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Abstract. Malaria is a significant public health issue, paurtarly in Sub-Saharan Africa,
and is caused by the Plasmodium parasite, whittamsmitted through mosquito bites.
Traditionally, malaria diagnosis relies on the rogmopic analysis of blood smears, a
method that's dependable but also time-consumidglamanding in expertise. This study
introduces and assesses a deep learning clasefficaiodel using VGG19, aimed at
automating malaria diagnosis in microscopic imadé® model generated encouraging
results, with a training accuracy of 97.76%, adatiion accuracy of 97.00%, a processing
time of 5 minutes and 20 seconds, and an F1 sdode4888. The study used 27,558
enhanced images, divided into training (22,046) safidation (5,512) sets to avoid
overfitting and biases, adhering to an 80% trairand 20% validation split. The CNN
training model and VGG19 transfer learning achieaedistounding average accuracy of
97.76% for both parasitized and uninfected maleglhimages. The study emphasizes the
need for collecting high-quality, abundant imageada effectively analyze contamination
levels in both parasitized and uninfected individudt is advised that sophisticated
microscopic technology be used to improve the perémce, accuracy, and speed of
malaria diagnosis and prediction utilizing the pregd model.

Keywords: Plasmodium Parasite, Malaria detection, Microscdmiage, Deep Learning
Classification, Image Pre-processing
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1. Introduction

Malaria, a potentially lethal condition that affeatillions worldwide, most notably in Sub-

Saharan Africa, is traditionally diagnosed througjbroscopic examination of blood smear
samples. This procedure necessitates expertisexgatience, making it time-consuming
and prone to errors, particularly in areas withitkah access to skilled medical experts.
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Deep learning has recently shown promising resuléaitomating the malaria diagnosing
procedure. However, there remains a requiremengribenced precision, accuracy, and
quicker diagnostic speed [1,2]. This study aimel&vate the deep-learning classification
of microscopic images for malaria diagnosis by ienpénting a set of techniques that
augment classification accuracy performance andustoless [3,4]. Plasmodium is
transferred to humans via infected mosquito bifds flalaria remains a severe public
health issue, particularly, where it contributegmgicantly to morbidity and mortality [6].
Data augmentation, image pre-processing, transtarning, ensembling, and
hyperparameter optimization are some of these tgabs [7]. With the use of these
techniques, a deep learning algorithm was creasgdctin swiftly and accurately diagnose
malaria by properly classifying malaria parasi&srsin blood smears [8]. By using a series
of techniques that may increase the classificatiaoturacy and robustness, this research
intends to improve the deep learning classificaiiormicro-scope image findings for
malaria illness. The following are those techniques

1.1. The following are the techniques
1.1.1.Preparation, refers to the set of actions and adprgts performed on raw input data
before its use in a machine learning or deep lagraigorithm [9].

1.1.2.Transfer Learning: Leveraging transfer learning tetp address limitations in
dataset size and diversity [10]. Pre-trained mqdrish as DenseNet or VGG19, can be
used as a starting point and fine-tuned on mafgréific datasets. Transfer learning
enables models to benefit from previously learrarabteristics while also reducing the
requirement for huge annotated datasets [11].

1.1.3. Ensemble Learning: Techniques like model averagimdjstacking can be used to
aggregate the predictions of different algorithmsmdels [12]. This can help mitigate
individual algorithm limitations and improve ovdrelassification performance.

1.1.4.Data Augmentation: By increasing the diversity aiz@ of the training da-taset, you
can improve algorithm resilience and generalizatib8]. To generate more training
examples, techniques such as rotation, scalimgifig, and adding noise can be used [14].
Hyperparameters are configuration parameters madated before the model's training,
distinct from those learned directly from the ddta.

Researchers can bridge the gaps between existitigodologies and produce more
accurate, economical, and robust deep-learning lmofde malaria diagnosis from
microscopic pictures by combining various techngund constantly refining and
optimizing the algorithms.

