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Abstract. Through a literature review, it has been observed that water scarcity results 

from increased demand due to population growth, economic progress, and climate 

change, leading to disparities between required and available water resources. Addressing 

this challenge requires segmenting water users into homogeneous groups and thoroughly 

examining their characteristics regarding water utilization to develop efficient and 

effective water governance strategies. This study employed data-driven multi-model 

validation techniques to characterize water users in Pangani Basin in Tanzania. The K-

means, Agglomerative Hierarchical, and Fuzzy C-means clustering algorithms were used 

to ascertain the efficacy of the characterization. Cluster validation showed that K-means 

outperformed Agglomerative hierarchy by owning a high Calinski–Harabasz Index and 

low Davies–Bouldin Index of 692.3 and 1.8, respectively, compared to Agglomerative 

hierarchy with values of 578.2 and 1.9, respectively. The clustered dataset was tested for 

prediction accuracy by fitting the logistic regression. K-means showed a prediction 

accuracy of 98.2% over 97.5% of the Agglomerative Hierarchical method. The four 

clusters identified were large-scale irrigation water users, moderate irrigation water users, 

community water supply entities, and domestic water users. We argue that understanding 

users’ characteristics could efficiently and effectively add value to water governance 

along the basins. 
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1. Introduction 

River basins serve as vital spatial boundaries to manage water resources for various 

socioeconomic activities [1]. Activities that depend on water availability in river basins 

include water for irrigation, livestock, domestic water supply, hydropower generation, 

industrial usage, and mining [2,3]. For instance, approximately 12 million tons of 

freshwater fish, accounting for approximately 25% of global production, comes from 

rivers annually [2]. In Tanzania, the Pangani Basin supports the livelihoods of at least 4.7 

million people through various socioeconomic activities [4]. In the recent past, water 

scarcity has emerged as a significant global concern, exacerbated by population increase, 

climate change, and economic growth [5,6]. These trends have led to imbalances between 

the increasing demand for water to meet diverse user needs and the availability of water 

from natural resources [7]. Consequently, ensuring sustainable water management 

practices within river basins has become imperative to address the challenges posed by 

water scarcity and promote socioeconomic development in affected regions. 

Despite the scarce water resources within the basin, governing bodies such as the 

Pangani Basin Water Board (PBWB) face challenges related to water governance due to 

a lack of understanding of water users’ characteristics which influence their water 

utilization behaviors [8,9]. Reports show that such challenges include conflicts among 

water users, disagreements between formal and informal governmental institutions, 

unequal water resource sharing between the upstream and downstream water users, 

ineffective and poorly planned strategies for water allocation and rationing, and 

cooperative prioritization for profit over the community’s welfare [8–12]. For the water 

governing bodies to create suitable interventions that enable water users to control their 

water abstraction, it requires characterizing the various groups of water users [13]. 

Characterizing the water consumption systems throughout the basin and identifying 

homogeneous units that, in terms of management, represent modern groupings enable us 

to comprehend the particular characteristics linked to drivers that are essential to water 

allocation and rationing. This is the key to revealing the components of sound water 

governance, which have been developed via careful planning, the adoption and 

application of suitable water abstraction, and crucial governmental support. This study 

aimed to test a robust mechanism that allows water users with similar water utilization 

characteristics or performance to be categorized into homogenous clusters that 

characterize their organizational structure and water abstraction needs. 

Clustering algorithms offer valuable insights into understanding the 

characteristics of water resources [14,15]. In clustering, similar groups, items, or objects 

are aggregated [14]. Previous studies in water resource management have utilized 

clustering to categorize data into various groups, such as end-user water consumption 

[16,17], hydrological segmentation [18], groundwater pattern recognition [19], water 

quality [20], and rainfall and risk monitoring [21,22]. For example, Jenifer and Jha [23] 

utilized a rainfall time series in southern India to cluster with varying rainfall trends using 

the Agglomerative Hierarchical algorithm, and Shahfahad et al. [24] addressed urban 

flooding using the Fuzzy C-means and K-means algorithms. Regarding water use 

segmentation, Gao et al. [25] characterized water usage across various economic sectors 

in China using K-means clustering algorithms and classified 139 sectors into 5 clusters 

with distinct features. To formulate effective water conservation and management 
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strategies, a recent study by Rahim et al. [26] is an example in which digital water meter 

data from 306 homes in Melbourne, Australia, over ten months were used to study water 

user behaviors, habits, and preferences. In addition, mathematical approaches such as 

