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Abstract. Let ∑ be an alphabet. For two strings X, Y, and a constrained string P over the 

alphabet ∑, the constrained longest common substring problem for two strings X and Y 

with respect to P is to find a longest string Z which is a substring of both X and Y and has 

P as a subsequence. In this paper, we propose an algorithm for the constrained longest 

common substring problem for two strings with a constrained string. 
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1. Introduction 

Let ∑ be an alphabet and S a string over ∑. The size of S, denoted |S|, is defined as the 

number of letters in S. A subsequence of a string S over an alphabet ∑ is obtained by 

deleting zero or more letters of S. A substring of a string S is a subsequence of S consists 

of consecutive letters in S. The longest common subsequence (LCSSeq) problem for two 

strings is to find a longest string which is a subsequence of both strings. The longest 

common substring (LCSStr) problem for two strings is to find a longest string which is a 

substring of both strings. Both the longest common subsequence problem and the longest 

common substring problem have been well-studied in the last several decades. More details 

on the studies for the first problem can be found in [1-4,6,9-11,14-15] and the second 

problem can be found in [7-8,17].  

 Tsai [16] extended LCSSeq problem to the constrained longest common 

subsequence (CLCSSeq) problem. For two strings X, Y, and a constrained string P, the 

constrained longest common subsequence problem for X and Y with respect to P is to find 

a string Z such that Z is a longest common subsequence for both X and Y and P is a 

subsequence of Z. Clearly, the LCSSeq problem is a special CLCSSeq problem with an 

empty constrained string.  
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  Motivated by Tsai's extension of LCSSeq problem to CLCSSeq problem, we 

introduce the constrained longest common substring problem for two strings and a 

constrained string in this paper. For two strings X and Y and a constrained string P, the 

constrained longest common substring (CLCSStr) problem for X and Y with respect to P  

is to find a string Z such that Z is a longest common string of both X and Y and has P as a 

subsequence. Clearly, the LCSStr problem is a special CLCSStr problem with an empty 

constrained string. The other related problems and the research on them can be found in 

[12] and [13]. In this paper, we, using some ideas in [5], design an O(|X| |Y| |P|) time 

algorithm for CLCSSStr problem for two strings X and Y and a constrained string P. 

 

2. The recursions in the algorithm      

In order to present our algorithm, we need to establish some recursions to be used in our 

algorithm. Before establishing the recursions, we need some notations as follows. For a 

given string S = s1s2 ... sl over an alphabet ∑. The ith prefix of S is defined as Si = s1s2 ... si, 

where 1 ≤ i ≤ l. Conventionally, S0 is defined as an empty string. The l suffixes of S are the 

strings of s1s2 ... sl, s2s3 ... sl, ..., sl - 1sl, and sl. Let X = x1x2 ... xm and Y = y1y2 ... yn be two 

strings and P = p1p2 ... pr a constrained string. We define Z[i, j, k] as a string satisfying the 

following conditions, where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ r,  

(1) it is a suffix of Xi,  

(2) it is a suffix of Yj,  

(3) it has Pk as a subsequence,   

(4) under (1), (2) and (3), its length is as large as possible.  

 

Claim 1. Let Uk = u1
ku2

k ... uh_k
k$ be a longest string which is a substring of both X and Y 

and has Pk as a subsequence. Then h_k = max{|Z[i, j, k]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, where k is 

fixed such that 0 ≤ k ≤ r.  

 

Proof of Claim 1. For each i with 1 ≤ i ≤ m, each j with 1 ≤ j ≤ n, and a fixed k with 0 ≤ k 

≤ r, we, from the definition of Z[i, j, k], have that Z[i, j, k] is a substring of both X and Y 

and has Pk as a subsequence. By the definition of Uk, we have that |Z[i, j, k]| ≤ |Uk| = h_k. 

Thus max{|Z[i, j, k]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r } ≤ h_k, where k is fixed such that 0 ≤ 

k  ≤ r.  

