
Journal of Mathematics and Informatics

Vol. 27, 2024, 27-37

ISSN: 2349-0632 (P), 2349-0640 (online)

Published 11 December 2024

www.researchmathsci.org

DOI:http://dx.doi.org/10.22457/jmi.v27a03246

27

An Algorithm for the Longest Common Subsequence and

Substring Problem for Multiple Strings

Rao Li

Department of Computer Science, Engineering, and Mathematics,

University of South Carolina Aiken, Aiken, SC 29801, USA,

E-mail: raol@usca.edu

 Received 2 November 2024; accepted 10 December 2024

Abstract. Let X1, X2, ..., Xs and Y1, Y2, ..., Yt be strings over an alphabet ∑, where s and t

are positive integers. The longest common subsequence and substring problem for

multiple strings X1, X2, ..., Xs and Y1, Y2, ..., Yt is to find the longest string which is a

subsequence of X1, X2, ..., Xs and a substring of Y1, Y2, ..., Yt. In this paper, we propose

an algorithm to solve the problem.

Keywords: Algorithm, the longest common subsequence and substring problem, the

longest common subsequence and substring problem for multiple strings.

AMS Mathematics Subject Classification (2020): 68W32, 68W40

1. Introduction

Let ∑ be an alphabet and S a string over ∑. A subsequence of a string S is obtained by

deleting zero or more elements of S. A substring of a string S is a subsequence of S

consists of consecutive elements in S. We say a string is empty if it does not have any

element in it. An empty string is a subsequence and a substring of any string. Let X and Y

be two strings over an alphabet ∑. The longest common subsequence (resp. substring)

problem for X and Y is to find the longest string which is a subsequence (resp. substring)

of both X and Y. Both the longest common subsequence problem and the longest

common substring problem have applications in different fields. For example, in

molecular biology, the lengths of the longest common subsequence and the longest

common substring can be used to measure the similarity between two biological

sequences. The two problems have been well-investigated in the last several decades.

More details on the research of the first problem can be found in [1], [2], [3], [4], [5], [8],

[9], [10], [12], [13] and references therein and the second problem can be found in [6],

[7], [14] and references therein. Motivated by the two problems above, Li, Deka, and

Deka [11] introduced the longest common subsequence and substring problem for two

strings X and Y which is to find the longest string such that it is a subsequence of X and a

substring of Y. They also proposed an algorithm to solve this problem in [11]. In this

paper, we introduce the longest common subsequence and substring problem for multiple

strings which is a generalization of the longest common subsequence and substring

problem for two stings. Suppose X1, X2, ..., Xs and Y1, Y2, ..., Yt are strings over an

http://www.researchmathsci.org/

Rao Li

28

alphabet ∑, where s and t are positive integers. The (s, t)-longest common subsequence

and substring problem for multiple strings X1, X2, ..., Xs and Y1, Y2, ..., Yt is to find the

longest string, denoted Z(X1, X2, ..., Xs; Y1, Y2, ..., Yt), which is a subsequence of X1, X2,

..., Xs and a substring of Y1, Y2, ..., Yt. If Z(X_1, X_2, ..., X_s; Y_1, Y_2, ..., Y_t) does not

exist, we say Z(X1, X2, ..., Xs; Y1, Y2, ..., Yt) is an empty string. We propose an algorithm

to solve the (s, t)-longest common subsequence and substring problem.

2. The preparations for the algorithm

Our algorithm is based on several claims to be proved in this section. Before proving the

claims, we need some notations as follows. For a given string H = h1 h2 ... hk over an

alphabet ∑, the size of H, denoted |H|, is defined as the number of elements in H. The

length of an empty string is zero. The jth suffix of H is the string of hj hj + 1 ... hk, where 1

≤ j ≤ k. The ith prefix of H is defined as H[i] = h1 h2 ... hi, where 1 ≤ i ≤ k.

Conventionally, H[0] is defined as an empty string.

