An Algorithm for the Constrained Longest Common Subsequence and Substring Problem

Rao Li ${ }^{i *}$, Jyotishmoy Deka ${ }^{2}$, Kaushik Deka ${ }^{3}$ and Dorothy Li ${ }^{4}$
${ }^{1}$ Department of Computer Science, Engineering, and Mathematics
University of South Carolina Aiken, Aiken, SC 29801, USA
E-mail: raol@usca.edu
${ }^{2}$ Department of Electrical Engineering
Tezpur University, Tezpur, Assam 784028, India
E-mail: jyotishmoydeka62@ gmail.com
${ }^{3}$ Department of Computer Science and Engineering
National Institute of Technology Silchar, Cachar, Assam 788010, India
E-mail: jagatdeka20@gmail.com
${ }^{4} 12000$ Market Street, Unit 63, Reston, VA 20190, USA
E-mail: dorothy.li1994@gmail.com
*Corresponding author

Received 25 January 2024; accepted 10 March 2024
Abstract. Let \sum be an alphabet. For two strings X, Y, and a constrained string P over the alphabet \sum, the constrained longest common subsequence and substring problem for two strings X and Y with respect to P is to find a longest string Z which is a subsequence of X , a substring of Y , and has P as a subsequence. In this paper, we propose an algorithm for the constrained longest common subsequence and substring problem for two strings with a constrained string.

Keywords: The longest common subsequence and substring, The constrained longest common subsequence and substring
AMS Mathematics Subject Classification (2010): 68W32, 68W40

1. Introduction

Let \sum be an alphabet and S a string over \sum. A subsequence of a string S over an alphabet \sum is obtained by deleting zero or more letters of S. A substring of a string S is a subsequence of S consists of consecutive letters in S. The length of S, denoted $|S|$, is defined as the number of letters in S . The longest common subsequence (LCSSeq) problem for two strings is to find a longest string which is a subsequence of both strings. The longest common substring (LCSStr) problem for two strings is to find a longest string which is a substring of both strings. Both the longest common subsequence problem and the longest common substring problem have been well-studied in the last several decades. More details on the studies for the first problem can be found in [1], [2], [4,6,7,8,9,11] and the second problem can be found in [3, 13].

Rao Li, Jyotishmoy Deka, Kaushik Deka and Dorothy Li

Tsai [12] extended the longest common subsequence problem for two strings to the constrained longest common subsequence (CLCSSeq) problem for two strings and a constrained string. For two strings X, Y, and a constrained string P , the constrained longest common subsequence problem for two strings X and Y with respect to P is to find a string Z such that Z is a longest common subsequence for both X and Y and P is a subsequence of Z . Tsai [12] designed an $\mathrm{O}\left(|\mathrm{X}|^{2}|\mathrm{Y}|^{2}|\mathrm{P}|\right)$ time algorithm for the CLCSSeq problem for two strings X, Y, and a constrained string P. Chin et al. [5] improved Tsai's algorithm and designed an $\mathrm{O}(|\mathrm{X}||\mathrm{Y}||\mathrm{P}|)$ time algorithm for the CLCSSeq problem for two strings X, Y, and a constrained string P.

Motivated by LCSSeq and LCSStr problems, Li et al. [10] introduced the longest common subsequence and substring (LCSSeqSStr) problem for two strings. For two strings X and Y , the longest common subsequence and substring problem for X and Y is to find a longest string which is a subsequence of X and a substring of Y. They also designed an $\mathrm{O}(|\mathrm{X}||\mathrm{Y}|)$ time algorithm for LCSSeqSStr problem for two strings X and Y in [10].

Motivated by Tsai's extension of LCSSeq for two strings to CLCSSeq for two strings and a constrained string, we introduce the constrained longest common subsequence and substring problem for two strings and a constrained string. For two strings X, Y, and a constrained string P , the constrained longest common subsequence and substring (CLCSSeqSStr) problem for two strings X and Y with respect to P is to find a string Z such that Z is a longest common subsequence of X, a substring of Y, and has P as a subsequence. Clearly, the LCSSeqSStr problem is a special CLCSSeqSStr problem with an empty constrained string. In this paper, we, using some ideas in [5], design an $\mathrm{O}(|\mathrm{X}||\mathrm{Y}||\mathrm{P}|)$ time algorithm for CLCSSeqSStr problem for two strings and a constrained string.