Fuzzy logic have been employed to assess water quality as well as analyze data that are 

vague in nature [27–29]. Furthermore, classification models such as Random Forest (RF), 

Artificial Neural Networks (ANN), K-Nearest Neighbor (KNN), and Support Vector 

Machine (SVM) have been used to analyze various parameters related to water resources 

[30–33]. Umair Ahmed [34] applied both the classification and regression algorithms on 

various water parameters such as temperature, pH, and water dissolvent ability to predict 

the water quality index. Cluster validation techniques such as the Davies–Bouldin Index 

(DBI), Silhouette Coefficient (S.S.), Calinski–Harabasz (C.H.), and Dunn Index (DI) 

have been applied to assess cluster separations and identify the level of cluster 

homogeneity [35,36]. The application of these algorithms highlights that machine 

learning could largely contribute to addressing challenges related to water resource 

management along the basins. 

Although research indicates the popular clustering algorithms used to address 

various problems in water resources are OPTICS, Fuzzy C-means, K-means, Self-

Organizing Map (SOM), Agglomerative Hierarchical, DBSCAN, Neural Networks, and 

Genetic K-means [13,35], it is noted that Agglomerative Hierarchical, Fuzzy C-means, 

and K-means have been frequently used to understand characteristics related to various 

attributes in water resources and have demonstrated promising results compared to other 

algorithms [13,24,37]. Despite their widespread use, clustering algorithms encounter 

challenges related to consistency and predictability in such a way that identifying the 

most suitable algorithm for a given dataset and validating the resulting clusters becomes 

challenging [38,39]. Although other strategies such as applying several algorithms to 

cluster datasets and choosing the ones with the most homogeneous groupings have been 

tried to address this shortcoming, their number is still limited [17,35]. 

The present study used data from Tanzania’s Pangani Basin to categorize and 

examine the characteristics of water users using three unsupervised machine learning 

clustering models. To the best of the authors’ knowledge, no features associated with 

water consumption have been analyzed using basin water consumption data at this level 

of granularity. The objective of the study was to apply a data-driven approach to validate 

the most reliable model for correctly classifying different water users into homogeneous 

groups that correspond to variations in water use. The findings of this study contribute to 

an effective approach that validates the characteristics of waters users along the basin for 

proper water allocation and rationing. 

 

2. Materials and methods 

2.1. Study area 

The case study area was northern Tanzania’s Pangani Basin (see Fig. 1). The basin 

comprises about 58,400 km2, of which 93% (54,600 km2) is in Tanzania, and 7% (3800 

km2) is in Kenya, with Nyumba ya Mungu reservoir as its primary source. The two main 

tributaries of the Pangani Basin are the Ruvu, with an average flow of 5.339 m3/s, and the 

Kikuletwa, with an average long-term flow of 11.502 m3/s. The Kikuletwa, Ruvu, 

Pangani Main stem, Mkomazi, Luengera, Msangazi, Zigi, Mkulumuzi, and Umba 
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catchments are the nine catchments that make up the basin according to the water shade 

boundary [4]. The basin spans four regions: Arusha, Manyara, Kilimanjaro, and Tanga. It 

crosses 21 districts (Pangani, Tanga City, Mkinga, Muheza, Handeni, Handeni Town, 

Kilindi, Lushoto, Moshi Municipal, Moshi Rural, Rombo, Mwanga, Same, Korogwe, 

Korogwe Town, Silanjiro, Siha, Hai, Moshi City, Moshi Municipal, and Moshi Rural). It 

serves a population of 4.7 million people [4]. According to the 2022 census, the 

population within the basin has increased to more than 6 million people [40]. 

The amount of resources invested by blue water users, i.e., water drawn from 

aquifers, lakes, rivers, and artificial reservoirs, is more significant than that of green 

water users, i.e., water use that depends on rainfall in the basin [9,11]. The social–

economical activities conducted in the basin include crop irrigation such as horticulture, 

rice, maize, hydroelectricity power production (~97 megawatts), mining such as 

Tanzanite, gold, ruby, Sunstones, moonstones, aventurine quartz, aquamarine, spessartite, 

tourmaline, green garnets, red garnets, anyolite, corundum, and rhodolite [4]. Moreover, 

there are significant and small-scale industries such as bonite bottlers and TPC sugar, and 

domestic users such as hotels, homes, etc. The basin also includes several controlled 

areas and national parks for both tourism and wildlife, including the Amani, Chome, 

Nilo, and Magamba Forest Nature Reserves and the Kilimanjaro, Arusha, Saadani, and 

Mkomazi National Parks [4]. The Pangani Basin was selected because it is the first basin 

to be introduced in the country, and therefore, water user data are available and records 

are well kept. It has diverted socioeconomic activities and created high competition for 

water use. As per the water resource fact sheet, approximately 75% of the population in 

the basin experiences water stress [41]. 