Let Xp = x[p, 1]x[p, 2] ... x[p, mp], where x[p, a] with p is an integer such that 1 ≤

p ≤ s and 1 ≤ a ≤ mp are elements in an alphabet ∑, be s strings, and Yq = y[q, 1]y[q, 2] ...

y[q, n_q], where y[q, b] with q is an integer such that 1 ≤ q ≤ t and 1 ≤ b ≤ nq are

elements in the alphabet ∑, be t strings. We define Z[i1, i2, ..., is; j1, j2, ..., jt] as a string

satisfying the following conditions, where 1 ≤ iu ≤ mu with 1 ≤ u ≤ s and 1 ≤ jv ≤ nv with 1

≤ v ≤ t.

(1.1) It is a subsequence of X1[i1] = x[1, 1]x[1, 2] ... x[1, i1].

(1.2) It is a subsequence of X2[i2] = x[2, 1]x[2, 2] ... x[2, i2].

............

(1.s) It is a subsequence of Xs[is] = x[s, 1]x[s, 2] ... x[s, is].

(2.1) It is a suffix of Y1[j1] = y[1, 1]y[1, 2] ... y[1, j1].

(2.2) It is a suffix of Y2[j2] = y[2, 1]y[2, 2] ... y[2, j2].

............

(2, t) It is a suffix of Yt[jt] = y[t, 1]y[t, 2] ... y[t, jt].

(3.1) Under the conditions above, its length is as large as possible.

Claim 1. If y[1, j1], y[2, j2], ..., y[t, jt] are not the same, then Z[i1, i2, ..., is; j1, j2, ...,

jt] does not exist. Namely, Z[i1, i2, ..., is; j1, j2, ..., jt] is an empty string.
Proof of Claim 1. Suppose, to the contrary, that Z[i1, i2, ..., is; j1, j2, ..., jt] exists. Then

Z[i1, i2, ..., is; j1, j2, ..., jt] is not empty. Thus the last element in it must be equal to each of

y[1, j1], y[2, j2], ..., y[t, jt] and therefore y[1, j1], y[2, j2], ..., y[t, jt] are the same, a

contradiction. Hence Z[i1, i2, ..., is; j1, j2, ..., jt] does not exist.

Hence the proof of Claim 1 is complete.

Claim 2. Suppose that u1 := y[1, j1] = y[2, j2] = … = y[t, jt]. If u1 = x[1, i1] = x[2, i2] = … =

x[s, is], then

|Z[i1, i2, ..., is; j1, j2, ..., jt]| = |Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1]| + 1.

Proof of Claim 2. Our proof is divided into two cases.

Case 1. Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1] is not empty.

Notice that Zα := Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1] is a subsequence of

X1[i1 - 1] := x[1, 1]x[1, 2] ... x[1, i1 - 1],

X2[i2 - 1] := x[2, 1]x[2, 2] ... x[2, i2 - 1],

An Algorithm for the Longest Common Subsequence and Substring Problem for Multiple

Strings

29

............

Xs[is - 1] := x[s, 1]x[s, 2] ... x[s, is - 1],

and a suffix of

Y1[j1 - 1] := y[1, 1]y[1, 2] ... y[1, j1 - 1],

Y2[j2 - 1] := y[2, 1]y[2, 2] ... y[2, j2 - 1],

............

Yt[jt - 1] := y[t, 1]y[t, 2] ... y[t, jt - 1].

Since x[1, i1] = x[2, i2] = … = x[s, is] = u1 = y[1, j1] = y[2, j2] = … = y[t, jt], we have that

Zαu1 is a subsequence of

X1[i1] := x[1, 1]x[1, 2] ... x[1, i1],

X2[i2] := x[2, 1]x[2, 2] ... x[2, i2],

Xs[is] := x[s, 1]x[s, 2] ... x[s, is],

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

By the definition of Z[i1, i2, ..., is; j1, j2, ..., jt], we have that

2 ≤ |Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1]| + 1

= |Zα u1| = |Zα| + 1 ≤ |Z[i1, i2, ..., is; j1, j2, ..., jt]|.

By the definition of Zβ := Z[i1, i2, ..., is; j1, j2, ..., jt], we have that the last element, say u2,

in Zβ must be equal to y[1, j1], y[2, j2], ..., and y[t, jt]. Thus u1 = u2 = x[1, i1] = x[2, i2] = …

= x[s, is]. Therefore Zβ - u2, which is a string obtained from removing u2 from Zβ, is a

subsequence of

X1[i1 - 1] := x[1, 1]x[1, 2] ... x[1, i1 - 1],

X2[i2 - 1] := x[2, 1]x[2, 2] ... x[2, i2 - 1],

Xs[is - 1] := x[s, 1]x[s, 2] ... x[s, is - 1],

and a suffix of

Y1[j1 - 1] := y[1, 1]y[1, 2] ... y[1, j1 - 1],

Y2[j2 - 1] := y[2, 1]y[2, 2] ... y[2, j2 - 1],

............