2. The recursions in the algorithm

In order to present our algorithm, we need to establish some recursions to be used in our algorithm. Before establishing the recursions, we need some notations as follows. For a given string $S=s_{1} s_{2} \ldots s_{1}$ over an alphabet \sum, the ith prefix of S is defined as $\mathrm{S}_{\mathrm{i}}=\mathrm{s}_{1} \mathrm{~S}_{2} \ldots \mathrm{~S}_{\mathrm{i}}$, where $1 \leq \mathrm{i} \leq 1$. Conventionally, S_{0} is defined as an empty string. The 1 suffixes of S are the strings of $s_{1} s_{2} \ldots s_{1}, s_{2} s_{3} \ldots s_{1}, \ldots, s_{1-1} s_{1}$, and s_{1}. Let $\mathrm{X}=\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{m}}$ and $\mathrm{Y}=\mathrm{y}_{1} \mathrm{y}_{2} \ldots \mathrm{y}_{\mathrm{n}}$ be two strings and $\mathrm{P}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{r}}$ a constrained string. We define $\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]$ as a string satisfying the following conditions, where $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, and $1 \leq \mathrm{k} \leq \mathrm{r}$,
(1) it is a subsequence of X_{i},
(2) it is a suffix of Y_{j},
(3) it has P_{k} as a subsequence,
(4) under (1), (2) and (3), its length is as large as possible.

Claim 1. Suppose that $X_{i}=x_{1} x_{2} \ldots x_{i}, Y_{j}=y_{1} y_{2} \ldots y_{j}$, and $P=p_{1} p_{2} \ldots p_{k}$, where $1 \leq i \leq$ $\mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$, and $1 \leq \mathrm{k} \leq \mathrm{r}$. If $\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]=\mathrm{Z}_{1} \mathrm{Z}_{2} \ldots \mathrm{Z}_{\mathrm{a}}$ is a string satisfying conditions (1), (2), (3), and (4) above. Then we have only the following possible cases and the statement in each case is true.

An Algorithm for the Constrained Longest Common Subsequence and Substring Problem
Case 1. $x_{i}=y_{j}=p_{k}$. We have $|Z[i, j, k]|=|Z[i-1, j-1, k-1]|+1$ in this case.
Case 2. $x_{i}=y_{j} \neq p_{k}$. We have $|Z[i, j, k]|=|Z[i-1, j-1, k]|+1$ in this case.
Case 3. $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$. We have $|Z[i, j, k]|=|Z[i-1, j, k]|$ in this case.
Case 4. $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j} \neq p_{k}$. We have $|Z[i, j, k]|=|Z[i-1, j, k]|$ in this case.
Case 5. $x_{i} \neq y_{j}, x_{i}=p_{k}$, and $y_{j} \neq p_{k}$. This case does not happen.
Proof of Claim 1. The five cases can be figured out in the following way. Firstly, we have two cases of $x_{i}=y_{j}$ or $x_{i} \neq y_{j}$. When $x_{i}=y_{j}$, we just can have two possible cases of x_{i} $=y_{j}=p_{k}$ or $x_{i}=y_{j} \neq p_{k}$. When $x_{i} \neq y_{j}$, we just can have three possible cases of $x_{i} \neq p_{k}$ and $y_{j}=p_{k}, x_{i} \neq p_{k}$ and $y_{j} \neq p_{k}$, or $x_{i}=p_{k}$ and $y_{j} \neq p_{k}$. Next, we will prove the statements in the five cases.

Case 1. Since $Z[i, j, k]=z_{1} Z_{2} \ldots z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j}=x_{i}=p_{k}$. Let W $=\mathrm{w}_{1} \mathrm{~W}_{2} \ldots \mathrm{w}_{\mathrm{b}}=\mathrm{Z}[\mathrm{i}-1, \mathrm{j}-1, \mathrm{k}-1]$ be a string satisfying the following conditions,
(1) it is a subsequence of X_{i-1},
(2) it is a suffix of Y_{j-1},
(3) it has $\mathrm{P}_{\mathrm{k}-1}$ as a subsequence,
(4) under (1), (2) and (3), its length is as large as possible.