Deep learning classification applied to microscojphage data has the potential to
automate the detection and quantification of malparasites in blood smears [16,17]. As
a result, diagnosis accuracy and speed are impr@aszp learning algorithms have been
utilized successfully in a range of medical imagecpssing jobs because they can learn
difficult patterns and characteristics from largdagets [18,19].

Researchers might also strive to close the gapvgebe algorithms in the context of
increasing deep learning classification for maldiggnosis using microscopic images to
achieve good outcomes [20,21]. Here are a few ndsttitat can be used. Researchers use
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architecture optimization to improve performancetedtion accuracy, and efficiency,
experimenting with different transfer learning teicjues.

However, accurate categorization of malaria pteasn blood smears remains difficult
due to the parasites' varying appearances, théyjabthe blood smears, and the presence
of artefacts and debris (remains of somethinghthatbeen destroyed). In this context, it is
vital to improve the performance accuracy of malaliagnosis by developing effective
deep-learning algorithms that can reliably categoralaria parasites.

2. Study background

2.1. Deep learning

Machine learning techniques like deep learning beéng increasingly utilized for
automated malaria screening, offering promisingyuitstic capabilities. Originating from
machine learning, deep learning draws inspiratiocomf the information-processing
methods of the human brain [22]. It represents draiced form of multilayer neural
networks capable of autonomously learning intricktia representations [23]. Often called
features. This approach encourages researcherdetuify distinctive features with
minimal human effort and domain-specific knowled2s].

For practical applications, the characteristicsaoivell-trained network are crucial.
Firstly, its objectivity is paramount, highlightinge need for unbiased analysis devoid of
subjective human influences. Secondly, consist&egsential, ensuring that the network
consistently annotates similar features in the saraener. Lastly, the network's validity
is crucial, which pertains to the precision ofatgputs. In real-world scenarios, especially
when training data is limited, the reliability, istency, and accuracy of the network
become pivotal. Achieving reliability and validigan be challenging in deep learning,
which often requires extensive training datases$. [2

The collection of annotated training images idipalarly difficult in medical contexts
due to the need for expert knowledge and privacicems, leading to a slower adoption
of deep learning in these areas [26]. However ntemdvancements in this technology have
significantly enhanced the efficiency and precisiofriarge-scale computer vision tasks
[27]. Consequently, the examination of microscopiages has garnered heightened
attention. Specifically, Convolutional Neural Netk® (CNNSs), a subset of deep learning
technigues, have demonstrated remarkable profigienearious image processing tasks,
including recognition, classification, and categation [28].

2.2. Convolutional neural network

A Convolutional Neural Network (CNN) is a form adeb neural network that is frequently
used in machine learning [29]. It is very good ingessing data having a grid-like layout,
such as photographs. CNNs are a cornerstone ofrmodenputer vision technology, and
they have been instrumental in many breakthroughimmage and video recognition, as
well as in other areas like natural language pringsHere’s an overview of CNNs:

2.2.1.Convolutional layers

The fundamental components of a CNN. Convolutioerations are performed across the
input data by these layers using filters or kerriBt& convolution process involves sliding
these filters across the input to produce featuapancapturing spatial hierarchies and
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patterns such as edges, texture or more complgesha images patterns such as edges,
textures, or more complex shapes in images.

2.2.2.Activation functions

Following convolution, an activation function, aft¢he Rectified Linear Unit (ReLU), is
added to the network to introduce non-linear festUENNs can now handle sophisticated,
non-linear data transformations.

2.2.3.Pooling layers

These layers reduce the feature maps' spatial dimmermaking network computing easier
to operate and reducing the number of parameteasinMim pooling and average pooling
are the most popular forms.

2.2.4.Fully connected layers

At the end of the network, fully connected layantegrate all the features learned by
preceding layers to produce the final outcome, likess scores in tasks involving
classification.

2.2.5.Dropout layers

To mitigate overfitting, dropout layers may be eaygld, which randomly disable a portion
of the neurons during the training process, enapngathe network to develop stronger,
more generalizable features.