Yt[jt - 1] := y[t, 1]y[t, 2] ... y[t, jt - 1].

By the definition of Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1], we have that

|Z[i1, i2, ..., is; j1, j2, ..., jt]| - 1 = |Zβ - u2|

= |Zβ| - 1 ≤ |Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1]|.

Therefore

|Z[i1, i2, ..., is; j1, j2, ..., jt]| = |Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1]| + 1.

Case 2. Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1] is empty.

Since u1 is a subsequence of

X1[i1] := x[1, 1]x[1, 2] ... x[1, i1],

X2[i2] := x[2, 1]x[2, 2] ... x[2, i2],

Xs[is] := x[s, 1]x[s, 2] ... x[s, is],

Rao Li

30

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

By the definition of Z[i1, i2, ..., is; j1, j2, ..., jt], we have that

1 = |u1| ≤ |Z[i1, i2, ..., is; j1, j2, ..., jt]|.

Notice that the proofs for

Z[i1, i2, ..., is; j1, j2, ..., jt]| - 1 ≤ |Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1]|

in the above Case 1 still hold in this case. We have

0 ≤ |Z[i1, i2, ..., is; j1, j2, ..., jt]| - 1≤ |Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1]| = 0.

Thus

|Z[i1, i2, ..., is; j1, j2, ..., jt]| = 1,

|Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1]| = 0.

Therefore

|Z[i1, i2, ..., is; j1, j2, ..., jt]| = |Z[i1 - 1, i2 - 1, ..., is - 1; j1 - 1, j2 - 1, ..., jt - 1]| + 1.

Hence the proof of Claim 2 is complete.

Claim 3. Suppose that v1 := y[1, j1] = y[2, j2] = ... = y[t, jt]. If v1 ≠ x[1, i1], v1 ≠ x[2, i2], ...,

and v1 ≠ x[s, is], then

|Z[i1, i2, ..., is; j1, j2, ..., jt]| = |Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt]|.

Proof of Claim 3. Our proof is divided into two cases again.

Case 1. Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt] is not empty.

Notice that Zγ := Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt] is a subsequence of

X1[i1 - 1] := x[1, 1]x[1, 2] ... x[1, i1 - 1],

X2[i2 - 1] := x[2, 1]x[2, 2] ... x[2, i2 - 1],

Xs[is - 1] := x[s, 1]x[s, 2] ... x[s, is - 1],

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

Then Zγ is a subsequence of

X1[i1] := x[1, 1]x[1, 2] ... x[1, i1],

X2[i2] := x[2, 1]x[2, 2] ... x[2, i2],

Xs[is] := x[s, 1]x[s, 2] ... x[s, is],

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

By the definition of Z[i1, i2, ..., is; j1, j2, ..., jt], we have that

|Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt]| = |Zγ| ≤ |Z[i1, i2, ..., is; j1, j2, ..., jt]|.

An Algorithm for the Longest Common Subsequence and Substring Problem for Multiple

Strings

31

Since Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt] is not empty, Zδ := Z[i1, i2, ..., is; j1, j2, ..., jt] is

not empty. Thus the last element, say v2, in Zδ must be equal to y[1, j1], y[2, j2], ..., y[t, jt].

Thus v1 = v2 = y[1, j1] = y[2, j2] = … = y[t, jt]. Since v2 = v1 ≠ x[1, i1], v2 = v1 ≠ x[2, i2], ...,

v2 = v1 ≠ x[s, is], we have that Zδ is a subsequence of

X1[i1 - 1] := x[1, 1]x[1, 2] ... x[1, i1 - 1],

X2[i2 - 1] := x[2, 1]x[2, 2] ... x[2, i2 - 1],

............

Xs[is - 1] := x[s, 1]x[s, 2] ... x[s, is - 1],

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

............

Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

By the definition of Z[i1 - 1, i2 - 2, ..., is - 1; j1, j2, ..., jt], we have that

|Z[i1, i2, ..., is; j1, j2, ..., jt]| ≤ |Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt]|.

Therefore

|Z[i1, i2, ..., is; j1, j2, ..., jt]| = |Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt]|.

Case 2. Z[i1, i2, ..., is; j1, j2, ..., jt] is empty.

Our assertion is that Z[i1, i2, ..., is; j1, j2, ..., jt] must be empty. Suppose, to the contrary,

that Zν := Z[i1, i2, ..., is; j1, j2, ..., jt] is not empty. Then the last element, say v3, in Zν must

be equal to y[1, j1], y[2, j2], ..., y[t, jt]. Thus v1 = v3 = y[1, j1] = y[2, j2] = … = y[t, jt]. Since

v3 = v1 ≠ x[1, i1], v3 = v1 ≠ x[2, i2], ..., v3 = v1 ≠ x[s, is], we have that Zν is a subsequence

of

X1[i1 - 1] := x[1, 1]x[1, 2] ... x[1, i1 - 1],

X2[i2 - 1] := x[2, 1]x[2, 2] ... x[2, i2 - 1],

............

X_s[is - 1] := x[s, 1]x[s, 2] ... x[s, is - 1],

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

............

Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

By the definition of Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt], we have

1 ≤ |Z[i1, i2, ..., is; j1, j2, ..., jt]| ≤ |Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt]| = 0,

a contradiction. Thus Z[i1, i2, ..., is; j1, j2, ..., jt] is empty and

|Z[i1, i2, ..., is; j1, j2, ..., jt]| = |Z[i1 - 1, i2 - 1, ..., is - 1; j1, j2, ..., jt]| = 0.

Hence the proof of Claim 3 is complete.

Claim 4. Suppose that w1 := y[1, j1] = y[2, j2] = … = y[t, jt]. Assume that w1 is not equal

to exactly r elements in the set L: = {x[1, i1], x[2, i2], ..., x[s, is]}, where 1 ≤ r ≤ (s - 1).

Without loss of generality, we assume w1 is not equal to exactly the first r elements in L.

Namely, w1 ≠ x[1, i1], w1 ≠ x[2, i2], ..., w1 ≠ x[r, ir], w1 = x[r + 1, ir + 1] = x[r + 2, ir + 2] = …

= x[s, is]. Then

|Z[i1, i2, ..., is; j1, j2, ..., jt]| = |Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt]|.

Proof of Claim 4. Our proof is divided into two cases.

Rao Li

32

Case 1. Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt] is not empty.

Notice that Zɛ := Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt] is a subsequence of

X1[i1 - 1] := x[1, 1]x[1, 2] ... x[1, i1 - 1],

X2[i2 - 1] := x[2, 1]x[2, 2] ... x[2, i2 - 1],

............

Xr[ir - 1] := x[r, 1]x[r, 2] ... x[r, ir - 1],

Xr + 1[ir + 1] := x[r + 1, 1]x[r + 1, 2] ... x[r + 1, ir + 1],

Xr + 2[ir + 2] := x[r + 2, 1]x[r + 2, 2] ... x[r + 2, ir + 2],

............

Xs[is] := x[s,1]x[s, 2] ... x[s, is],

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

............

Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

Then Zɛ is a subsequence of

X1[i1] := x[1, 1]x[1, 2] ... x[1, i1],

X2[i2] := x[2, 1]x[2, 2] ... x[2, i2],

............

Xs[is] := x[s, 1]x[s, 2] ... x[s, is],

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

............

Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

By the definition of Z[i1, i2, ..., is; j1, j2, ..., jt], we have that

|Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt]| = |Zɛ| ≤ |Z[i1, i2, ..., is; j1, j2, ..., jt]|.

Since Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt] is not empty, Zμ := Z[i1, i2, ..., is;

j1, j2, ..., jt] is not empty. Thus the last element, say w2, in Zμ must be equal to y[1, j1], y[2,

j2], ..., and y[t, jt]. Thus w1 = w2 ≠ x[1, i1], w1 = w2 ≠ x[2, i2], ..., w1 = w2 ≠ x[r, ir], and w1

= w2 = x[r + 1, ir + 1] = x[r + 2, ir + 2] = … = x[s, is]. Therefore Zμ is a subsequence of

X1[i1 - 1] := x[1, 1]x[1, 2] ... x[1, i1 - 1],

X2[i2 - 1] := x[2, 1]x[2, 2] ... x[2, i2 - 1],

............