Note that $Z_{1} Z_{2} \ldots Z_{a-1}$ is a string which is a subsequence of X_{i-1}, a suffix of Y_{j-1}, and has P_{k-1} as a subsequence. By the definition of $W=W_{1} W_{2} \ldots W_{b}$, we have that $\mathrm{a}-1 \leq \mathrm{b}$. Namely, $\mathrm{a} \leq \mathrm{b}+1$.

Note that $\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{b}} \mathrm{Z}_{\mathrm{a}}$ is a string satisfying the following conditions,

- it is a subsequence of X_{i},
- it is a suffix of Y_{j},
- it has P_{k} as a subsequence.

By the definition of $Z[i, j, k]=Z_{1} Z_{2} \ldots z_{a}$, we have that $b+1 \leq a$. Thus $a=b+1$ and $|\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]|=|\mathrm{Z}[\mathrm{i}-1, \mathrm{j}-1, \mathrm{k}-1]|+1$.

Case 2. Since $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j}=x_{i} \neq p_{k}$. Let $U=$ $u_{1} u_{2} \ldots u_{c}=Z[i-1, j-1, k]$ be a string satisfying the following conditions,
(1) it is a subsequence of X_{i-1},
(2) it is a suffix of Y_{j-1},
(3) it has P_{k} as a subsequence,
(4) under (1), (2) and (3), its length is as large as possible.

Note that $z_{1} z_{2} \ldots z_{a-1}$ is a string which is a subsequence of X_{i-1}, a suffix of Y_{j-1}, and has P_{k} as a subsequence. By the definition of $U=u_{1} u_{2} \ldots u_{c}=Z[i-1, j-1$, $k]$, we have that $\mathrm{a}-1 \leq \mathrm{c}$. Namely, $\mathrm{a} \leq \mathrm{c}+1$.

Note that $u_{1} u_{2} \ldots u_{c}$ is a string satisfying the following conditions,

- it is a subsequence of $\mathrm{X}_{\mathrm{i}-1}$,
- it is a suffix of Y_{j-1},
- it has P_{k} as a subsequence.

Rao Li, Jyotishmoy Deka, Kaushik Deka and Dorothy Li

Thus $u_{1} u_{2} \ldots u_{c} y_{j}$ is a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$, we have that $c+1 \leq a$. Thus $a=c$ +1 and $|Z[i, j, k]|=|Z[i-1, j-1, k]|+1$.

Case 3. Since $Z[i, j, k]=z_{1} z_{2} \ldots Z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j}=p_{k} \neq x_{i}$. Let $V=$ $\mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{d}}=\mathrm{Z}[\mathrm{i}-1, \mathrm{j}, \mathrm{k}]$ be a string satisfying the following conditions,
(1) it is a subsequence of X_{i-1},
(2) it is a suffix of Y_{j},
(3) it has P_{k} as a subsequence,
(4) under (1), (2) and (3), its length is as large as possible.

Note that $z_{1} Z_{2} \ldots z_{a}$ is a string which is a subsequence of X_{i-1}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $V=v_{1} v_{2} \ldots v_{d}=Z[i-1, j, k]$, we have that a $\leq \mathrm{d}$.

Note that $\mathrm{v}_{1} \mathrm{v}_{2} \ldots \mathrm{v}_{\mathrm{d}}$ is a string satisfying conditions,

- it is a subsequence of X_{i-1},
- it is a suffix of Y_{j},
- it has P_{k} as a subsequence.

Thus $\mathrm{V}_{1} \mathrm{~V}_{2} \ldots \mathrm{v}_{\mathrm{d}}$ is a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $Z[i, j, k]=z_{1} Z_{2} \ldots z_{a}$, we have that $d \leq a$. Thus $a=d$ and $|Z[i, j, k]|=|Z[i-1, j, k]|$.

Case 4. Since $Z[i, j, k]=z_{1} z_{2} \ldots z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j} \neq p_{k}, z_{a}=y_{j} \neq x_{i}$, and $\mathrm{x}_{\mathrm{i}} \neq \mathrm{p}_{\mathrm{k}}$. Let $\mathrm{Q}=\mathrm{q}_{1} \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{e}}=\mathrm{Z}[\mathrm{i}-1, \mathrm{j}, \mathrm{k}]$ be a string satisfying the following conditions,
(1) it is a subsequence of X_{i-1},
(2) it is a suffix of Y_{j},
(3) it has P_{k} as a subsequence,
(4) under (1), (2) and (3), its length is as large as possible.

