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Abstract. In this study, we introduce the harmonic downhill index and its corresponding 

polynomial of a graph. Furthermore, we compute this index for some standard graphs, 

wheel graphs, gear graphs and helm graphs. 
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1. Introduction              
In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex 

set and edge set of G. The degree  
Gd u of a vertex u is the number of vertices adjacent to 

u.   

            A u-v path P in G is a sequence of vertices in G, starting with u and ending at v, 

such that consecutive vertices in P are adjacent, and no vertex is repeated. A path 

1 2 1  , ,... kv v v   in G is a downhill path if for every i, 1 ≤ i ≤ k ,    1 .G i G id v d v   

         A vertex v is downhill dominating a vertex u if there exists a downhill path originating 

from u to v. The downhill neighbourhood of a vertex v is denoted by  
dnN v and defined 

as:  
dnN v  = {u: v downhill dominates u}.  The downhill degree  

dnd v of a vertex v is 

the number of downhill neighbours of v [1].                      

          The first and second downhill indices were introduced in [1], and they are defined 

as 

   
 

2

1 ,G

u V G

DWM G d u


 
     

     
 

2 .G G

u V G

DWM G d u d v


 
 

Some downhill indices were recently studied in [2, 3, 4]. 

         The harmonic index [5] of a graph G is defined as 

 
    

2
.

G Guv E G

H G
d u d v




  

         We introduce the harmonic downhill index of a graph, it is defined as 

 
    

2
.

dn dnuv E G

HDW G
d u d v
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          Considering the harmonic downhill index, we introduce the harmonic downhill 

polynomial of a graph G and it is defined as 

     

 

2

, .dn dnd u d v

uv E G

HDW G x x




 
 

Some topological indices were recently studied in [6, 7, 8]. 

            This paper computes the harmonic downhill index and its corresponding 

polynomial of certain graphs.

  
2. Results for some standard graphs 

Proposition 1.  Let G   be r-regular with n vertices and r≥ 2. Then      

 
 1

.
2

nr n
HDW G




 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2 and  
2

nr
 edges. Then  

  1dnd v n   for every v in G. 

 
          

2 2
.

2 1 1 2 1dn dnuv E G

nr nr
HDW G

d u d v n n n

  
    


 

Corollary 1.1.  Let Cn   be a cycle with n≥ 3 vertices. Then      

 
 

.
1

n

n
HDW C

n



 

Corollary 1.2.  Let Kn    be a complete graph with n≥ 3 vertices. Then      

   .
2

n

n
HDW K 

 
Proposition 2.  Let P be a path with n≥3 vertices. Then       

 
1

.
1

n
HDW P

n





 

Proof: Let P be a path with n≥3 vertices. We obtain two partitions of the edge set of P as 

follows: 

       E1 = {uv ∈ E(P) | ddn(u)=0,  ddn(v)=n– 1}, | E1| = 2. 

       E2 = {uv ∈ E(P) | ddn(u)= ddn(v)=n– 1},      | E2| = n – 3.

 

 

               

 
      

 

   

2 2 2 3 2 1
.

0 1 1 1 1dn dnuv E G

n n
HDW G

d u d v n n n n

  
   

      


                                      

 

3. Results for wheel graphs 

The wheel Wn is the join of Cn and K1. Clearly, Wn  has n+1vertices and 2n edges. Then Wn 

has two types of edges based on the downhill degree of the vertices of each edge as follows: 

   E1 = {uv ∈E(Wn) | ddn(u) = n, ddn(v) = n – 1},  | E1 | = n. 

   E2 = {uv ∈E(Wn) | ddn(u) =  ddn(v) = n – 1},     | E2 | = n. 
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Theorem 1. Let Wn be a wheel with n+1vertices and 2n edges, n≥4. Then the harmonic 

downhill index of Wn is  

( )
2

.
2 1 1

n

n n
HDW W

n n
= +

- -
 

Proof: We deduce 

    

 
   

 

2

n

n
dn dnuv E W

HDW W
d u d v





 

                       
( ) ( ) ( )

2 2 2
.