Xr[ir - 1] := x[r, 1]x[r, 2] ... x[r, ir - 1],

Xr + 1[ir + 1] := x[r + 1, 1]x[r + 1, 2] ... x[r + 1, ir + 1],

Xr + 2[ir + 2] := x[r + 2, 1]x[r + 2, 2] ... x[r + 2, ir + 2],

............

Xs[is] := x[s, 1]x[s, 2] ... x[s, is],

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

............

 Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

By the definition of Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt], we have that

|Z[i1, i2, ..., is; j1, j2, ..., jt]| ≤ |Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt]|.

An Algorithm for the Longest Common Subsequence and Substring Problem for Multiple

Strings

33

Therefore

|Z[i1, i2, ..., is; j1, j2, ..., jt]| = |Z[i1 - 1, i2 - 1, ...,ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt]|.

Case 2. Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt] is empty.

Our assertion is that Z[i1, i2, ..., is; j1, j2, ..., jt] must be empty. Suppose, to the contrary,

that Zρ := Z[i1, i2, ..., is; j1, j2, ..., jt] is not empty. Then the last element, say w3, in Zρ must

be equal to y[1, j1], y[2, j2], ..., y[t, jt]. Thus w1 = w3 ≠ x[1, i1], w1 = w3 ≠ x[2, i2], ..., w1 =

w3 ≠ x[r, ir], and w1 = w3 = x[r + 1, ir + 1] = x[r + 2, ir + 2] = … = x[s, is]. Therefore Zρ is a

subsequence of

X1[i1 - 1] := x[1, 1]x[1, 2] ... x[1, i1 - 1],

X2[i2 - 1] := x[2, 1]x[2, 2] ... x[2, i2 - 1],

............

Xr[ir - 1] := x[r, 1]x[r, 2] ... x[r, ir - 1],

Xr + 1[ir + 1] := x[r + 1, 1]x[r + 1, 2] ... x[r + 1, ir + 1],

Xr + 2[ir + 2] := x[r + 2, 1]x[r + 2, 2] ... x[r + 2, ir + 2],

............

Xs[is] := x[s, 1]x[s, 2] ... x[s, is],

and a suffix of

Y1[j1] := y[1, 1]y[1, 2] ... y[1, j1],

Y2[j2] := y[2, 1]y[2, 2] ... y[2, j2],

............

Yt[jt] := y[t, 1]y[t, 2] ... y[t, jt].

By the definition of Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt], we have that

1 ≤ |Z[i1, i2, ..., is; j1, j2, ..., jt]| ≤ |Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt]| = 0,

a contradiction. Thus Z[i1, i2, ..., is; j1, j2, ..., jt] is empty and

| Z[i1, i2, ..., is; j1, j2, ..., jt]|

= | Z[i1 - 1, i2 - 1, ..., ir - 1, ir + 1, ir + 2, ..., is; j1, j2, ..., jt]| = 0.

Hence the proof of Claim 4 is complete.

Remark 1. The general form of Claim 4 is as follows.

Claim 4'. Suppose that w1 := Y[1, j1] = Y[2, j2] =, ..., = Y[t, jt]. If w1 ≠ x[π(1), iπ (1)], w1 ≠

x[π(2), iπ(2)], ..., w1 ≠ x[π(r), iπ(r)], where π(1), π(2), ..., π(r) are integers such that 1≤ π(1) <

π(2) < … < π(r) ≤ s, and for any e ϵ {1, 2, ..., s} - {π(1), π(2), ..., π(r)}, w1 = x[e, ie], then

|Z[i1, i2, ..., is; j1, j2, ..., jt]|

= |Z[i1, ..., iπ(1) - 1, iπ(1) - 1, iπ(1) + 1, ..., iπ(2) - 1, iπ(2) - 1, iπ(2) + 1, ..., iπ(r) - 1, iπ(r) - 1, iπ(r) + 1, ..., is;

j1, j2, ..., jt]|.