Note that $Z_{1} Z_{2} \ldots Z_{a}$ is a string which is a subsequence of X_{i-1}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $Q=q_{1} q_{2} \ldots q_{e}=Z[i-1, j, k]$, we have that a $\leq \mathrm{e}$.

Note that $\mathrm{q}_{1} \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{e}}$ is a string satisfying the following conditions,

- it is a subsequence of X_{i-1},
- it is a suffix of Y_{j},
- it has P_{k} as a subsequence.

Thus $q_{1} q_{2} \ldots q_{e}$ is a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. By the definition of $Z[i, j, k]=Z_{1} Z_{2} \ldots Z_{a}$, we have that $e \leq a$. Thus $a=e$ and $|Z[i, j, k]|=|Z[i-1, j, k]|$.

Case 5. Since $Z[i, j, k]=z_{1} Z_{2} \ldots z_{a}$ is a suffix of Y_{j}, we have that $z_{a}=y_{j} \neq x_{i}=p_{k}$. Since z_{1} $z_{2} \ldots z_{a}$ is a subsequence of X_{i} and $x_{i} \neq z_{a}$, we have that z_{a} appears before x_{i} on X_{i}. Since x_{i} $=p_{k}$ on $X_{i}, p_{1} p_{2} \ldots p_{k}$ cannot be a subsequence of $z_{1} z_{2} \ldots Z_{\mathrm{a}}$, a contradiction. Since this case does not happen, it is not necessary for us to deal with this case in our algorithm.

Therefore, the proof of Claim 1 is complete.

An Algorithm for the Constrained Longest Common Subsequence and Substring Problem

The following Claim 2 which will be used in our algorithm demonstrates the implications of the condition that there is not a string which is a subsequence of $X_{i}=x_{1} X_{2}$ $\ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.

Claim 2. Suppose there is not a string which is a subsequence of $X_{i}=x_{1} X_{2} \ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.
[1]. If $x_{i}=y_{j}=p_{k}$, then there is not a string which is a subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j-1}=y_{1} y_{2} \ldots y_{j-1}$, and has $P_{k-1}=p_{1} p_{2} \ldots p_{k-1}$ as a subsequence.
[2]. If $x_{i}=y_{j} \neq p_{k}$, then there is not a string which is a subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j-1}=y_{1} y_{2} \ldots y_{j-1}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.
[3]. If $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$, then there is not a string which is a subsequence of X_{i-1} $=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.
[4]. If $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j} \neq p_{k}$, then there is not a string which is a subsequence for X_{i-1} $=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence.

Proof of Claim 2. We next will prove the statements in the four cases.
[1]. Now we have that $x_{i}=y_{j}=p_{k}$. Suppose, to the contrary, that there is a string W_{1} which is a subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j-1}=y_{1} y_{2} \ldots y_{j-1}$, and has P_{k-1} $=p_{1} p_{2} \ldots p_{k-1}$ as a subsequence. Then $W_{1} x_{i}$ is a string which is a subsequence of $X_{i}=x_{1}$ $x_{2} \ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence, a contradiction.
[2]. Now we have that $x_{i}=y_{j} \neq p_{k}$. Suppose, to the contrary, that there is a string W_{2} which is a subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j-1}=y_{1} y_{2} \ldots y_{j-1}$, and has $P_{k}=$ $p_{1} p_{2} \ldots p_{k}$ as a subsequence. Then $W_{2} X_{i}$ is a string which is a subsequence of $X_{i}=x_{1} x_{2} \ldots$ x_{i}, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence, a contradiction.
[3]. Now we have that $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$. Suppose, to the contrary, that there is a string W_{3} which is a subsequence for $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence. Then W_{3} is a string which is a subsequence of $X_{i}=$ $x_{1} x_{2} \ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence, a contradiction.
[4]. Now we have that $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j} \neq p_{k}$. Suppose, to the contrary, that there is a string W_{4} which is a subsequence of $X_{i-1}=x_{1} x_{2} \ldots x_{i-1}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence. Then W_{4} is a string which is a subsequence of $X_{i}=$ $x_{1} x_{2} \ldots x_{i}$, a suffix of $Y_{j}=y_{1} y_{2} \ldots y_{j}$, and has $P_{k}=p_{1} p_{2} \ldots p_{k}$ as a subsequence, a contradiction.