 

 
Figure 1. The Pangani Basin source: [4]. 

 

2.2. Data collection and pre-processing 

The dataset was collected as a secondary source at the PBWB located in Moshi, 

Kilimanjaro. Data collection was carried out between January 2023 and June 2023. The 

dataset was organized into a Microsoft Excel sheet comprising rows and columns. The 
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columns include details such as I.D., file number, applicant name, applicant postal 

address, applicant email address, applicant village and ward, file number, region, district, 

type of water sources, water source name, amount of water abstracted, amount of water 

requested by the applicant, amount of water available in the source, water uses, water use 

category, water use fee paid by users for water abstraction, water use history, activity 

status, permit status, and catchment.  

The dataset was cleaned by removing erroneous data, formatting text, and the 

water user’s identity, such as water user names, phone numbers, email addresses, postal 

addresses, and office file numbers, as per research ethical requirements. The remaining 

dataset comprised 3460 records with 15 features, as depicted in Table 1. The mean 

imputation technique handled missing values and avoided minimizing data 

representation. No duplicate value was observed in the dataset.  

The outliers were removed using the interquartile range (IQR) with a capping 

approach. The nominal features were converted into discrete values, and the dataset was 

standardized to have a mean of approximately zero (μ = 0), and a unit standard deviation 

(σ = 1). The heatmap found a correlation among the features within the dataset. The 15 

correlated features were reduced to 13 uncorrelated features using Principal Component 

Analysis (PCA). We applied the Hopkins (h) statistics test to verify the dataset cluster-

ability tendency. A Hopkins score of h > 0.90 was observed and justified the dataset’s 

clustering tendency. 

 
Table 1. Description of the dataset features. 

S.No Feature Name Encoding Feature Type Feature Description 

1 Region 0–4 Discrete Water user region of residence 

2 District 0–18 Discrete Water user district of residence 

3 source_type 0–9 Discrete 
Type of source where water is abstracted, 

i.e., river, spring, borehole, etc. 

4 source_name 0–1169 Discrete Name given to the specific water source 

5 water_use 0–18 Discrete Specific water uses to the end user 

6 
water_use_categor

y 
0–5 Discrete 

Categories of water users set by the 

PBWB. 

7 water_use_fee 

100,000–

1,059,478

,880 

Continuous 
Amount paid (TZS) by the water user as a 

fee for abstracting water from the basin 

8 amount_abstracted 
0.1–

140,500 
Continuous 

The amount of water approved by the 

PBWB abstracted by the user from the 

source measured in L/s 
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9 amount_requested 
0.1–

140,500 
Continuous 

Amount of water (L/s) requested by the 

user once the application is logged. Users 

can be granted less than or equal to the 

amount requested depending on the water 

assessment conducted at the source. 

10 
water_source_capa

city 

0.1–

140,500 
Continuous 

Amount of water (L/s) available in the 

source 

11 permit_history 

0 (new)–1 

(water 

right) 

Boolean 

Previous history of the permit owned by 

the water user. Permits change time after a 

time. 

12 permit_type 0–2 Discrete 
The current type of permit owned by the 

water user 

13 activity_status 

0 

(Active)–

1 

(Inactive) 

Boolean 

The activity of the water user, i.e., either 

active: currently abstracting water, 

inactive: does not presently abstract water 

14 permit_status 

0 

(invalid)–

1 (valid) 

Boolean Permit status, i.e., valid or expired 

15 catchment 0–9 Discrete 
Catchment where a user is abstracting 

water 

 
2.3. Clustering 

We employed the elbow method to determine the ideal number of clusters for the dataset 

with 2 ≤ K ≤ 10 where K is the number of clusters. The K-means, Agglomerative 

Hierarchical, and Fuzzy C-means clustering algorithms were utilized. Clustering the 

dataset started with the K-means algorithm. This algorithm uses the Euclidian distance 

metric to create K clusters from M points in N dimensions (M × N matrix) to minimize 

the sum of squares within each cluster [42]. K-means is a complex clustering algorithm 

since it assigns a data point to one cluster only. The second algorithm was Agglomerative 

Hierarchical. Agglomerative Hierarchical with ward criterion is the most used variant of 

hierarchical clustering. It considers the minimization of the distance between data points 

[43]. Agglomerative Hierarchical starts with n number of clusters and combines similar 

ones until they become one. The third algorithm was Fuzzy C-means. Fuzzy C-means is a 

soft clustering algorithm that allocates a data point into more than one cluster with 

varying degrees. It evaluates the solution’s inter-cluster cohesiveness and fuzziness using 

a Silhouette separation coefficient and a Dunn coefficient [24]. 