 For a fixed k with 0 ≤ k ≤ r, since Uk = u1
ku2

k ... uh_k
k is a (longest) string which is 

a substring of both X and Y and has Pk as a subsequence, there is an index s, where 1 ≤ s ≤ 

m, and an index t, where 1 ≤ t ≤ n, such that uh_k
k = xs and uh_k

k = yt such that Uk = u1
k u2

k 

... uh_k
k is a suffix of both Xs and Yt and has Pk as a subsequence. From the definition of 

Z[i, j, k], we have that h_k ≤ |Z[s, t, k]| ≤ max{|Z[i, j, k]| : 1≤  i ≤ m, 1 ≤ j ≤ n}, where k is 

fixed such that 0 ≤ k ≤ r.  

Hence h_k = max{|Z[i, j, k]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n }, where k is fixed such that 0 ≤ 

k ≤ r, and the proof of Claim 1 is completed.  

 

Claim 2. Suppose that Xi = x1x2 ... xi, Yj = y1y2 ... yj, and P = p1p2 ... pk, where 1 ≤ i ≤ m, 1 

≤ j ≤ n, and 1 ≤ k ≤ r. If Z[i, j, k] = z1z2 ... za is a string satisfying conditions (1), (2), (3), 

and (4) above. Then we have only the following possible cases and the statement in each 

case is true.  
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Case 1. xi = yj = pk. We have that |Z[i, j, k]| = |Z[i - 1, j - 1, k - 1]| + 1 in this case.  

 

Case 2. xi = yj ≠ pk. We have that |Z[i, j, k]| = |Z[i - 1, j - 1, k]| + 1 in this case.  

 

Case 3. xi ≠ yj, xi ≠ pk, and yj = pk. This case cannot happen.  

 

Case 4. xi ≠ yj , xi ≠ pk, and yj ≠ pk. This case cannot happen.  

 

Case 5. xi ≠ yj, xi = pk, and yj ≠ pk. This case cannot happen.  

 

Proof of Claim 2. The five cases can be figured out in the following way. Firstly, we have 

two cases of x_i = y_j or x_i ≠ y_j. When x_i = y_j, we just can have two possible subcases 

of xi = yj = pk or xi = yj ≠ pk. When xi ≠ yj, we just can have three possible subcases of x_i 

≠ pk and yj = pk, xi ≠ pk and yj ≠ pk, or xi = pk and yj ≠ pk. Next, we will prove the statements 

in the five cases. 

 

Case 1. Since Z[i, j, k] = z1z2 ... za is a suffix of both Xi and Yj, we have that za = yj = xi = 

pk. Let W = w1w2 ... wb = Z[i - 1, j - 1, k - 1] be a string satisfying the following conditions,  

- it is a suffix of Xi – 1,  

- it is a suffix of Yj - 1,  

- it has Pk - 1 as a subsequence,  

- under three conditions above, its length is as large as possible.  

Note that z1z2 ... za - 1 is a string which is a suffix of both Xi - 1 and Yj - 1 and has Pk - 1 as a 

subsequence. By the definition of W = w1w2 ... wb, we have that a - 1 ≤ b. Namely, a ≤ b + 

1.  

Note that w1w2 ... wbza is a string satisfying following conditions,  

- it is a suffix of Xi,  

- it is a suffix of Yj,  

- it has Pk as a subsequence.  

By the definition of Z[i, j, k] = z1z2 ... za, we have that b + 1 ≤ a. Thus a = b + 1 and |Z[i, j, 

k]| = |Z[i - 1, j - 1, k - 1]| + 1.   

 

Case 2. Since Z[i, j, k] = z1z2 ... za is a suffix of both Xi and Yj, we have that za = yj = xi ≠ 

pk. Let U = u1u2 ... uc = Z[i - 1, j - 1, k] be a string satisfying the following conditions,  

- it is a suffix of Xi - 1,  

- it is a suffix of Yj - 1,  

- it has Pk as a subsequence,  

- under three conditions above, its length is as large as possible.  