Therefore, the proof of Claim 2 is complete.
Our algorithm will use the following Claim 3 when we trace back to find the longest string which is a subsequence of X , a substring of Y , and has P as a subsequence.

Claim 3. Let $U^{k}=u_{1}{ }^{k} u_{2}{ }^{k} \ldots u_{h(k)}{ }^{k}$ be a longest string which is a subsequence of X, a substring of Y, and has P_{k} as a subsequence. Then $h(k)=\max \{|Z[i, j, k]|: 1 \leq i \leq m, 1 \leq j$ $\leq \mathrm{n}, 1 \leq \mathrm{k} \leq \mathrm{r}\}$.
Proof of Claim 3. For each i with $1 \leq \mathrm{i} \leq \mathrm{m}$, each j with $1 \leq \mathrm{j} \leq \mathrm{n}$, and each k with $1 \leq \mathrm{k} \leq$ r, we, from the definition of $Z[i, j, k]$, have that $Z[i, j, k]$ is a subsequence of X, a substring of Y, and has P_{k} as a subsequence. By the definition of U^{k}, we have that $\mid \mathrm{Z}[\mathrm{i}, \mathrm{j}$, $\mathrm{k}]\left|\leq\left|\mathrm{U}^{\mathrm{k}}\right|=\mathrm{h}(\mathrm{k})\right.$. Thus $\max \{|\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]|: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}, 1 \leq \mathrm{k} \leq \mathrm{r}\} \leq \mathrm{h}(\mathrm{k})$.

Rao Li, Jyotishmoy Deka, Kaushik Deka and Dorothy Li

Since $U^{k}=u_{1}{ }^{k} u_{2}{ }^{k} \ldots u_{h(k)}{ }^{k}$ is a string which is a subsequence of X, a substring of Y, and has P_{k} as a subsequence, there is an index s and an index t such that $u_{h(k)}{ }^{k}=X_{s}$ and $u_{h(k)}{ }^{k}=y_{t}$ such that $U^{k}=u_{1}{ }^{k} u_{2}{ }^{k} \ldots u_{h(k)}{ }^{k}$ is a subsequence of X_{s}, a suffix of Y_{t}, and has P_{k} as a subsequence. From the definition of $Z[i, j, k]$, we have that $h(k) \leq|Z[s, t, k]| \leq$ $\max \{|\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{k}]|: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}, 1 \leq \mathrm{k} \leq \mathrm{r}\}$.

Hence $h(k)=\max \{|Z[i, j, k]|: 1 \leq \mathrm{i} \leq m, 1 \leq \mathrm{j} \leq \mathrm{n}, 1 \leq \mathrm{k} \leq \mathrm{r}\}$ and the proof of Claim 3 is complete.

3. The algorithm

Now we can present our algorithm. We assume that $X=x_{1} x_{2} \ldots x_{m}, Y=y_{1} y_{2} \ldots y_{n}$, and P $=p_{1} p_{2} \ldots p_{r}$. Let M be a three-dimensional array of size $(m+1)(n+1)(r+1)$. It can be thought as a collection of $(r+1)$ two-dimensional arrays of size $(m+1)(n+1)$. The cells $\mathrm{M}[\mathrm{i}][\mathrm{j}][\mathrm{k}]$, where $0 \leq \mathrm{i} \leq \mathrm{m}, 0 \leq \mathrm{j} \leq \mathrm{n}$, and $0 \leq \mathrm{k} \leq \mathrm{r}$, store the lengths of the longest strings such that each of them is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence.

If either $\mathrm{i}<\mathrm{k}$ or $\mathrm{j}<\mathrm{k}$, there is not a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. This situation is represented by setting $M[i][j][k]=-$ ∞, where ∞ should be a larger number, for example, 100 mnr . Our algorithm consists of the following steps. Firstly, we fill in the boundary cells in array M.