 

2.4. Cluster evaluation and validation 

2.4.1. Cluster evaluation 

The multi-models were evaluated using the DBI, CHI, S.S., and DI for their robustness to 

the dataset. We focused on identifying the clustering algorithm that generates clusters 

that best fit the dataset by producing highly homogeneous clusters. DBI is a statistical 

measure that evaluates how far apart and compact a cluster is. It is predicated on the 

notion that high between-cluster separation and low within-cluster variance characterize 
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better clusters than clusters with low between-cluster separation and high within-cluster 

variance. The low value is preferred. The CHI considers K and N, the relative magnitudes 

between sum square (BSS) and within sum square (WSS). For a given value of K, a 

significant value of this index indicates a clustering solution with considerable variability 

between clusters and low variability inside the cluster. A high value is preferred. The S.S. 

measures a proportion of an object’s cohesion (its similarity to its cluster) to its 

separation from other clusters. The silhouette’s value is a number between 1 and −1, 

where a high number means the object matches its cluster well and neighboring clusters 

poorly. The DI computes and compares the ratios between the lowest distances between 

clusters to the most significant distance between clusters. A high DI value is preferred. 

 

2.4.2. Clustering validation 

We urged the clustering algorithm with high prediction accuracy tested in training and 

testing datasets generalizes the unseen dataset well. Since clustering is an unsupervised 

learning approach, we fitted the clustered dataset into the logistic regression model and 

determined the model prediction accuracy for the test dataset portion. The clustered 

dataset, which gives high prediction accuracy, signifies the suitability of its 

corresponding clustering model for the unseen dataset upon the model’s deployment. 

 

2.5. Cluster characterization 

2.5.1. Inter-cluster characterization 

The heatmap plot grouped the clustered dataset by water use category and aggregation 

with the cluster size, and the water abstraction mean rate was used to identify the between 

clusters behaviors. These characteristics essentially distinguish one cluster from the other. 

We spotted parameters with high domination of the cluster, differentiating it from others. 

 

2.5.2. Intra-cluster characterization 

To identify differences between members within the cluster, we plotted heatmap 

visualization. We grouped the clustered dataset based on the specific water use and 

aggregated them by the cluster size and water abstraction mean rate. We spotted 

parameters with high domination within each cluster. 

 

3. Results 

3.1. Clustering 

The elbow method showed that four (4) clusters are the optimal number of clusters with 

the lowest within-cluster sum square errors (WSSE) of 32160 compared to other clusters 

options. When tested using the Gap Statistics test and assessing the Silhouette Score, two 

(2) clusters with high WSSE above 35000 were observed. K-means and Agglomerative 

Hierarchical algorithms clustered the dataset into four clusters. Fuzzy C-means clustered 

the dataset into three clusters with no members in the fourth cluster. Table 2 depicts the 

cluster members obtained after clustering. K-means reveals that the first cluster 

comprised users with a high water abstraction mean rate of 23.18 L/s. A relatively low 

difference of 0.25 L/s between the third and fourth clusters was observed. However, the 

second cluster had many users compared to other clusters.  
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For the Agglomerative Hierarchical algorithm, the third cluster comprised users 

having a high water abstraction mean rate of 23.18 L/s. The clusters in Agglomerative 

Hierarchical clusters showed a substantial difference in the abstraction mean rates. The 

first two clusters had many members relative to the third and fourth clusters. The Fuzzy 

C-means algorithm showed a high water abstraction mean rate of 17.89 L/s in the second 

cluster, while its first and third clusters had a relatively low abstraction mean difference 

of 0.34 L/s. Fig. 2 depicts cluster visualization using the first two Principal Components 

for Agglomerative Hierarchical and K-means. Clusters generated by K-means are seen to 

be better compact separated and have a significant intra-cluster adhesion compared to the 

clusters generated by the Agglomerative Hierarchical algorithm. 

 

  

                                    (a)                                              (b) 
 

Figure 2. Clusters’ visualization using PCA (a) Agglomerative Hierarchical  

(b) K-means. 

 

Table 2. Cluster segmentation for the three algorithms. 

