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Abstract. In this study, we introduce the status elliptic Sombor and modified status elliptic 

Sombor indices and their corresponding exponentials of a graph. Furthermore, we compute 

these indices for wheel graphs and friendship graphs.  

Keywords: status elliptic Sombor index, modified status elliptic Sombor index, graphs. 

AMS Mathematics Subject Classification (2010): 05C10, 05C69 

1. Introduction 

In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex 

set and edge set of G. The degree dG(u) of a vertex u is the number of vertices adjacent to 

u. We refer [1] for other undefined notations and terminologies. 

        Graph indices have their applications in various disciplines of Science and 

Technology. For more information about graph indices, see [2].  

 

        The elliptic Sombor index was introduced by Gutman et al. in [3] and it is defined as 

   
 

2 2 .u v u v

uv E G

ESO G d d d d


  
 

Recently, some elliptic indices were studied in [4, 5, 6, 7, 8, 9].  

 

        The distance d(u, v) between any two vertices u and v is the length of the shortest path 

connecting u and v. The status 𝜎(u) of a vertex u in G is the sum of distances of all other 

vertices from u in G.  

       We put forward a new topological index, defined as 

          
 

2 2

uv E G

SES G u v u v   


  
 

 

which we propose to be named as the status elliptic Sombor index.

  

  

       Considering the status elliptic Sombor index, we introduce the status elliptic Sombor 

exponential of a graph G and define it as 
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          
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      We define the modified status elliptic Sombor index of a graph G as  

 

         
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.m

uv E G

SES G
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

 
  

 
      Considering the modified status elliptic Sombor index, we introduce the modified 

status elliptic Sombor exponential of a graph G and defined it as 

          

 

2 2

1

, .m u v u v

uv E G

SES G x x     



 
 

 

Recently, some status indices were studied in [10, 11, 12] and some graph indices were 

studied in [13, 14]. 

         In this paper, we determine the status elliptic Sombor index, modified status elliptic 

Sombor index and their corresponding exponentials of wheel graphs and friendship graphs.   

 

2. Results for wheel graphs 

A wheel graph Wn is the join of Cn and K1. Then Wn has n+1vertices and 2n edges. A graph 

Wn is shown in Figure 1. 

 
Figure 1: Wheel graph Wn 

 

In Wn, there are two types of edges as follows:  

 E1 = {uv ∈ E(Wn) | d(u) = d(v) = 3}, |E1| = n. 

 E2 = {uv ∈ E(Wn) | d(u) =3, d(v) = n}, |E2| = n. 

 

Therefore there are two types of status edges as given in Table 1. 

𝜎(u), 𝜎(v) \ uv ∈ E(Wn) (2n – 3, 2n – 3) (n, 2n – 3) 

Number of edges N n 

Table 1: Status edge partition of Wn 

 

Theorem 2.1. Let G= Wn be the wheel graph. Then  

       
2 222 2 2 3 3 1 2 3 .SES G n n n n n n       

Proof: From definition and by using Table 1, we deduce  
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              
 

2 2

uv E G

SES G u v u v   


      

                 
         2 2 222 3 2 3 2 3 2 3 2 3 2 3n n n n n n n n n n                                                  

                
     2 222 2 2 3 3 1 2 3 .n n n n n n       

 

Theorem 2.2.  Let G= Wn   be the wheel graph. Then   

       2 222 2 2 3 3 1 2 3, .n n n nSES G x nx nx    
 

Proof: From definition and by using Table 1, we deduce  

     

          

 
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, u v u v
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

 
 

                      
         2 2 222 3 2 3 2 3 2 3 2 3 2 3n n n n n n n nnx nx            

                      

     2 222 2 2 3 3 1 2 3 .n n n nnx nx         
 

Theorem 2.3. Let G= Wn   be the wheel graph. Then     

    
     
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Proof: From definition and by using Table 1, we obtain 

   
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Theorem 2.4. Let G= Wn   be the wheel graph. Then   

       22 2

11

3 1 2 32 2 2 3, .m n n nnSES G x nx nx      

Proof: From the definition and by using Table 1, we get  

      

          

 

2 2

1

,m u v u v

uv E G

SES G x x     



 
 

                         

         2 2 22

1 1

2 3 2 3 2 3 2 3 2 3 2 32n n n n n n n nnx nx          
   

                         
     22 2

11

3 1 2 32 2 2 3 .n n nnnx nx      
 

3. Results for friendship graphs 

A friendship graph Fn, n ≥ 2, is a graph that can be constructed by joining n copies of C3 

with a common vertex. A graph F4 is presented in Figure 2. 
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Figure 2: Friendship graph F4 

 

Let Fn be a friendship graph with 2n+1 vertices and 3n edges. By calculation, we obtain 

that there are two types of edges as follows: 

       1 | 2 ,
n nn F FE uv E F d u d v     |E1| = n. 

       2 | 2, 2 ,
n nn F FE uv E F d u d v n     |E2| = 2n. 

 

Therefore, in Fn, there are two types of status edges as given in Table 2. 

 

𝜎(u), 𝜎(v) \ uv ∈ E(Fn) (4n – 2, 4n – 2) (2n, 4n – 2) 

Number of edges n 2n 

Table 2: Status edge partition of Fn 

 

Theorem 3.1. Let G= Fn be the friendship graph. Then  

       
2 228 2 2 1 4 3 1 4 4 2 .SES G n n n n n n       

Proof: From definition and by using Table 2, we deduce  

             
 
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uv E G

SES G u v u v   


      

       
           2 2 2 2
4 2 4 2 4 2 4 2 2 2 4 2 2 4 2n n n n n n n n n n                                               

       
     2 228 2 2 1 4 3 1 4 4 2 .n n n n n n       

 

Theorem 3.2.  Let G= Fn be the friendship graph. Then   

       2 228 2 2 1 2 3 1 4 4 2, 2 .n n n nSES G x nx nx    
 

Proof: From definition and by using Table 2, we deduce  

     

          

 

2 2

, u v u v

uv E G

SES G x x     



 
 

                      
           2 2 2 2
4 2 4 2 4 2 4 2 2 4 2 2 4 22n n n n n n n nnx nx            

                      

     2 228 2 2 1 2 3 1 4 4 22 .n n n nnx nx                                  
 

Theorem 3.3. Let G= Fn be the friendship graph. Then   

       
     

2 22

2
.

8 2 2 1 2 3 1 4 4 2

m n n
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Proof: From definition and by using Table 2, we obtain 

     
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Theorem 3.4. Let G= Fn be the friendship graph. Then   

            22 2

11

2 3 1 4 4 28 2 2 1, 2 .m n n nnSES G x nx nx      

Proof: From definition and by using Table 2, we get  

      

          

 

2 2

1

,m u v u v

uv E G

SES G x x     



 
 

                            

           2 2 2 2

1 1

4 2 4 2 4 2 4 2 2 4 2 2 4 22n n n n n n n nnx nx          
   

                         
     22 2

11

2 3 1 4 4 28 2 2 1 2 .n n nnnx nx      
 

4. Conclusion                      

This paper computes the status elliptic Sombor index, modified status elliptic Sombor 

index, and their corresponding exponentials for certain graphs. 
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