2.3. Related works

Several major papers and references stand out ivbemes to measuring deep learning
classification performance in microscopic imagelysia for malaria. These publications
provide insights into the efficacy, challenges, &mtdre possibilities of employing deep
learning techniques, namely convolutional neuraiwneks (CNNSs), in this specific
medical discipline.

2.3.1.Advancements in CNN for malaria detection

A significant study by [30], demonstrated the ptisdnof deep CNNs in identifying
malaria-infected cells from thin blood smear imagéwir work highlighted not only the
accuracy but also the efficiency of CNNs in medinsge analysis.

2.3.2.Performance metrics and validation

The work of [31], is crucial in this context. Theyovided a comprehensive analysis of
different performance metrics such as sensitivitgep learning models for malaria
detection were evaluated for specificity and aocoyrd heir findings emphasised the
significance of rigorous validation approacheshsag cross-validation procedures.

2.3.3.Challenges in dataset and image quality

A study by [32], addressed the challenges assakciwith the variability in dataset quality

and image acquisition technigues. Inconsistenaiestaining, picture resolution, and

magnification levels, they noted, had a substartigact on the performance of deep
learning models in malaria microscopy.
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2.3.4.Comparison with traditional diagnostic methods

An interesting comparison was made by [33], whotgprsed the performance of
automated deep learning systems against traditioredual microscopy for malaria
diagnosis. Their findings suggested that while deaming offers promising results, it is
essential to consider it as a complementary tdgberahan a standalone solution.

2.3.5.Data augmentation and transfer learning

The work of [34], explored how data augmentatiod &ansfer learning could mitigate the

challenges posed by limited datasets in malari@y@renalysis. They demonstrated that
these techniques could significantly enhance mpddbrmance, especially in scenarios
with scarce training data.

Each of these papers adds a piece to the jigsdwwfdeep learning can be used
effectively for malaria detection in microscopicages, showing the progress made, the
challenges to overcome, and the possibility fonrfeitbreakthroughs in this crucial field of
medical study.

3. Materials and methods

3.1. Materials

To discover relevant publications published betw2@R0 and 2023, a thorough search
was undertaken across electronic databases suehbdded, Scopus, and IEEE Xplore.
Keywords such as 'malaria,' 'deep learning," 'flaaton,' and 'microscopic images,' along
with their variations, were employed in various ¢imations to locate pertinent articles.
The search was restricted to human subject’s relsgaublished in English. This section
discusses the application of CNN with techniqueshsas Vggl9, Vggl6, InceptionV3,
and ResNet152 in the categorization of malariain®lyes for accuracy and performance
evaluation.

3.2. Methods

The literature search process is a critical stagpirducting a comprehensive review of the

existing literature on a specific topic. It invobraystematically searching for relevant

studies in online databases such as Kaggle andiScapwell as articles and other sources
of information, to gather the necessary literafaorehe review.

The source of the accrued information involvesstarray of relevant techniques for
evaluating the performance of deep learning cliassibn in microscopic image analysis
for malaria detection. The exploration was confitedvorks published in the timeframe
of 2020 to 2023 and was carried out exclusivelgmglish. The following keywords were
used in the search: 'malaria detection,' 'perfoomar microscopic images

3.3. Dataset

3.3.1.In the initial phase, we present elucidations camicg several studies incorporated
from widely-used databases, sourced from the Naltibrstitutes of Health (NIH). The
dataset consists of 27,558 samples, comprising/ @@rasitized and an equal number of
13,779 uninfected samples [35]. The source of tlaitaset is accessible through the
following URL: https://ceb.nim.nih.gov/repositories/malaria-datsise For a visual
representation, refer to Figure 1 in the 'repostdmalaria’ section.
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Figure 1. Sample of collected datasets
The term 'uninfected class' refers to image dath dbes not exhibit malaria infection,
while the 'parasitized class' represents imagedigiecting parasitized blood cells.