Note that z1z2 ... za - 1 is a string which is a suffix of both Xi - 1 and Yj - 1 and has Pk 

as a subsequence. By the definition of U = u1u2 ... uc = Z[i - 1, j - 1, k], we have that a - 1 

≤ c. Namely, a ≤ c + 1.  

Note that u1u2 ... uc is a string satisfying the following conditions,  

- it is a suffix of Xi - 1, 

- it is a suffix of Yj - 1, 

- it has Pk as a subsequence.  
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Thus u1u2 ... ucyj is a string which is a suffix of both Xi and Yj and has Pk as a subsequence. 

By the definition of Z[i, j, k] = z1z2 ... za, we have that c + 1 ≤ a. Thus a = c + 1 and |Z[i, j, 

k]| = |Z[i - 1, j - 1, k ]| + 1.   

 

Case 3. By the definition of Z[i, j, k], we have za = xi and za = yj. So, this case cannot 

happen since xi ≠ yj.  

 

Case 4. By the definition of Z[i, j, k], we have za = xi and za = yj. So, this case cannot 

happen since xi ≠ yj.  

 

Case 5. By the definition of Z[i, j, k], we have za = xi and za = yj. So, this case cannot 

happen since xi ≠ yj.  

Therefore, the proof of Claim 2 is completed.  

The following Claim 3 which will be used in our algorithm demonstrates the 

implications of the conditions that there is not a string which is a suffix of both Xi = x1 x2 

... xi and Yj = y1 y2 ... yj and has Pk = p1p2 ... pk as a subsequence.  

 

Claim 3. Suppose there is not a string which is a suffix of both Xi = x1x2 ... xi and Yj = y1 

y2 ... yj and has Pk = p1p2 ... pk as a subsequence.  

[1]. If xi = yj = pk, then there is not a string which is a suffix of both Xi - 1 = x1x2 ... xi - 1 and 

Yj - 1 = y1y2 ... yj - 1 and has Pk - 1 = p1p2 ... pk - 1 as a subsequence.  

[2]. If xi = yj  ≠ pk, then there is not a string which is a suffix of both Xi - 1 = x1 x2 ... xi - 1 and 

Yj - 1 = y1 y2 ... yj - 1 and has Pk = p1 p2 ... pk as a subsequence.  

 

Proof of Claim 3. We next will prove the statements in the two cases. 

[1]. Now we have that xi = yj = pk. Suppose, to the contrary, that there is a string W1 which 

is a suffix of both Xi - 1 = x1x2 ... xi - 1 and Yj - 1 = y1 y2 ... yj – 1 and has Pk - 1 = p1 p2 ... pk - 1 as 

a subsequence. Then W1xi is a string which is a suffix of both Xi = x1x2 ... xi and Yj = y1y2 

... yj and has Pk = p1p2 …pk as a subsequence, a contradiction.  

[2]. Now we have that xi = yj ≠ pk. Suppose, to the contrary, that there is a string W2 which 

is a suffix of both Xi - 1 = x1x2 ... xi - 1 and Yj - 1 = y1y2 ... yj - 1 and has Pk = p1p2 ... pk as a 

subsequence. Then W2xi is a string which is a suffix of both Xi = x1x2 ... xi and Yj = y1y2 ... 

yj and has Pk = p1 p2 ... pk as a subsequence, a contradiction.  

Therefore, the proof of Claim 3 is completed.  

 

3. The algorithm 

Now we can present our algorithm. We assume that X = x1x2 ... xm, Y = y1y2 ... yn, and P = 

p1p2 ... pr. Let M be a three-dimensional array of size (m + 1)(n + 1)(r + 1). It can be thought 

as a collection of (r + 1) two-dimensional arrays of size (m + 1)(n + 1). The cells M[i][j][k], 

where 0 ≤ i ≤ m, 0 ≤ j ≤ n, and 0 ≤ k ≤ r, store the lengths of longest strings such that each 

of them is a suffix of both Xi and Yj and has Pk as a subsequence.  