Step 1. If $\mathrm{i}=0$ and $\mathrm{k}=0$ or $\mathrm{j}=0$ and $\mathrm{k}=0$, the length of a string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence is zero. Thus, $M[0][j][0]=0$, where $0 \leq$ $\mathrm{j} \leq \mathrm{n} ; \mathrm{M}[\mathrm{i}][0][0]=0$, where $0 \leq \mathrm{i} \leq \mathrm{m}$.

Step 2. If $k=0$ or P_{k} is an empty string. The CLCSSeqSStr problem for two strings X and Y and a constrained string P becomes the LCSSeqSStr problem for two strings X and Y. The cells of $\mathrm{M}[\mathrm{i}][\mathrm{j}][0]$, where $1 \leq \mathrm{i} \leq \mathrm{m}$ and $1 \leq \mathrm{j} \leq \mathrm{n}$, can be filled in by the following rules. If $x_{i}=y_{j}$, then $M[i][j][0]=M[i-1][j-1][0]+1$. If $x_{i} \neq y_{j}$, then $M[i][j][0]=M[i-$ $1][j][0]$. The detailed proofs for the truth of the rules can be found in [10].

Step 3. If $i=0$ and $k \geq 1$, there is no string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. Thus, $\mathrm{M}[0][\mathrm{j}][\mathrm{k}]=-\infty$, where $0 \leq \mathrm{j} \leq \mathrm{n}$ and $1 \leq$ $\mathrm{k} \leq \mathrm{r}$.

Step 4. If $j=0$ and $k \geq 1$, there is no string which is a subsequence of X_{i}, a suffix of Y_{j}, and has P_{k} as a subsequence. Thus, $\mathrm{M}[\mathrm{i}][0][\mathrm{k}]=-\infty$, where $0 \leq \mathrm{i} \leq \mathrm{m}$ and 1 $\leq \mathrm{k} \leq \mathrm{r}$.

Next, we will fill in the cells $\mathrm{M}[\mathrm{i}][\mathrm{j}][\mathrm{k}]$, where $\mathrm{i} \geq 1, \mathrm{j} \geq 1$, and $\mathrm{k} \geq 1$.

Step 5. If $\mathrm{i} \geq 1, \mathrm{j} \geq 1, \mathrm{k} \geq 1$, and $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}=\mathrm{p}_{\mathrm{k}}$, then $\mathrm{M}[\mathrm{i}][\mathrm{j}][\mathrm{k}]=\mathrm{M}[\mathrm{i}-1][\mathrm{j}-1][\mathrm{k}-1]$ +1 .

Step 6. If $\mathrm{i} \geq 1, \mathrm{j} \geq 1, \mathrm{k} \geq 1$, and $\mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}} \neq \mathrm{p}_{\mathrm{k}}$, then $\mathrm{M}[\mathrm{i}][j][\mathrm{k}]=\mathrm{M}[\mathrm{i}-1][\mathrm{j}-1][\mathrm{k}]+$ 1.

An Algorithm for the Constrained Longest Common Subsequence and Substring Problem

Step 7. If $i \geq 1, j \geq 1, k \geq 1$, and $x_{i} \neq y_{j}, x_{i} \neq p_{k}$, and $y_{j}=p_{k}$, then $M[i][j][k]=M[i-$ 1][j][k].

Step 8. If $\mathrm{i} \geq 1, \mathrm{j} \geq 1, \mathrm{k} \geq 1$, and $\mathrm{x}_{\mathrm{i}} \neq \mathrm{y}_{\mathrm{j}}, \mathrm{x}_{\mathrm{i}} \neq \mathrm{p}_{\mathrm{k}}$, and $\mathrm{y}_{\mathrm{j}} \neq \mathrm{p}_{\mathrm{k}}$, then $\mathrm{M}[\mathrm{i}][\mathrm{j}][\mathrm{k}]=\mathrm{M}[\mathrm{i}-$ 1][j][k].

Notice that Claim 3 implies that if a longest string which is a subsequence of $\mathrm{X}=$ X_{m}, a substring of $Y=Y_{n}$, and has $P=P_{r}$ as a subsequence exists then its length is equal to $\max \{|\mathrm{Z}[\mathrm{i}, \mathrm{j}, \mathrm{r}]|: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\}=\max \{\mathrm{M}[\mathrm{i}][\mathrm{j}][\mathrm{r}]: 1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}\}$. Hence a longest string which is a subsequence of X , a substring of Y , and has P as a subsequence can be found in the following steps.

