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Abstract. For any a  positive integers of the Diophantine Equation ax + (3a+4)y = z2 where 
a ≡ 15 (mod 48) there are only two infinite solutions (x, y, z) = (1, 0, (a+1)1/2) where a = 
(12t ±4)2-1  and (x, y, z) = (1, 1, (4a+4)1/2) where a = (12t ±4)2-1  with  x, y and z are non-
negative integers. In addition, at the point (x, y) = (3, 2) has non-negative integer solutions 
and our answers are also applicable to the Fibonacci and Lucas numbers. 
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1. Introduction  
A Diophantine equation is an equation that involves many unknown variables and seeks to 
find integer solutions. Most mathematicians have studied the renowned Diophantine 

equation in the given form 2x ya b z+ =  when a  and b are positive integers, have been 
researched (refer to, as an example [3, 5, 6, 8, 9, 11, 13]) .  In 1844,  Catalan [1] The 

Diophantine equation 1x ya b− =    has ( ) ( ), , , 3,2,2,3a b x y =   is the unique solution 

for { }min , , , 1a b x y >   where  , ,a x y , z  are positive integers. In 2017, Priya and 

Vidhyalakshmi [2], studied that on the Non-Homogeneous Ternary Quadratic Equation 

( ) ( )2 2 22 3 1x y xy x y z+ − + + + =  has non-zero distinct integer solutions four different 

sets and interesting relations between the solutions and special polygonal numbers. In 

2022 ,  Pakapongpun  and Cha t tea  [4 ]  p roved  tha t  ( ) 22
yxa a z+ + =  where 

( )3 mod 20a ≡   a n d  � ∈ ℕ  h a s  s o l u t i o n  f o r  ( ) ( ), , 1,0, 1x y z a= +   w h e r e 

( )( )2
10 2 1a k= − −  and � ∈ ℤ. In 2024, Hashim [10] studied the all solutions of the 

equation in the  Fibonacci and Lucas Numbers where the indices ,i j , k  which are 

positive integers are defined by the following: 0 1 1 20, 1, n n nF F F F F− −= = = +  and 
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0 12, 1L L= =  1 2, n n nL L L− −= +  for 2n ≥  of the Diophantine equation  22 2x y z+ = . 

Moreover, In 2024, Tadee [12] showed that the Diophantine equation 2x yp q z+ =  when 

3p =  such that ( ) ( )5 3 6, , , ,x y z F L L=  is the unique solution. Inspiration in this paper,  

focused on finding all solutions of the Diophantine equation ( ) 23 4
yxa a z+ + =  where 

( )15 mod 48a ≡  for all � ∈ ℕ when ,x y and z  are non-negative integers. 

  
2. Some mathematical tools 
(Catalan’s Conjecture) [1] The unique solution for the Diophantine equation 1x ya b− =  

where �, �, �, 	 ∈ ℤ
 with { }min , , , 1a b x y >  is ( )3,2,2,3 . 

Lemma 2.1 [7] If x  is an integer, then 2 0mod 4x ≡  or 2 1mod 4x ≡ . 

Lemma 2.2 If the Diophantine equation  ( ) 23 4
yxa a z+ + =  where  ,x y and z  are 

non-negative integers and � ∈ ℕ has unique solution  at point ( ) ( ), 3,2x y =  when 

( )15 mod 48a ≡  then ( ) ( ), , , 3,2,76,15x y z a = . 

Proof  Suppose that ( ) 23 4
yxa a z+ + =  ; �, y, z ∈ ℤ
 ∪ {0}, let 3x = and 2y = . 

We get  3 2 29 24 16a a a z+ + + =  such that 3 29 24 16a a a z+ + + = .                                        
Since ( )15 mod 48a ≡  thus  � = 48 � + 15; � ∈ ℤ
 ∪ {0}. Let 0m =  then 15a = . It 

implies that 76z = . Therefore, ( ) ( ), , , 3,2,76,15x y z a = . 

 
3. Option pricing 
 
Theorem 2.3 For a l l  a  is  a  posit ive integer of the Diophant ine equat ion  

( ) 23 4
yxa a z+ + =  where ( )15 mod 48a ≡  and ,x y z  are non-negative integers has 

exactly two non-negative integer infinite solution are as follows. 
 1. 1 x = and 0y =  have non-negative integer infinite solutions 

( ) ( ), , 1,0, 1x y z a= +  where ( )2
12 4 1a t= ± −   

2. 1 x = and 1y =   have non-negative integer infinite solutions 

( ) ( ), , 1,1, 4 4x y z a= +  where ( )2
12 4 1a t= ± −  . 