Remark 2. Suppose that w1 := y[1, j1] = y[2, j2] = ... = y[t, jt]. We need to follow Claim 2,

Claim 3, and Claim 4 to compute |Z[i1, i2, ..., is; j1, j2, ..., jt]|. The largest number of

formats we can encounter is

C(s, 0) + C(s, 1) + C(s, 2) + … + C(s, s) = 2s,

where C(s, a) denotes the number of a-element subsets of a set of size s, where a is an

integer such that 0 ≤ a ≤ s.

Claim 5. Let H = h1 h2 ... hb be a longest string which is a subsequence of X1, X2, ..., Xs,

and a substring of Y1, Y2, ..., Yt. Then

Rao Li

34

b = max{|Z[i1, i2, ..., is; j1, j2, ..., jt]| :

 1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, ..., 1 ≤ is ≤ ms,

 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, ..., 1 ≤ jt ≤ nt},

where mu = |Xu| for each u with 1 ≤ u ≤ s and nv = |Yv| for each v with 1 ≤ v ≤ t.

Proof of Claim 5. For any i1, i2, ..., is with 1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, ..., 1 ≤ is ≤ ms, and any

j1, j2, ..., jt with 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, ..., 1 ≤ jt ≤ nt, we, from the definition of Z[i1, i2, ...,

is; j1, j2, ..., j_t], have that Z[i1, i2, ..., is; j1, j2, ..., jt] is a subsequence of X1, X2, ..., Xs, and

a substring of Y1, Y2, ..., Yn. By the definition of H, we have that

|Z[i1, i2, ..., is; j1, j2, ..., jt]| ≤ |H| = b.

Thus

max{|Z[i1, i2, ..., is; j1, j2, ..., jt]| :

 1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, ..., 1 ≤ is ≤ ms,

 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, ..., 1 ≤ jt ≤ nt} ≤ b.

Since H = h1 h2 ... hb is a longest string which is a subsequence of X1, X2, ..., Xs, and a

substring of Y1, Y2, ..., Yn, there exits indices i1, i2, ..., is and indices j1, j2, ..., jt such that

hb = x[1, i1], hb = x[2, i2], ..., hb = x[s, is], and hb = y[1, j1], hb = y[2, j2], ..., hb = y[t, jt].

Thus H = h1 h2 ... hb is a subsequence of X1[i1], X2[i2], ..., Xs[is] and a suffix of Y1[j1],

Y2[j2], ..., Yt[jt]. From the definition of Z[i1, i2, ..., is; j1, j2, ..., jt], we have that

b ≤ |Z[i1, i2, ..., is; j1, j2, ..., jt]|

≤ max {|Z[i1, i2, ..., is; j1, j2, ..., jt]| :

 1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, ..., 1 ≤ is ≤ ms,

 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, ..., 1 ≤ jt ≤ nt}.

Therefore

b = max {|Z[i1, i2, ..., is; j1, j2, ..., jt]| :

 1 ≤ i1 ≤ m1, 1 ≤ i2 ≤ m2, ..., 1 ≤ is ≤ ms,

 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, ..., 1 ≤ jt ≤ nt}.

Hence the proof of Claim 5 is complete.

3. An algorithm on the (s, t)-longest common subsequence and substring problem

Based on Claims 1-5 in Section 2, we can design an algorithm for the (s, t)-longest

common subsequence and substring problem. Once again, we assume that Xp = x[p,

1]x[p, 2] ... x[p, mp], where x[p, a] with p is an integer such that 1 ≤ p ≤ s and 1 ≤ a ≤ mp

are elements in the alphabet ∑, are s strings, and Yq = y[q, 1]y[q, 2] ... y[q, nq], where

y[q, b] with q is an integer such that 1 ≤ q ≤ t and 1 ≤ b ≤ nq are elements in the alphabet

∑, are t strings. In the following Algorithm A, W is an (m1 + 1)(m2 + 1)…(ms + 1)(n1 + 1)

(n2 + 1) … (nt + 1) dimensional array and the cells W(i1, i2, ..., is, j1, j2, ..., jt), where 1 ≤ i1

≤ m1, 1 ≤ i2 ≤ m2, ..., 1 ≤ is ≤ ms, and 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, ..., 1 ≤ jt ≤ nt store the lengths

of strings such that each of them satisfies the following conditions.

(1.1) It is a subsequence of X1[i1] = x[1, 1]x[1, 2] ... x[1, i1].