1 1 1 2 1 1

n n n n

n n n n n n
= + = +

+ - - + - - -
 

                                  

Theorem 2. Let Wn be a wheel with n+1vertices, n≥ 4. Then the harmonic downhill 

polynomial of Wn is  

( )
2 1

2 1 1, .n n
nHDW W x nx nx- -= +  

Proof: We obtain 

     
   

 

2

, dn dn

n

d u d v
n

uv E W

HDW W x x




 
 

 

  ( ) ( ) ( )

2 2 2 1

1 1 1 2 1 1.n n n n n nnx nx nx nx+ - - + - - -= + = +                                

 

4. Results for gear graphs 

A bipartite wheel graph is a graph obtained from Wn with n+1 vertices adding a vertex 

between each pair of adjacent rim vertices and this graph is denoted by Gn and also called 

as a gear graph. Clearly, |V(Gn)| = 2n+1 and |E(Gn)| = 3n. A gear graph Gn is depicted in 

Figure 1. 

 

 

 

 

 

 

 

 

                                 

 

 

Figure 1: Gear graph Gn 

 

 Let Gn be a gear graph with 2n+1vertices, 3n edges, n≥4. Then Gn has two types of edges 

based on the downhill degree of the vertices of each edge as follows: 

 E1 = {u ∈E(Gn) | ddn(u) =2n, ddn(v) = 2},  | E1 | = n. 

 E2 = {u ∈E(Gn) | ddn(u) = 2, , ddn(v) = 0}, | E2 | = 2n. 
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Theorem 3. Let Gn be a gear graph with 2n+1vertices, 3n edges, n≥4. Then the harmonic 

downhill index of Gn is  

( ) 2 .
1

n

n
HDW G n

n
= +

+
 

Proof: We deduce 

 
   

 

2 2 4
2 .

2 2 2 0 1
n

n
dn dnuv E G

n n n
HDW G n

d u d v n n

    
   

  

 

Theorem 4. Let Gn be a gear graph with 2n+1vertices, 3n edges, n≥4. Then the harmonic 

downhill polynomial of Gn is  

( )
1

11, 2 .n
nHDW G x nx nx+= +  

Proof: We deduce 

 
   

 

2 2 2 1

12 2 2 0 1, 2 2 .dn dn

n

d u d v n n
n

uv E G

HDW G x x nx nx nx nx
   



      

 

5. Results for helm graphs 

The helm graph Hn is a graph obtained from Wn (with n+1 vertices) by attaching an end 

edge to each rim vertex of Wn. Clearly, |V(Hn)| = 2n+1 and |E(Hn)| = 3n. A graph Hn is 

shown in Figure 2. 

 
Figure 2: Helm graph Hn 

 

Let Hn be a helm graph with 3n edges, n≥5. Then Hn has three types of edges based on the 

downhill degree of the vertices of each edge as follows: 

 E1 = {uv∈E(Hn) | ddn(u) = 2n, ddn(v) = 2n – 1}, | E1 | = n. 

 E2 = {uv ∈E(Hn) | ddn(u) = ddn(v) =2n – 1}, | E2 | = n. 

 E3 = {uv ∈E(Hn) | ddn(u) =2n – 1, ddn(v) = 0}, | E3 | = n. 

 

Theorem 5. Let Hn be a helm graph with 2n+1 vertices, n≥5. Then the harmonic 

downhill index of Hn is  

( )
2 3

.
4 1 2 1

n

n n
HDW H

n n
= +

- -
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Proof: We obtain 

 
   

 

2

n

n
dn dnuv E H

HDW H
d u d v





 

  
( ) ( ) ( ) ( )

2 2 2 2 3
.

2 2 1 2 1 2 1 2 1 0 4 1 2 1

n n n n n

n n n n n n n
= + + = +

+ - - + - - + - -
                                           

 
 

Theorem 6. Let Hn be a helm graph with 2n+1vertices, 3n edges, n≥5. Then the 

harmonic downhill polynomial of Hn is  

( )
2 1 2

4 1 2 1 2 1, .n n n
nHDW H x nx nx nx- - -= + +  

Proof: We deduce 

   

 
   

 

       

2 2 2 2

2 2 1 2 1 2 1 2 1 0, dn dn

n

d u d v n n n n n
n

uv E H

HDW H x x nx nx nx
       



     

                           

2 1 2

4 1 2 1 2 1.n n nnx nx nx- - -= + +                               

5. Conclusion                      
In this study, the harmonic downhill index and its corresponding polynomial are defined 

and studied.
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