3.3.2.The dataset was allocated with 80% dedicated tniigaand 20% to validation
purposes. We utilized Vggl9 and integrated Trank&arning with CNN-based deep
learning models as feature extractors. This appragts in distinguishing between healthy
and parasitized blood cells, thus facilitating diegnosis of diseases. The proposed model
has three fully connected layers, three convolafitayers that each use three 2, 2 filters
with two-pixel steps, 64 filters for the first, 3ikers for the second, and 16 filters for the
third. The model input is made up of segmentedsagith resolutions of 80, 80, and 3.
They assessed how well pre-trained CNNSs, in pdatid¥ggl9, Vggl6, InceptionV3, and
ResNet152, extracted traits from parasitized amufected cells. The Random Grid Search
technique was used to optimize these models foerpgrameters.

4. Model development process
4.1. The technique illustrated in Figure 2 was utiliZedmodel creation; it describes all
the steps starting from tool design.
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Figure 2: Block diagram of the model procedure for the litera review process

4.2. In the context of research evaluating the perfomaarf deep learning classification

in microscopic image analysis for malaria disedBe, validation process is crucial in

assessing the performance, accuracy, and reliabflithe developed models. It involves
evaluating the trained models using independerdisétd and established evaluation
metrics. Below is an overview of the validation gess:

4.2.1.Splitting the dataset: The initial dataset was saged into subsets for training,
validation, and testing. The training subset fgatiéid the training of deep learning models,
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while the validation subset aided in refining thedels and optimizing hyperparameters.
Finally, the testing subset was employed to agbesgerformance of the models.
4.2.2.Training of Models: The training dataset was usedducate deep learning models
through the application of pertinent algorithmglirling Convolutional Neural Networks
(CNN). This process involved utilizing architectsitiike VGGNET, INCEPTIONV3, and
RESNET, along with optimization methods such aisetic Gradient Descent (SGD),
Data Augmentation, and Transfer Learning. In otdeattain accurate performance and
classifications, these models adapt their intepaesameters based on the data they process.

4.2.3.Hyperparameter Optimization: In the stage of vdiidpthe models, there is a

precise adjustment of the hyperparameters to eehawerall performance. This step

includes the organized madification of settinge ligarning rate, batch size, regularization
techniques, and the structure of the network teréain the best possible configuration.

4.2.4. Assessment of the Validation Set: The validatidnseparate from the training data,
was used to evaluate the trained models. Thisistepucial for assessing how well the
models generalize to new data and for detectinglenes such as overfitting or under
fitting. Metrics used for this evaluation includecaracy, precision, recall, F1-score, and
the area under the receiver operating charactedstive (AUC-ROC).

4.2.5.Evaluating Model Performance: The performance efrttodels is gauged using the
previously mentioned metrics. Successful completbrihe final testing phase by the
models indicates they have achieved the set peaimcecriteria. Should the performance
be subpar, modifications in the architecture, hypeameter settings, or data augmentation
methods might be necessary.

4.2.6.Testing Set Evaluation: The final evaluation of thedels' performance is

conducted using an independent testing set, whiah mot used during training or

validation. This ensures an unbiased assessmeantmtiels' predictions for the testing set
are evaluated, and metrics are calculated to measuformance on unseen data.

4.2.7.Cross-Validation (Optional): In some cases, a cuadislation approach may be
employed to further validate the models.

4.2.8.The validation process ensures that the developep l@éarning models are reliable,
accurate, and capable of effectively classifyingroscopic image results for malaria
disease. It provides an objective assessment ohtfuels' performance on both seen and
unseen data, contributing to the overall validitg &rustworthiness of the research findings.
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Figure 3: The training accuracy of the CNN Figure 4: The validation loss of the CNN and
and VGG19 transfer learning model VGG19 transfer learning model
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Figure 7: The training accuracy of the CNN and

InceptionV3 transfer leamning model
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Figure 9: The training accuracy of the CNN and Figure 10: The validation loss of the CNN and
ResNet152 transfer learning model ResNet152 fransfer learning model
5. Results and discussion
5.1. Results

The initial search revealed 27,558 cell pictureish 3,779 parasitized cells and 13,779
uninfected ones. Several tactics were used in tbi@rpnary operations. To improve the
dataset's quality, numerous pre-processing proesdwere performed on the photos
before they were fed into our deep learning model.