Step 9. Define one variable called maxLength which eventually represents the length of a longest string which is a subsequence of X , a substring of Y , and has P as a subsequence and its initial value is 0 .

Step 10. Define another variable called lastIndexOn Y which eventually represents the last index of the desired string which is a substring of Y and its initial value is n .

Step 11. Visit all the cells of $M[i][j][r]$, where $0 \leq i \leq m$ and $0 \leq j \leq n$, in the last twodimensional array created in the algorithm above by using a loop embedded in another loop. During the visitation, if $\mathrm{M}[\mathrm{i}][\mathrm{j}][\mathrm{r}]>$ maxLength, then update maxLength and lastIndexOnY as $\mathrm{M}[\mathrm{i}][\mathrm{j}][\mathrm{r}]$ and j , respectively.

Step 12. After finishing the visitation of all the cells of $M[i][j][r]$, where $0 \leq i \leq m$ and 0 $\leq \mathrm{j} \leq \mathrm{n}$, we return the substring of Y between (lastIndexOnY - maxLength) and lastIndexOnY.

From Claim 1, Claim 2, and Claim 3, we have the following theorem.
Theorem 1. The above algorithm is correct and both the time complexity and space complexity of the algorithm are $\mathrm{O}((\mathrm{m}+1)(\mathrm{n}+1)(\mathrm{r}+1))=\mathrm{O}(\mathrm{m} \mathrm{n} \mathrm{r})$.

4. Conclusion

In this paper, we introduce a new problem called the constrained longest common subsequence and substring problem for two strings X, Y, and a constrained string P . We propose an algorithm with time complexity and space complexity of $\mathrm{O}(|\mathrm{X}||\mathrm{Y}||\mathrm{P}|)$ to solve the problem. In future, we will design new algorithms to improve the time and space complexities and find the applications of our algorithm in the real world.

Acknowledgements. The authors would like to thank the referee for his/her suggestions which led to the improvements of the initial manuscript.
Conflicts of Interest. The authors declare no conflicts of interest.
Authors' contributions. All authors contributed equally to this work.

Rao Li, Jyotishmoy Deka, Kaushik Deka and Dorothy Li

REFERENCES

1. A.Apostolico, String editing and longest common subsequences, in: G. Rozenberg and A.Salomaa (Eds.), Linear Modeling: Background and Application, in: Handbook of Formal Languages, Vol. 2, Springer-Verlag, Berlin, 1997.
2. A.Apostolico, Chapter 13: General pattern matching, in: M. J. Atallah (Ed.), Handbook of Algorithms and Theory of Computation, CRC, Boca Raton, FL, 1998.
3. D.Gusfield, II: Suffix Trees and Their Uses, Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology, Cambridge University Press, 1997.
4. L.Bergroth, H. Hakonen, and T. Raita, A survey of longest common subsequence algorithms, in: SPIRE, A Coruna, Spain, 2000.
5. F.Y.L. Chin, A. De Santis, A. L. Ferrara, N. L. Ho, and S. K. Kim, A simple algorithm for the constrained sequence problems, Information Processing Letters, 90 (2004) 175-179.
6. T.Cormen, C. Leiserson, and R. Rivest, Section 16.3: Longest common subsequence, Introduction to Algorithms, MIT Press, Cambridge, MA, 1990.
7. D.Hirschberg, A linear space algorithm for computing maximal common subsequences, Communications of the ACM, 18 (1975) 341-343.
8. D.Hirschberg, Serial computations of Levenshtein distances, in: A. Apostolico and Z. Galil (Eds.), Pattern Matching Algorithms, Oxford University Press, Oxford, 1997.
9. J.Hunt and T. Szymanski, A fast algorithm for computing longest common subsequences, Communications of the ACM, 20 (1977) 350-353.
10. R.Li, J. Deka, and K. Deka, An algorithm for the longest common subsequence and substring problem, Journal of Mathematics and Informatics, 25 (2023) 77-81.
11. C.Rick, New algorithms for the longest common subsequence problem, Research Report No. 85123-CS, University of Bonn, 1994.
12. Y.T.Tsai, The constrained longest common subsequence problem, Information Processing Letters, 88 (2003) 173-176.
13. P.Weiner, Linear pattern matching algorithms. In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, 1-11 (1973).