(1.2) It is a subsequence of X2[i2] = x[2, 1]x[2, 2] ... x[2, _2].

............

(1.s) It is a subsequence of Xs[is] = x[s, 1]x[s, 2] ... x[s, is].

(2.1) It is a suffix of Y1[j1] = y[1, 1]y[1, 2] ... y[1, j1].

(2.2) It is a suffix of Y2[j2] = y[2, 1]y[2, 2] ... y[2, j2].

............

(2.t) It is a suffix of Yt[jt] = y[t, 1]y[t, 2] ... y[t, jt].

An Algorithm for the Longest Common Subsequence and Substring Problem for Multiple

Strings

35

(3.1) Under the conditions above, its length is as large as possible.

ALG A(X1, X2, ..., Xm, Y1, Y2, ..., Yn, m, n, W)

1. Initialization:

 W(i1, i2, ..., is, j1, j2, ..., jt) ← 0, where 0 ≤ i1 ≤ m1, i2 = 0, i3 = 0, ..., is = 0,

 j1 = 0, j2 = 0, j3 = 0, ..., jt = 0.

 W(i1, i2, ..., is, j1, j2, ..., jt) ← 0, where i1 = 0, 0 ≤ i2 ≤ m2, i3 = 0, ..., is = 0,

 j1 = 0, j2 = 0, j3 = 0, ..., jt = 0.

............

 W(i1, i2, ..., is, j1, j2, ..., jt) ← 0, where i1 = 0, i2 = 0, ..., is -1 = 0, 0 ≤ is ≤ ms,

 j1 = 0, j2 = 0, j3 = 0, ..., jt = 0.

 W(i1, i2, ..., is, j1, j2, ..., jt) ← 0, where i1 = 0, i2 = 0, i3 = 0, i4 = 0, ..., is = 0,

 0 ≤ j1 ≤ n1, j2 = 0, j3 = 0, ..., jt = 0.

 W(i1, i2, ..., is, j1, j2, ..., jt) ← 0, where i1 = 0, i2 = 0, i3 = 0, i4 = 0, ..., is = 0,

 j1 = 0, 0 ≤ j2 ≤ n2, j3 = 0, ..., jt = 0.

............

 W(i1, i2, ..., is, j1, j2, ..., jt) ← 0, where i1 = 0, i2 = 0, i3 = 0, i4 = 0, ..., is = 0,

 j1 = 0, j2 = 0, j3 = 0, ..., 0 ≤ jt ≤ nt.

 maxLength = 0.

 lastIndexOnY1 = n1.

2.1. for θ1 ← 1 to m1

2.2. for θ2 ← 1 to m2

2.s. for θs ← 1 to ms

3.1. for τ1 ← 1 to n1

3.2. for τ2 ← 1 to n2

3.t. for τt ← 1 to nt

 if y[1, τ1], y[2, τ2], ..., y[t, τt] are not the same

 W(θ1, θ2, ..., θs, τ1, τ2, ..., τt) ← 0

 else

 Set σ : = y[1, τ1] = y[2, τ2] = x[t, τt]

 if σ = x[1, θ1] = x[2, θ2] = … = x[s, θs]

 W(θ1, θ2, ..., θs, τ1, τ2, ..., τt) ←

 W(θ1 - 1, θ2 - 1 ..., θs – 1, τ1 – 1, τ2 - 1 ..., τt - 1) + 1

 else if σ ≠ x[1, θ1], σ ≠ x[2, θ2], ..., σ ≠ x[s, θs],

 W(θ1, θ2, ..., θs, τ1, τ2, ..., τt) ←

 W(θ1 - 1, θ2 - 1 ..., θs – 1, τ1, τ2, ..., τt)

 else σ ≠ x[π(1), iπ (1)], σ ≠ x[π(2), iπ (2)], ..., σ ≠

 x[π(r), iπ (r)], where 1 ≤ π(1) < π(2) < … < π(r) ≤ s,

 1 ≤ r ≤ (s – 1), and for any e ϵ {1, 2, ..., s} - {π(1),

 π(2), ..., π(r)}, σ = x[e, θe],

 W(θ1, θ2, ..., θs, τ1, τ2, ..., τt) ←

 W(θ1, ..., θπ(1) - 1, θπ(1) - 1, θπ(1) + 1, ..., θπ(2) - 1, θπ(2) - 1,

 θπ(2) + 1, ..., θπ(r) - 1, θπ(r) - 1, θπ(r) + 1, ..., θs; τ1, τ2, ..., τt)

Rao Li

36

 if W(θ1, θ2, ..., θs, τ1, τ2, ..., τt) > maxLength

 maxLength = W(θ1, θ2, ..., θs, τ1, τ2, ..., τt)

 lastIndexOnY1 = τ1

4. return A substring Y1 between (lastIndexOnY1 - maxLength) and lastIndexOnY1.