Cluster # K-Means 
Agglomerative 

Hierarchical 
Fuzzy C-Means 

 User  Mean Rate (L/s) User  Mean Rate (L/s) User  Mean Rate (L/s) 

1 775 23.18 1115 1.86 911 2.73  

2 1015 3.98 1352 5.58 1163 17.89 

3 878 2.87 589 23.18 1386 2.39  

4 792 2.62 404 8.22   

 
3.2. Cluster evaluation and validation 

3.2.1. Cluster evaluation 

We computed the DBI, S.S., CHI, and DI for the K-means and the Agglomerative 

algorithms to evaluate the cluster algorithms’ fitness to the dataset. We left Fuzzy C-

means since it fails to provide members in the fourth cluster. Table 3 summarizes the 

metrics indexes. 
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Table 3. Clusters evaluation scores 

Metric K-Means Agglomerative 

DBI 1.8 1.9 

S.S. 0.2 0.2 

CHI 692.3 578.2 

DI 0.1 0.1 

 

Both algorithms scored equally in the S.S. and DI with 0.2 and 0.1, respectively. This 

informs us that the two algorithms produce clusters owing members with high feature 

similarity. The K-means score was better for the DBI and CHI, with values of 1.8 and 

692.3 respectively, thus outperformed the Agglomerative which scores a DBI of 1.9 and a 

CHI of 578.2 respectively. These results showed that the clusters formed by K-means had 

high variability between clusters and low variability within clusters; thus, they were more 

homogenous. Therefore, we choose the K-means for the water user’s characterization. 

 

3.2.2. Cluster validation 

The two clustered datasets for K-means and Agglomerative Hierarchical were fitted to 

the logistic regression model for prediction accuracy analysis. Both clustered datasets 

were divided into 70% and 30% segments for the training and testing segments. The K-

means scored a prediction accuracy of 98.2%, while Agglomerative Hierarchical scored a 

prediction accuracy of 97.5%. Furthermore, the classification reports show that the third 

cluster scored a precision, recall, and F1-score of 0.99, 0.97, and 0.98, respectively, for 

the K-means compared to scores of 0.93, 0.94, and 0.94 for Agglomerative Hierarchical. 

The K-means’ results validate it over Agglomerative Hierarchical for the clustered 

dataset. 

 

3.3. Cluster characterization 

3.3.1. Inter-cluster characterization 

Results show that the first cluster was dominated by irrigation users who abstract water at 

a mean rate of 23.11 L/s. Similarly, the second cluster was dominated by irrigation users 

who abstract water at a mean rate of 4.6 L/s. The third cluster was dominated by 

community water supply entities who abstract water at a mean rate of 3.54 L/s, and the 

fourth cluster was dominated by domestic users who abstract water at a mean rate of 1.03 

L/s. We observed that the cluster sizes and water abstraction mean rate are the two 

parameters that broadly distinguish clusters. Fig. 9 depicts the four clusters’ overall water 

abstraction mean rates as 23.18 L/s, 3.98 L/s, 2.87 L/s, and 2.62 L/s, respectively. We 

deducted cluster types based on the inter-cluster characterization analysis of cluster sizes 

and the water mean abstraction rate. Table 4 summarizes the inter-cluster characteristics. 

 

Table 4. Inter-cluster characteristics for each cluster. 

Cluster 

# 

Cluster Size 

(in %) 
Prevailing Inter-Cluster Characteristics Cluster Type 

1 22.4 

Cluster with water abstraction mean rate of 23.18 L/s Large-scale 
irrigation water 

users 
A large number of irrigation users with a water 

abstraction mean rate of 23.11 L/s 
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A low number of construction users with a water 

abstraction mean rate of 26.30 L/s 

2 29.3 

Cluster with water abstraction mean rate of 3.98 L/s 

Moderate 

irrigation water 

users 

A large number of irrigation users with a water 

abstraction mean rate of 4.60 L/s 

A low number of hydropower generation users with a 

water abstraction mean rate of 1.21 L/s 

3 25.4 

Cluster with water abstraction mean rate of 2.87 L/s 

Community 

water supply 

entities 

A large number of community water supply entities 

with water abstraction mean rate of 3.54 L/s 

A low number of construction users with a water 

abstraction mean rate of 2.40 L/s 

4 22.9 

Cluster with water abstraction mean rate of 2.62 L/s 

Domestic water 

users 

A large number of domestic users with a water 

abstract mean rate of 1.03 L/s 

A low number of construction users with a water 

abstraction mean rate of 6.97 L/s 

 

3.3.2. Intra-cluster characterization 

We observed that large-scale irrigation water use characterized the first cluster, and the 

second cluster was characterized by small-scale irrigation water use with a significant 

number of individual (home) water users. The third cluster comprised individual water 

use, with many institutions and community-based water (CBWO) associations. The 

fourth cluster was characterized by individual water use, with many institutions using 

water. Table 5 summarizes the intra-cluster characteristics. 

