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Abstract. Quite recently, Ouyang-Zhang proposed an intergsdjoproach to construct
uninorms via closure (interior) operators on a latahlattice. In which, they defined an
important closure (interior) operator by the notimuniversally comparable element when
the bounded lattice is complete. However, theirafpes are not well defined in general
when the bounded lattice is not complete. In tldpgy, we define a closure (interior)
operator on bounded lattice, and prove that theseators reduce into Ouyang-Zhang'’s
operators when the bounded lattice is completecelenr closure (interior) operator can
be regarded as the extension of Ouyang-Zhang'surdoéinterior) operator to non-
complete bounded lattice. At last, the uninormse=xponding to the closure (resp., interior)
operator are constructed and discussed.
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1. Introduction

Triangular norms (t-norms) and triangular conortrsofiorms) on the unit intervid, 1]
have been applied in many realms such as fuzzg [d§ifuzzy rough set-topology [8,12],
L-fuzzy covering rough sets [16] and fuzzy measategrals [10]. As a unification af
norms and-conorms, uninorms also play important role in maelgs.

Nowadays,t-norm andt-conorms have been extended frfin1] to more general
lattice-ordered structure (e.g., bounded lattideB,p,11]. Since 2015, the research on
uninorms has also been extended to the boundecel§®,7,13-15]. Among them, the
construction of uninorms on a bounded lattiteas always been a challenging problem
due to the poor structuresloEompared with [0, 1].

83



Shu-rur Xie and Ling-giang Li

Quite recently, Ouyang-Zhang [9] proposed an effecepproach to construct
uninorms via closure (interior) operators on a lmthlattice. In which, for a complete

(bounded) lattick , they defined a closure operatﬁn L — L and an interior operator

J:L = L asfollows:

OxOL M x ={aDUC(L)|azx} Ux={aDUC (L) la<x} .

The operatorsU and 1 play important role in [9], two-thirds of the Iisgure is

devoted to these two operators and the associaiedrms (indeed four uninorms are
constructed by them).

Notice that whenL is not complete, the two operatoﬂsU (and so the resulted

uninorms) may be not well defined sifftex and U x may not exist. Hence the main aim

of the paper is to extend these two operatfirs} from complete lattice to arbitrary

bounded lattice— the unified lattice environmenpeoted in [9].
The contents are listed as below. In Section 2regall some concepts and symbols

as preliminary. In Section 3, we define a closyperator ﬁ (resp., interior operatoﬂ)
on a bounded latticd. and prove thatﬁ:ﬂ (resp., HZU) when L is a complete

lattice. Henceﬁ(resp.,ﬂ) can be regarded as the extension of Ouyang-Zhamasure

operator i (resp., interior operatoﬁl) from complete lattice to bounded lattice. In

Section 4, we discuss the uninorms constructedibglosure (interior) operator. Of course,
these uninorms can be regarded as the extensior@@ugding-Zhang's uninorms on
completed lattice. In Section 5, we make a conalusi

2. Preliminaries
By a lattice L we mean a quadrup(&, <, [0, [J), where (L, <) is a partial order set and

for anyX,y LIL , the meetx L]y and the joinX L]y always exist. A latticeL is called

bounded if it has a top element 1 and a bottomef&y In addition, a latticd- is called
complete if for eachA [ L, the meet[JA and the joid]A always exist. A complete
lattice is naturally a bounded lattice.
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In this paper, we always assunhe is a bounded lattice unless otherwise stated.

For a,b 0L witha <b, we define the subinterval@, b],[a b),(a,b) as
[ab] ={x OL|a<x <b},[ab) ={x OL |a < x<b},

(ab]={x OL|a<x <hb},@b)={x OL Ja<x<b} .
Definition 2.1.[2] Let[a,b] be a subinterval oflL .

(DA function T :[a,b]x[ab] -[ald is called at-norm on [a,b] if T s
commutative, monotonic, associative and has neatemhentb. When [a,b] =[0,1], i.e.,
[a,b] =L, at-norm on [a,b] is called a-norm on L .