Because of Claims 1-5 in Section 2, we have that Algorithm A is correct. We also have

the following result on the time and space complexities of Algorithm A.

Theorem 1. Both the time complexity and the space complexity of Algorithm A are

O(m1 m2 … ms n1 n2 … nt) = O(Ms + t),

where M = max{m1, m2, ..., ms, n1, n2, ..., nt}.

4. Conclusion
In this paper, we introduce the longest common subsequence and substring problem for

multiple strings. We propose an algorithm to solve the problem. In the future, we will

design new algorithms to improve the time and space complexities of our algorithm and

find the applications of our algorithm in the real world.

Acknowledgements. The author would like to thank the referee for his or her suggestions

leading to the improvements of the initial manuscript.

Author’s Contributions: This work represents the sole contribution of the author.

Conflicts of interest. The author declares no conflicts of interest.

REFERENCES

1. A. Apostolico, String editing and longest common subsequences, in: G. Rozenberg

and A. Salomaa (Eds.), Linear Modeling: Background and Application, in: Handbook

of Formal Languages, Vol. 2, Springer-Verlag, Berlin, 1997.

2. A. Apostolico, Chapter 13: General pattern matching, in: M. J. Atallah (Ed.),

Handbook of Algorithms and Theory of Computation, CRC, Boca Raton, FL, 1998.

3. L. Bergroth, H. Hakonen, and T. Raita, A survey of longest common subsequence

algorithms, in: SPIRE, A Corua, Spain, 2000.

4. C. Blum, M. Djukanovic, A. Santini, H. Jiang, C. Li, F. Manyà, and G. R. Raidl,

Solving longest common subsequence problems via a transformation to the

maximum clique problem, Computers and Operations Research, 125 (2021) 105089.

5. T. Cormen, C. Leiserson, and R. Rivest, Section 16.3: Longest common subsequence,

Introduction to Algorithms, MIT Press, Cambridge, MA, 1990.

6. M. Crochemore, C. S. Iliopoulos, A. Langiu, and F. Mignosi, The longest common

substring problem, Mathematical Structures in Computer Science, pp 1-19,

Cambridge University Press 2015, doi:10.1017/S0960129515000110.

7. D. Gusfield, II: Suffix Trees and Their Uses, Algorithms on Strings, Trees, and

Sequences: Computer Science and Computational Biology, Cambridge University

Press, 1997.

8. D. Hirschberg, A linear space algorithm for computing maximal common

subsequences, Communications of the ACM, 18 (1975) 341-343.

An Algorithm for the Longest Common Subsequence and Substring Problem for Multiple

Strings

37

9. D. Hirschberg, Serial computations of Levenshtein distances, in: A. Apostolico and

Z. Galil (Eds.), Pattern Matching Algorithms, Oxford University Press, Oxford, 1997.

10. J. Hunt and T. Szymanski, A fast algorithm for computing longest common

subsequences, Communications of the ACM, 20 (1977) 350-353.

11. R. Li, J. Deka, and K. Deka, An algorithm for the longest common subsequence and

substring problem, Journal of Mathematics and Informatics, 25 (2023) 77-81.

12. S. R. Mousavi and F. Tabataba, An improved algorithm for the longest common

subsequence problem, Computers and Operations Research, 39 (2012) 512-520.

13. C. Rick, New algorithms for the longest common subsequence problem, Research

Report No. 85123-CS, University of Bonn, 1994.

14. P. Weiner, Linear pattern matching algorithms. In: 14th Annual Symposium on

Switching and Automata Theory, Iowa City, Iowa, USA, October 15–17, 1973, pp.

1–11 (1973).