In addition, at the point ( ) ( ), 3,2x y =  has non-negative integer solutions. 

Proof  Let �, 	, � ∈ ℤ
 ∪ {0}and  ( ) 23 4
yxa a z+ + =                                          

Case 1: let 0 x = and 0y =  obviously,  has no solution because 2 2z =  is impossible. 

Case 2: let 1x >  and 0y = , we obtain the Diophantine equation 2 1xz a− =  has no 
non-negative integer solution by Catalan’s Conjecture. 
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Case 3: let 0x =  and 1y =  , we obtain the Diophantine equation �� = 3� + 5; � ∈

ℕ.  S i n c e  ( )15 mod48a ≡   a n d  4 | 48 ,  w e  g e t  ( )15 mod 4a ≡  ,  w e  h a v e 

( )3 5 50 mod 4a + ≡ . It implies that ( )2 2 mod 4z ≡ . By Lemma 2.1, which contradicts.           

Case 4: let 0x =  and 1y > ,  we obtain the Diophantine equation ( )2 3 4 1
y

z a− + =  

have no non-negative integer solution by Catalan’s Conjecture. 

Case 5: let 1x =  and 0y =  becomes � = √� + 1; � ∈ ℕ. Since ( )15 mod 48a ≡  and 

48 15a m= +  .  I t  imp l ie s  tha t  4 3 1z m= +  ,  co ns ide r  2 3 1k m= +   such  tha t  

( )2 1 mod3k ≡ . It implies that ( )3| 1k −  or ( )3| 1k + . Consider ( )3| 1k −  becomes  

� = 3 � 
� + 2� ; � ∈ ℤ
 ∪ {0}. There fore , ( )2

112 4 1a t= + − .  Cons ider  ( )3| 1k +  

becomes � = 3 � 
� − 2� ; � ∈ ℤ
 ∪ {0}. Therefore, ( )2

212 4 1a t= − −  

Case 6: Let 1x =  and 1y =  becomes � = 2√� + 1; � ∈   ℕ. Since ( )15 mod 48a ≡  

and  48 15a m= + .  I t  imp l ies  tha t  8 3 1m +  Consider  2 3 1k m= +  such tha t  

( )2 1 mod3k ≡ . It implies that ( )3| 1k −  or ( )3| 1k + . Consider ( )3| 1k −  becomes. It 

implies that � = 3 � 
� + 2� ; � ∈ ℤ
 ∪ {0}. Therefore, ( )2

112 4 1a t= + − . Consider 

( )3| 1k +  becomes � = 3 � 
� − 2� ; � ∈ ℤ
 ∪ {0}. It implies that ( )2

212 4 1a t= + −  

Case7: 1x ≥  and 1y ≥ ,                                                                                  

Subcase 7.1  Let 1x =  and 1y >  , consider  y  is even number such that 	 = 2�; � ∈
ℤ
.  

It implies that  ( )
( ) ( )

2 2

23 4
2 3 4 2 3 4

k

k k

a a
a z

a a

    
 + + − =   

   + +     

 

Since 
( )2 3 4

k

a

a +
 is rational number which  contradicts. 

Consider  y  is odd number such that  	 = 2� + 1; � ∈ ℤ
. 

It implies that ( ) ( )2 23 4 3 4
3 4

ka
a a z

a
 + + + = + 

 

Since 
3 4

a

a +
  is rational number which contradicts. 

Subcase 7.2. let 1x >  and 1y =                                                                                  
Consider  y  is even number such that  	 = 2�; � ∈ ℤ
. 

It implies that ( )2 23 4
k

a a z+ + =  then 
2 2

2
1 1

3 3
4

2 2
k

k k
a z

a a− −
   + − + =   
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Since 1

3

2 ka −  is rational number which contradicts. 

Consider  y  is odd number such that  	 = 2� + 1;  � ∈ ℤ
. 

It implies that ( )2 1 23 4
k

a a z
+ + + =  then 2 24

3ka a z
a

 + + =  
 

Since  
4

a
  is rational number which contradicts. 

