ωExact given by the equation (22) through different values 

of t and x = 0.75, 1.5, 2.25, 3.00; with values  𝜆 = 1.0, 0.9, 0.8 and 0.7; for Example 3.2. 

Figure 3, we observe that the approximate solution for Example 3.2 decreases when t 

increases for fixed values of x, for 0 < 𝜆 ≤ 1.  In Figure 4, the approximate solution  

ω(x, t) of the CP(20) in Example 3.2 show the graph of the approximate solution among 

different values of x, t when 𝜆 = 1, 0.9, 0.8 and 0.7; respectively. We can determine from 

the preceding reasoning and the numerical answers that the absolute error is extremely tiny, 

indicating that the suggested NDM is very successful in providing the analytical solutions 

for the time-fractional diffusion-convection problem with ease and without the need for 

any assumptions. 
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Figure 1. For Example 3.1, (i) x = 0.25; (ii) x = 0.50; (iii) x = 0.75; (iv) x = 1.0; and 

among different values of t when λ = 0.7, 0.8, 0.9,1.0; it shows the graphs of the 

approximated solutions. 

 
Figure 2. For Example 3.1, (i) α = 0.7; (ii) α = 0.8; (iii) α = 0.9; (iv) α = 1.0; and for 

various values of x and t; it shows the graphs of the approximated solutions. 
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Table 1. For Example 3.1,  λ = 0.7, 0.8, 0.9; and the exact solution ( λ = 1.0) and for 

specific values of x. 

 

 
 



Amna Haran Mahady  and  Habeeb A. Aal-Rkhais 

42 

 

 

Figure 3. For Example 3.1, (i) x = 0.25; (ii) x = 0.50; (iii) x = 0.75; (iv) x = 1.0; and 

among different values of t when λ = 0.7, 0.8, 0.9,1.0; it shows the graphs of the 

approximated solutions. 

 
Figure 4. For Example 3.1, (i) α = 0.7; (ii) α = 0.8; (iii) α = 0.9; (iv) α = 1.0; and for 

various values of x and t; it shows the graphs of the approximated solutions. 

 
Table 2. For Example 3.1,  λ = 0.7, 0.8, 0.9; and the exact solution ( λ = 1.0) and for 

specific values of x. 
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5. Conclusion 

The approximate numerical solution for the time-fractional diffusion-convection equation 

considered by using the (NDM). The fractional integral of Riemann-Liouville(RL) used in 

conjunction with the NT of the Caputo fractional derivative operator in the suggested 

method. Adomian polynomials are particularly handled for easily managing the nonlinear 

term. The fractional derivatives are characterized by the Caputo(C) and Riemann-

Liouville(RL) sense. It is found that the NDM is rapid and accurate. All computations and 

graphics were performed in MATLAB. To prove the usefulness and validity of the 

proposed method, illustrative examples are provided. 
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