5.1.1.Image Rescaling: All images were resized to a umifsize of 80x80 pixels. This
resizing ensured that the model could process imafja consistent size efficiently.

5.1.2.Data Augmentation: To mitigate potential overfigtimnd enhance the model's
robustness, we implemented data augmentation weobsi These included random
rotations (up to 20 degrees), horizontal flips, bBrightness adjustments.

5.1.3.Normalization Process: Each image's pixel valueewealed down to a [0, 1] range
by dividing them by 255. This normalization was aall for enhancing the training
efficiency and convergence of the model.

5.1.4.Dataset Division: The dataset was split into twgnsents - 80% of the images were
allocated for training, and the remaining 20% fodrtiee test set. This separation allowed
for the evaluation of the model's effectivenessiew, unexposed data.Ensuring Dataset
Quality: By executing these pre-processing stepsgmsured that our deep learning model
had access to a standardized and diverse datagse Theasures helped mitigate common
issues associated with image-based data, suchriatiorss in image sizes and lighting
conditions.

5.2. In the trials, deep learning models such as Cotieolal Neural Networks (CNNSs)

were used. Transfer learning approaches involvimg®, Vggl6, InceptionV3, and
ResNet 152 were used for malaria categorizatidisinty microscopic pictures.
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Model Train Test Epoch: Time Loss
Accuracy Accuracy

VGG1< 97.76% 97.00% 97 5m 20¢ 0.06¢

VGG1e 97.37% 96.34% 10C 4m 12 0.076¢

INCEPTIONV:E 97.36% 96.28% 97 3m 22 0.086:

RESNET15Z 96.86% 96.50% 9¢ 3m 77 0.090¢

5.2.1.Training accuracy

The accuracy of the model on the training datasehbwn in Table 1. The fraction of
correctly categorised samples in the trainingseteéasured by this metric. A high training
accuracy suggests that the model matches thertgailsita effectively.

5.2.2.Test accuracy

As indicated in Table 1, this refers to the modatsuracy on a separate dataset that it has
not encountered during training, often referredsdhe test or validation set. This metric
is crucial as it indicates how well the model gafizes to new, unseen data.

Table 2: Comparison of model performance using transfeniegrmodels

Model F1-Score Sensitivity(Recall
VGGI¢ 0.488¢ 0.977¢
VGG1€ 0.486¢ 0.973:
INCEPTIONV:S 0.486¢ 0.973¢
RESNET15: 0.484: 0.968t¢

5.2.3.Table 2 features the F1-Score, also referred tbeab1 Measure, which serves as a
statistical tool for gauging the efficacy of theasdification model. This metric,
representing the harmonic mean between precisidmesrall, offers a balanced evaluation
of both these aspects. The calculation of the FireSis done using the following formula:

precision X recall
F1—score=2X

precision + recall

Where;

Precision is calculated as the proportion of carpesitive predictions (true positives) to
the overall number of positive predictions madeitlwtencompasses both true positives
and false positives). The formula for calculatimggision is as follows:

True positive

Precision = — —
True positives + False positive

and;

Recall, also known as Sensitivity, is the meastireue positives relative to the total of
true positives and false negatives. It evaluatesrtbdel's capacity to correctly identify all
positive cases.
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True positive

Recall = — :
True positives + False negatives

The F1-Score is especially beneficial in circumsts with unequal class distribution,
when it is critical to strike a compromise betwg®acision and recall. It has a value
between 0 and 1, with a greater value indicatibgtéer balance of precision and recall.

5.3. Discussion

The comparison of model performance revealed tNi-BGased architectures were widely
used and consistently demonstrated superior peafocenin malaria classification tasks.
Models such as VGGNet, InceptionNet, and ResNeeweatensively used among these
architectures, displaying good accuracy, sensitivitnd specificity in differentiating
between malaria-infected and uninfected cells.

Image pre-processing techniques were discoverduktsignificant in boosting the
accuracy of deep learning models for malaria diassion in a review of the literature.
Image enhancement, noise reduction, contrast ¢mmne@nd image normalisation are all
common pre-processing techniques. These strataigiés the improvement of the quality
and visibility of malaria-infected cells, allowirfgr more accurate feature extraction and
categorization.