Subcase 7.3.  let 1x >  and 1y >   

Let ( ) ( ), 3,2x y = , by lemma 2.2,  therefore ( ) ( ), , , 3,2,76,15x y z a = . 

Corollary 2.4. The Diophantine equation  ( ) 23 4
yxa a z+ + =  where ( )15 mod 48a ≡  

when a  is a positive integer and ( ) ( ), 1,0x y =  has a unique 

( ) ( ), , , , 1, 0, 4, 15, 0x y z a t =  for all ,x y and z  are non-negative integers. 

Proof:  Suppose that ,x y and z  are non-negative integers and a  is a positive integer. 

By theorem 2.3.5, ( ) ( ), , 1,0, 1x y z a= +  where ( )2
12 4 1a t= ± − ;  � ∈ ℤ
 ∪ {0}. 

Let 0t =  then 15a = . Since 1 15 1 16 4z a= + = + = = . Therefore, 

( ) ( ), , , , 1, 0, 4, 15, 0x y z a t =   

 Corollary 2.5. The Diophantine equation  ( ) 23 4
yxa a z+ + =  where ( )15 mod 48a ≡  

when a  is a positive integer and ( ) ( ), 1,1x y =  has a unique 

( ) ( ), , , , 1, 1, 8, 15, 0x y z a t =  for all ,x y and z  are non-negative integers. 

Proof:  Suppose that ,x y and z  are non-negative integers and a  is a positive integer. 

By theorem 2.3.6, ( ) ( ), , 1,1, 4 4x y z a= +  where ( )2
12 4 1a t= ± − ; � ∈ ℤ
 ∪ {0}. 

Let 0t =  then 15a = . Since ( )4 4 4 15 4 64 8z a= + = + = = . Therefore, 

( ) ( ), , , , 1, 1, 8, 15, 0x y z a t =   

 
4. Conclusion and discussion 
For all ,x y and z  are non-negative integers and a  is a positive integer at the point 

( ) ( ) ( )( ){ }, 1,0 , 1,1 3,2x y ∈  of  the Diophantine equation  ( ) 23 4
yxa a z+ + =  where 

( )15 mod 48a ≡  have only five suitable the written solutions in the  Fibonacci and 

Lucas numbers  as follows. ( ) ( ) ( )1 0 3, , 1,0,4 , ,x y z L F L= = , 

( ) ( ) ( )1 0 6, , 1,0,8 , ,x y z L F F= = , ( ) ( ) ( )1 0 9, , 1,0,76 , ,x y z L F L= = ,  

( ) ( ) ( )1 1 6, , 1,1,8 , ,x y z L L F= = and ( ) ( ) ( )2 0 9, , 3,2,76 , ,x y z L L L= = .  
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Moreover, we found that ( ) ( ), 3,2x y = , between 1 to ∞  have all  solutions are given 

table below. 
 

( ) 23 4
yxa a z+ + =  Solution of equation 

( ) ( ) 215 49
x Y

z+ =  ( ) ( ), , 3,2,76x y z =  

( ) ( ) 263 193
x Y

z+ =   ( ) ( ), , 3,2, 536x y z =  

( ) ( ) 2255 769
x Y

z+ =      ( ) ( ), , 3,2, 4,144x y z =  

( ) ( ) 2399 1,201
x Y

z+ =       ( ) ( ), , 3,2, 8,060x y z =  

( ) ( ) 2783 2,353
x Y

z+ =        ( ) ( ), , 3,2, 22,036x y z =  

( ) ( ) 21,023 3,073
x Y

z+ =       ( ) ( ), , 3,2, 32,864x y z =  

( ) ( ) 21,599 4,808
x Y

z+ =       ( ) ( ), , 3,2, 64,120x y z =  

( ) ( ) 21,935 5,809
x Y

z+ =       ( ) ( ), , 3,2, 85,316x y z =  

( ) ( ) 22,703 8,113
x Y

z+ =         ( ) ( ), , 3,2, 140,764x y z =  

( ) ( ) 23,135 9,409
x Y

z+ =        ( ) ( ), , 3,2, 175,784x y z =  

( ) ( ) 24,095 12,289
x Y

z+ =        ( ) ( ), , 3,2, 262,336x y z =  

( ) ( ) 24,623 13,873
x Y

z+ =       ( ) ( ), , 3,2, 314,636x y z =  
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