 

Table 5. Intra-cluster characteristics for each cluster. 

Cluster Type Prevailed Intra-Cluster Characteristics 
Prevalence ( 

%) 

Large-scale irrigation 

water users 

Many users perform large-scale irrigation activities 

with a water abstraction mean rate of 23.24 L/s 
76.9 

Moderate irrigation 

water users 

Many users perform small-scale irrigation activities 

with a water abstraction mean rate of 4.29 L/s 
44.3 

A significant number of users abstract water for 

individual uses (home) at a mean rate of 1.61 L/s 
27.7 

A significant number of Community-Based Water 

Supply Organizations (CBWSOs) abstract water at a 

mean rate of 6.76 L/s 

10.2 

Community water 

supply entities 

Many users abstract water for individual uses (home) 

with a mean rate of 1.17 L/s 
24.6 

A significant number of institutions abstract water at 

a mean rate of 2.28 L/s 
20.1 

A significant number of Community-Based Water 

Supply Organizations (CBWSOs) abstract water at a 

mean rate of 4.42 L/s 

14.8 

A significant number of small-scale irrigators abstract 

water at a mean rate of 3.99 L/s 
12.1 
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Domestic water users 

Many users abstract water for individual uses (home) 

at a mean rate of 0.91 L/s 
37.2 

A significant number of institutions abstract water at 

a mean rate of 2.80 L/s 
22.8 

A significant number of small-scale irrigators abstract 

water at a mean rate of 3.76 L/s 
13.8 

. 
3.3.3. Clusters’ characterization as a result of the characteristics of the inter and 

intra-clusters 

To determine the clusters’ characteristics, we considered both the inter-cluster 

characteristics that differentiate a cluster from other clusters and the intra-cluster 

characteristics that provide a detailed description of members within the cluster. The 

characteristics of the four homogeneous clusters for the Pangani Basin water users were 

as follows: 

 

Cluster Type One: A total of 22.4% of water users conducting their social–economical 

activities along the basin are large-scale irrigation water users. Users in this cluster 

were characterized by high amount_abstracted, irrigation water_use_category, and 

large-scale irrigation water_use. 

 

Cluster Type Two: Contained the majority of water users, 29.3%, consisting of 

moderate irrigation water users, characterized by moderate amount_abstracted, 

irrigation water_use_category and small-scale irrigation water_use. 

 

Cluster Type Three: A total of 25.4% of users consisted of community water supply 

entities, characterized by low amount_abstracted, community water supply 

water_use_category, and home water_use. 

 

Cluster Type Four: A total of 22.9% of users consisted of domestic water users 

characterized by the low amount_abstracted, domestic water_use_category, and home 

water_use. 

 

4. Discussion 

4.1. Clustering 

To characterize the water consumption dataset for the Pangani Basin, we used three 

clustering algorithms: Agglomerative Hierarchical, Fuzzy C-means, and K-means. 

Among the three algorithms, K-means and Agglomerative could both allocate users into 

four clusters, while Fuzzy C-means fails to allocate users in the fourth cluster. As 

suggested by Nyambo et al. [39] and Yuan and Yang [44], we used the elbow method to 

ascertain the ideal number of clusters with the lowest WSSE. Usually, varying values of 

K in a given set and observing the elbow bending shape are used to determine the ideal 

number of clusters. The elbow shape signifies that there is no a substantial difference in 

continued increases in K, which might give the best WSSE. In the present study, the 

elbow results showed four high homogeneous clusters with the WSSE ~32160. We 

further employed the Gap Statistics and Silhouette diagrams to visualize the clusters and 
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confirm their formation. Results from the Gap Statistics and Silhouette diagram indicated 

the presence of two widely separated clusters with a Silhouette Score of 0.21. However, 

the elbow method showed that the two clusters had a WSSE > 42000, indicating they 

were less homogeneous than the four clusters. Fuzzy C-means is a soft clustering 

algorithm, whereas K-means and Agglomerative are classified as complex clustering 

algorithms. A data point is only assigned to one cluster by a hard clustering algorithm, 

whereas a soft algorithm assigns a data point to several clusters. We argue that Fuzzy C-

means works better in a dataset with high heterogeneity. This might be a reason for its 

failure to locate users in the fourth cluster since the four clusters determined by the elbow 

method are highly homogeneous. 