Convolutional Neural Networks (CNNs) emerged asrttost extensively utilised deep
learning architecture for malaria categorizatioNN3 outperformed humans when it came
to automatically learning and extracting relevadrdracteristics from tiny images. Various
CNN architectures were used, including VGGNet, Re#sNnd InceptionNet, with
modifications tailored to the unique needs of malalassification.

Feature extraction methods, such as transfer itegravhich involves leveraging
pretrained models, showed promise in improvingsifiesation performance by utilizing
knowledge learned from large-scale datasets. Aulditly, ensemble learning techniques,
such as bagging and boosting, were explored tdidurenhance the accuracy and
robustness of deep learning models.

6. Conclusion and recommendation

6.1. Conclusion

According to the research data, CNN-based trarlsBmning outperforms other deep

learning architectures in terms of performance smuin classifying malaria-infected

cells in microscopic pictures, especially when comad with the VGG19 design.
However, the choice of model and its performaraehbe influenced by various factors,

including dataset characteristics, hyperparametgtimization, and pre-processing

techniques. Further research is needed to invéstiba generalization of models across

different datasets, their robustness against vamnsin image quality, and the integration

of these models into clinical practice

6.2. Recommendations

Based on the findings and outcomes of our researaluating the performance of deep
learning classification in microscopic image resutir malaria disease, we propose the
following recommendations for future studies anaictical applications:

59



Honest Wapalila, Shubi Kaijaged Judith Leo

Further Research on Diverse Data Sets: Conductieili research using diverse and
comprehensive data sets to enhance the robustnégseaeralizability of deep learning
models for malaria classification. This includesarporating data from different
geographical regions, various levels of diseaser@igyand diverse populations.

Investigating Transfer Learning with Pre-Trained déts: Examine the utility of
transfer learning and pre-trained models in thesif@ation of malaria. Using knowledge
from previously trained models on large-scale pictdatasets can help to accelerate the
creation of accurate and efficient deep learningl@ifor malaria classification.

Addressing Class Imbalance: When training deemirgrmodels, the imbalance in
the distribution of malaria-positive and malariagative samples can provide difficulties.
To address class imbalance and increase modelnpenfice, consider strategies such as
oversampling, under sampling, or employing clasigs.

Collaboration and Data Sharing: Encourage colldmmraand data sharing among
academics and institutions working on deep learmataria categorization. Collaborative
efforts can result in larger and more diversifieatagets, algorithm benchmarking, and
enhanced model performance.

Ethical Considerations: Continuously address andgage the ethical considerations
associated with deep learning classification inamaldisease. Ensure the privacy and
confidentiality of patient data, address biases fairdess in algorithmic decisions, and
obtain informed consent from participants.

Validation and External Evaluation: Assess the gaizability and robustness of deep
learning models by validating and evaluating tpeiformance on external datasets and in
different healthcare settings. External validatiwfps to prove the models' dependability
and correctness across a wide range of populatioth€ontexts.

Continuous Monitoring and Improvement: Monitor amgbrove deep learning models
for malaria classification continuously as new atheaments and techniques emerge. Stay
up-to-date with the latest developments in deemieg and regularly reassess and refine
models to enhance their performance.

By implementing these recommendations, researa@rsadvance the field of deep
learning classification in microscopic image analyr malaria disease, ultimately
leading to improved diagnostic accuracy, efficistreening processes, and better
management of malaria worldwide.

The analysis of the literature illustrates theéased interest and progress in improving
deep learning classification for malaria detectigosing microscopic pictures.. The
application of deep learning techniques, combinih appropriate preprocessing, feature
extraction, and classification algorithms, holdgngéicant potential for accurate and
automated malaria diagnosis. However, further rebeis needed to address challenges
such as limited dataset availability, generalizatawross different malaria strains, and
integration into clinical practice. Continued effon this area can contribute to improved
malaria diagnosis, ultimately aiding in better dise management and control.
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