If either i < k or j < k, there is not a string which is a suffix of both Xi and Yj and 

has Pk as a subsequence. This situation is represented by setting M[i][j][k] = -∞, where ∞ 

should be a larger number, for example, 100mnr. Now we can fill in the boundary cells in 

array M.  
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Step 1. If i = 0 and k = 0 or j = 0 and k = 0, the length of a string which is a suffix of both 

Xi and Yj and has Pk as a subsequence is zero. Thus M[0][j][0] = 0, where 0 ≤ j ≤ n, and 

M[i][0][0] = 0, where 0 ≤ i ≤ m.  

Step 2. If k = 0 or P is an empty string. The CLCSStr problem for two strings X and Y and 

a constrained string P becomes the LCSStr problem for two strings X and Y. The cells of 

M[i][j][0], where 1 ≤ i ≤ m and 1 ≤ j ≤ n, can be filled in by the following rules. If xi = yj, 

then M[i][j][0] = M[i - 1][j - 1] + 1. If xi ≠ yj, then M[i][j][0] = 0. The reasons that the rules 

work here can be found in [18].  

Step 3. If i = 0 and k ≥ 1, there is not a string which is a suffix of both Xi and Yj and has 

Pk as a subsequence. Thus M[0][j][k] = -∞, where 0 ≤ j ≤ n and 1 ≤ k ≤ r.  

Step 4. If j = 0 and k ≥ 1, there is not a string which is a suffix of both Xi and Yj and has 

Pk as a subsequence. Thus M[i][0][k] = -∞, where 0 ≤ i ≤ m and 1 ≤ k ≤ r.  

Next, we will fill in the remaining cells M[i][j][k], where i ≥ 1, j ≥ 1, and k ≥ 1.  

Step 5. If i ≥ 1, j ≥ 1, k ≥ 1, and xi = yj = pk, then M[i][j][k] = M[i - 1][j - 1][k - 1] + 1.  

Step 6. If i ≥ 1, j ≥ 1, k ≥ 1, and xi = yj ≠ pk, then M[i][j][k] = M[i - 1][j - 1][k] + 1.  

Step 7. For all the other cases, M[i][j][k] = -∞.  

Notice that Claim 1 implies that if a longest string which is a suffix of both X = 

Xm and Y = Yn and has P = Pr as a subsequence exists then its length is equal to max{ |Z[i, 

j, r]| : 1 ≤ i ≤  m, 1 ≤ j ≤ n} = max{M[i][j][r] : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Hence, a longest string 

which is a substring of both X and Y and has P as a subsequence can be found in the 

following way.  

Step 8. Define one variable called maxLength which eventually represents the length of a 

longest string which is a substring of both X and Y and has P as a subsequence and its 

initial value is 0.  

Step 9. Define another variable called lastIndexOnY which eventually represents the last 

index of the desired string which is a substring of Y and its initial value is n.  

Step 10. Visit all the cells of M[i][j][r], where 0 ≤ i ≤ m and 0 ≤ j ≤ n, in the last two 

dimensional array created in the algorithm above by using a loop embedded another loop. 

During the visitation, if M[i][j][r] > maxLength, then update maxLength and lastIndexOnY 

as M[i][j][r] and j, respectively.  

Step 11. After finishing the visitation of all the cells of M[i][j][r], where 0 ≤ i ≤ m and 0 

≤ j ≤ n, we return the substring of Y between (lastIndexOnY - maxLength) and 

lastIndexOnY.  

 

The correctness of the above algorithm is ensured by Claim 1, Claim 2, and Claim 

3. It is clear that both time complexity and space complexity of the above algorithm are 

O((m + 1)(n + 1)(r + 1)) = O(m n r). We implemented our algorithm in Java and the 

program can be found at 

“https://sciences.usca.edu/math/~mathdept/rli/CLCSubStr/CLCSStr.pdf”. 

4. Conclusion 

In this paper, we introduce a new problem called the constrained longest common substring 

problem for two strings X and Y and a constrained string P. We propose an algorithm with 
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time complexity and space complexity of O(|X||Y||P|) to solve the problem. In future, we 

will design new algorithms to improve the time and space complexities and find the 

applications of our algorithm in the real world.  
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