We observed differences in the clusters produced by the three algorithms. The K-

means produced three clusters with a comparable distribution of members (cluster1: 775, 

cluster3: 878, and cluster 4: 792) and one cluster with a high density of members 

(cluster2: 1015). The Agglomerative Hierarchical produces two pairs of clusters with a 

comparable distribution of members (cluster1: 1115, cluster2: 1352) and (cluster3: 589, 

cluster4: 404). In both algorithms, the three clusters possess a comparable water 

abstraction mean rate, and one cluster with a high water abstraction mean rate. Despite its 

failure to locate members in the fourth cluster, Fuzzy C-means produces two clusters with 

a comparable distribution of members (cluster2: 1163, cluster3: 1384) and one with low 

density (cluster1: 911) 

In the studies by Gao et al. [25], Nyambo et al. [39], and Sinaga et al. [42], the 

elbow method and Silhouette Score were combined to determine the number of clusters 

and cluster qualities. We argue that in obtaining highly homogeneous clusters, the WSSE 

should be minimized so that an increase in K does not provide a significant difference in 

the WSSE. In the present study, we chose the minimum WSSE to obtain the highly 

homogeneous clusters that better distinguish water users in the basin. The same elbow 

method was adopted by Rahim et al. [13], who identified five homogeneous clusters. 

During their analysis of the dataset linked to water quality for drinking consumption, 

Eskandari et al. [45] compared K-means and Fuzzy C-means and found five and six 

homogeneous clusters, respectively. In their investigation, the Fuzzy C-means algorithm 

outperformed the K-means algorithm, most likely due to the dataset’s use of uncertainties 

in class boundary definition. Another study that employed similar techniques is that of 

Rahim et al. [13], where the Agglomerative Hierarchical and K-means algorithms were 

used to cluster residential water users in various households. K-means outperformed the 

Agglomerative Hierarchical algorithm. Water regulating bodies such as the PBWB will 

be able to understand their customers and create water rationing awareness initiatives if 

they can determine the ideal number of clusters and the study characteristics for each 

cluster. We argue that the four homogenous clusters identified in this study are significant 

to the water governance along the basin with a similar setup as the Pangani Basin. 

 

4.2. Cluster validation 

Cluster validations show that K-means clusters are robust and fit better to the dataset than 

the clusters produced by Agglomerative Hierarchical. The clusters are highly 

distinguished by the number of members and their water abstraction mean rates. 

The DBI, S.S., CHI, and DI were used to validate cluster robustness. K-means 

outperformed Agglomerative with a DBI of 1.8 compared to 1.9 and a CHI of 692.3 
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compared to 578.2, respectively. Both algorithms scored similar values for the S.S. and 

DI metrics. Based on these metrics, we argue that clusters produced by K-means were 

more compact and better suited to the dataset than the Agglomerative ones. Furthermore, 

we tested the performance of both algorithms for their prediction accuracy in both the 

training and testing environment by fitting their clustered dataset into the logistic 

regression model to confirm the generalization of the clustering algorithm to the unseen 

dataset. We urge that the clustered dataset, which indicates high prediction accuracy once 

fitted to the logistic regression, be validated and the algorithm that best generalizes the 

unseen dataset in the production environment be generalized. The K-means clustered 

dataset scored a prediction accuracy of 98.2%, while the Agglomerative clustered dataset 

scored a prediction accuracy of 97.5% in the logit testing data segment. 

The S.S. of 0.299 and CHI of 156.6 for K-means, and S.S. of 0.25 and CHI of 

129.9 for Agglomerative, respectively, were obtained in the study by Rahim et al. [13] 

while measuring the clusters’ qualities, and they concluded that the clusters formed by K-

means are robust and better fit the dataset. These results are similar to those of the present 

study, where the K-means values were an S.S. of 0.2 and CHI of 692.3 compared to 

Agglomerative with an S.S. of 0.2 and CHI of 578.2. K-means gave high homogeneous 

clusters for our case due to the high CHI value. A CHI value measures a degree of 

variation between clusters and is a ratio between inter-cluster and intra-cluster 

convergence [46]. The higher the numerator, the higher the degree of dispersion between 

clusters and the lower the denominator, the closer the data points are within the clusters 

[13]. The S.S of 0.2 informs us that both algorithms gave clusters with similar purity 

levels regardless of their clusters’ dispersion. The other related study of the segmentation 

of a flood-affected area in Jakarta, Indonesia, used the DBI, CHI, and S.S. to validate the 

K-means clusters and found three homogenous clusters [36]. A similar approach was 

employed to validate clusters in the present study. The logit prediction accuracy of 98.2% 

of K-means over 97.5% of Agglomerative cemented the reproducibility of our 

experiment to other basins with similar sets as the Pangani Basin. We suggest that our 

finding describes a data-driven approach in which clusters can be validated and tested for 

robustness. 

