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Abstract. In this paper, we study the Diophantine equation  nx + 5y = z2, where n is a 

positive integer and x, y, z are non-negative integers. We found that if n ≡ 1 (mod 4), then 

the Diophantine equation has no non-negative integer solution. If n ≡ 3 (mod 20)  or n ≡ 7 

(mod 20), then the Diophantine equation has all non-negative integer solutions, which are 

(n, x, y, z) = (n, 1, 0, (n+1)0.5), where (n+1)0.5 is a positive integer. 
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1. Introduction 

In 2007, Acu [1] proved that the Diophantine equation 22 5x y z   has exactly two 

solutions in non-negative integers       , , 3, 0, 3 , 2,1, 3x y z  . In 2012, Sroysang [10] 

found that the Diophantine equation 23 5x y z  has the unique non-negative integer 

solution    , , 1, 0, 2x y z  . In 2013, Rabago [8] found that the only solution   , ,x y z  to 

the Diophantine equation 25 31x y z  in non-negative integers is  1,1, 6 . In the same 

year, Sroysang [11,12] proved that the Diophantine equations 25 7x y z  and 
25 23x y z   have no non-negative integer solution. He proved also that the Diophantine 

equation 25 43x y z  has no non-negative integer solution in [13] and the Diophantine 

equation 25 63x y z   has the unique non-negative integer solution    , , 0,1, 8x y z  in 

[14]. In 2016, Khan, Rashid and Uddin [6] proved that the Diophantine equation 
25 9x y z   has no non-negative integer solution. In 2016, Cheenchan el at. [5] showed 

that the Diophantine equation 25x yp z  , where p  is prime and p  satisfies; case 1: 

 1 mod4p   or case 2:  3 mod4p  and  2 mod5p   or case 3:  3 mod4p  and 

 3 mod5p  , has no non-negative integer solution.  

 In 2019, Burshtein [3] found that the Diophantine equation 25 103x y z   has no 

positive integer solution. If y is even, then the Diophantine equation  25 11x y z   also 

has no positive integer solution. Later in 2020, Burshtein [4] found also that the 
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Diophantine equation 25 5x y z   has no positive integer solution. In the same year, 

Sangam [9] showed that the Diophantine equation 25 8x y z  has no positive integer 

solution. In 2022, Tadee [15] found some conditions for non-existence of the non-

negative integer solutions of the Diophantine equation   214
yxp p z   , where p and 

14p  are prime. In the same year, Borah and Dutta [2] showed that the Diophantine 

equation 25 24x y z   has the unique positive integer solution    , , 2,1, 7x y z  . 

 In this article, we will solve the Diophantine equation 25x yn z  , where n  is a 

positive integer with  1 mod4n  or  3,7 mod20n  and , ,x y z are non-negative 

integers, by using an elementary method and Mihailescu’s theorem. 

 

Theorem 1.1. (Mihailescu’s theorem) [7] The Diophantine equation 1x ya b   has the 

unique integer solution    , , , 3, 2, 2, 3a b x y  , where , ,a b x  and y are integers with 

 min , , , 1a b x y  . 

  

2. Main results 
In this section, we present our results. 

 

Theorem 2.1. Let n  be a positive integer with  1 mod4n  . Then the Diophantine 

equation 25x yn z  has no non-negative integer solution.  

Proof: Assume that ,x y and z are non-negative integers such that 25x yn z  . Since 

 1 mod4n  , we have  5 2 mod4x yn   , and so  2 2 mod4z  . This is impossible 

since  2 0,1 mod4z  .  

 

By Theorem 2.1, we have the following corollaries.  

 

Corollary 2.2. [4] The Diophantine equation 25 5x y z  has no solution in positive 

integers , ,x y z .  

 

Corollary 2.3. [5] The Diophantine equation 25x yp z  , where p is a prime number 

with  1 mod4p  , has no non-negative integer solution. 

 

Corollary 2.4. [6] The Diophantine equation 25 9x y z   has no non-negative integer 

solution. 

   

Lemma 2.5. Let n  be a positive integer. Then the Diophantine equation 21xn z  has 

all non-negative integer solutions    , , 2, 3, 3n x z   and    , , ,1, 1n x z n n  , where 

1n  is a positive integer.  
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Proof: Let ,x y and z be non-negative integers such that 21xn z  . It is easy to check 

that 1, 1z n  and 0x  . If 1x  , then 2 1z n  , and so    , , ,1, 1n x z n n  , where 

1n  is a positive integer. If 1x  , then  min , , 2, 1z n x  . By Theorem 1.1, we obtain 

   , , 2, 3, 3n x z  . 

  

Lemma 2.6. Let n  be a positive integer with  2,3 mod5n  . If the Diophantine 

equation 25x yn z  has a non-negative integer solution and 0y  , then x  is even.  

Proof: Let ,x y and z be non-negative integers such that 25x yn z  . Since 0y  , we 

get  5 0 mod5y  . Assume that x  is odd. Then there exists a non-negative integer k  

such that 2 1x k  . Since  2,3 mod5n  , it implies that   2 1 2,3 mod5x kn n   , and 

so  2 5 2, 3 mod5x yz n   . This is impossible since  2 0,1, 4 mod5z  . Hence, x  is 

even.  
 

Theorem 2.7. Let n  be a positive integer with  3,7 mod20n  . Then the Diophantine 

equation 25x yn z   has all non-negative integer solutions    , , , ,1, 0, 1n x y z n n  , 

where 1n  is a positive integer.  

Proof: Let ,x y and z be non-negative integers such that 25x yn z  . Since 

 3,7 mod20n  , it implies that  3 mod4n  and  2,3 mod5n  . Assume that 0y  . 

By Lemma 2.6, it follows that x  is even. There exists a non-negative integer k such that 

2x k . Therefore    5k k yz n z n   . Since 5  is prime, we obtain 5k uz n   and 

5k y uz n   for some non-negative integer u . Then 2y u  and  22 5 5 1k u y un   . 

Since  2,3 mod5n  , we obtain that 0u  , and so  2 5 1 0 mod4k yn    . Then n  is 

even. This is impossible since  3 mod4n  . Thus 0y  . Since   3 mod4n  , we have 

2n  . By Lemma 2.5, it implies that    , , , ,1, 0, 1n x y z n n  , where 1n  is a 

positive integer.  

 

By Theorem 2.7, we can easily show that some previous researches are true. 

 

Corollary 2.8. [10]  1, 0, 2 is the unique solution  , ,x y z  for the Diophantine equation 

23 5x y z  , where ,x y and z are non-negative integers. 

 

Corollary 2.9. [11] The Diophantine equation 25 7x y z   has no non-negative integer 

solution.  
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Corollary 2.10. [12] The Diophantine equation 25 23x y z  has no non-negative integer 

solution. 

 

Corollary 2.11. [13] The Diophantine equation 25 43x y z  has no non-negative integer 

solution.  

 

Corollary 2.12. [14]  0,1, 8 is the unique solution  , ,x y z  for the Diophantine 

equation 25 63x y z  , where ,x y and z are non-negative integers. 

 

Corollary 2.13. [3] The Diophantine equation 25 103x y z   has no positive integer 

solution. 

 

3. Conclusion 

In this paper, by using an elementary method and Mihailescu’s theorem, we showed that 

the Diophantine equation 25x yn z  has no non-negative integer solution, where 

 1 mod4n  . Moreover, if  3,7 mod20n  , then all non-negative integer solutions of 

the equation are    , , , ,1, 0, 1n x y z n n  , where 1n  is a positive integer. 
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