 

4.3. Cluster characterization 

We characterized the four clusters produced by K-means as follows: large-scale irrigation 

water users, moderate irrigation water users, community water supply entities, and 

domestic water users. 

The large-scale irrigation water users’ cluster is characterized by large-scale 

irrigation users conducting agriculture activities within the basin. These users’ abstraction 

of water was at a mean rate of 23.24 L/s. The large-scale irrigators comprise 22.4% of all 

users in the basin. Most use tap water from the rivers using dedicated pipes or furrows. 

The moderate irrigation water user’s cluster is characterized by small-scale irrigation 

users comprising 29.3% of basin water users. These were individuals who depended on 

agriculture as their income generation activities. Their water abstraction mean rate was 

3.98 L/s. Most users in this cluster tapped water from rivers and springs through 

traditional furrows. The community water supply entities cluster consisted of 25.4% of 

users in the basin, cross-cutting a wide range of categories. In this cluster, we found the 
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CBWSO, private and public institutions, and water utility companies. Local communities 

form the CBWSO to abstract water and distribute it to community members (villagers) 

for various household purposes such as domestic use, house-scale farms, irrigation, and 

livestock keeping. The community member pays a monthly fee for administration 

purposes to the CBWSO’s leadership. CBWSO users abstract water at a mean rate of 

1.17 L/s. Institutions abstract water for their office use at a mean rate of 2.28 L/s. 

Water utilities were categorized into three classes (A, B, and C) per their permit. 

They abstracted and sold water to users through distribution channels. Their water 

abstraction mean rates were 5.75 L/s, 3.48 L/s, and 3.13 L/s for the classes A, B, and C, 

respectively. The fourth cluster, named the domestic water user, consisted of 22.9% of all 

users in the basin who abstracted water for their home usage. We observed that domestic 

users abstracted water at a mean rate of 2.62 L/s. The last three (2–4) clusters had low 

water abstraction mean rates. We argued that these clusters were the diffusion of one 

among the two less homogeneous clusters depicted by the Silhouette diagrams and Gap 

Statistics. The four clusters are highly homogenous, thus best describing the basin’s 

socioeconomic activities. 

The study by Rahim et al. [13] employed clustering algorithms to segment 

datasets. They used two datasets: an engineered features dataset clustered using K-means 

and time of use and a weighted probability of use dataset clustered using the 

Agglomerative Hierarchical technique. Finally, they described the characteristics of each 

cluster identified. Unlike the present study, a single dataset (comprised of 3460 records) 

of water river basin users was used. One of the three clustering algorithms was identified 

as an appropriate technique to validate the clusters for robustness and generalization to an 

unseen dataset, thus describing each cluster’s characteristics. Jenifer and Jha [23] used 

the Agglomerative Hierarchical clustering technique to segment the rain gauge station 

dataset into six clusters and highlight the clusters’ characteristics. We argue that 

understanding water users’ characteristics is paramount for water governing bodies and 

policymakers when establishing strategies that should guide efficient and effective ways 

towards water governance and rationing along the river basins. 

 

5. Conclusions and future work 

The optimal goal of this study was to obtain validated clusters that best-characterized 

water user along the Pangani Basin. The study employed a data-driven multi-model 

characterization approach. The approach applies to areas where data are available, and 

characteristics of the validated cluster types are described as large-scale irrigation water 

users, moderate irrigation water users, community water supply entities, and domestic 

water users. The study’s findings would benefit water governing bodies and policymakers 

when strategizing water governance and rationing. Furthermore, researchers could use 

these findings as a stepping point for further studies. Since the dataset was acquired from 

a second dataset and the study was designed solely on the PBWB dataset, we propose 

future work to validate the clusters with the dataset, which includes a wide range of 

parameters such as the specific type of crop planted by the water user, particular number 

of livestock owned by the water user, number of tenants for domestic users as well as 

automated devices to measure water abstraction and sources’ capacities in real-time 

bases. We also propose analyzing the clusters for hidden patterns not revealed by the 

clustering techniques using frequent pattern and association rule mining techniques. 
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Including a wide range of parameters and association rule mining will offer more relevant 

and valuable insights. 
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