(2) A function S:[ab]x[abl —[ald is called at-conorm on[ab] if S is
commutative, monotonic, associative and has neatemhenta . When [a,b] =[0,1], i.e.,

[a,b] =L, at-conorm on[a,b] is called &-conormonL .

Definition 2.2. [7] For e JL, a functionU : L xL - L is called a uninorm orl if
U is commutative, monotonic, associative and hagraleeiemente .

Definition 2.3.[5] (1) A function C : L — L is called a closure operator dn if for any
X, yOL:(C)x<CKx);(C2) C(xHy)=C(x)UC(y);(C3) CCk)=C ().

(2) Afunction | : L — L is called a interior operator oh if for any X,y [JL:

(1) x=1x);(12 1 xOy)=1e)Tl(y);a3) 1 (x)=1(x).

The following proposition shows that each closyperator (resp., interior operator) can
generate @&-conorm (resp.t- norm).

Proposition 2.4. (1) ([9] for € = 0) For a closure operatdC :L — L andellL, the

function S_ :[e1]x[61] - [61] determined by
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_ | x Oy, eD{x y} ;
Sc(xy) = {C(x) OC(y), otherwise

is at-conorm on[g 1].

(3) ([9] for e =1) For a interior operatorl :L — L and elJL , the function

T, :[0.e]x[0,e] ~ [0,€] determined b, (x,y) :{T(S)yﬁl(y) st?“{;:"‘}’/'i’e

is at-

norm on [0,€].
Ouyang-Zhang shown that one can construct uningraslosure and interior operators.

Theorem 2.5.[9] Let C : L — L be a closure operatoe L1L and

T :[0,e]x[0,e] - [0,e] be at -norm. Then the functiod) .. :L XL — L determined

by
T(x,y), xyOd [@& ]
o oy X0 (&0 [@]
cr WY =ay xO [ y0 [@]

C(x) OC(y), otherwise.

is a uninorm onL has neutral elemers .

Theorem 2.6.[9] Let | :L — L be ainterior operatore [IL and

S:[el]x[e1] - [&1] be at-conorm. Then the functiot), ; :L xL — L determined

by
S(x.). xybd,1]
0 _y’ XDQ,].:VDQ’:L]
s0Y) = X, xUOd,1y0d,1]

I(x) Ol(y), otherwise.

is a uninorm onL has neutral elemerg .
In [9], Ouyang-Zhang introduced the notion of umdadly comparable element ik . For
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X,y UL, we sayx is comparable withy if X <yory <X, otherwise we say is not

comparable with y and denoted it ay . If x is comparable with any[1L , then we say

X is an universally comparable elementlin. The set of all universally comparable elements

in L is denoted byUC(L) ::{x 0L | x is comparable witly [ L} When L isa
complete lattice, Ouyang-Zhang defined new (int¢itosure operator vidJC (L ).

Definition 2.7. ([9]) Let L be a completed lattice. The functiods U: L — L defined by

OxOLMTx ={aDuc(L)|azx} Ux =0fanuc)la<x}
is a closure operator and interior operationlonrespectively.
Obviously, the operatoréT, U may be not well defined ilL is not complete. So it is a
natural requirement to extend them from compldteckato non-complete bounded lattice.

3. The closure (interior) operators on a bounded ktice via UC(L)

In this section, we shall extend Ouyang-Zhang'sule (interior) operator by two approaches
s.t. they can be defined for any bounded lattice.

Proposition 3.1.Forany A JUC(L), if DA, A exist, then CA, JA OUC(L).

Proof: Let A JUC(L).

(1) Let A exist. Takea := [JA and b[JL , we check thata is comparable with
b. Obviously, if A =0, then 1 = DA JUC(L). So we assumé is nonempty.

Case 1:There existsx JA,s.t. X <b.Thena <x <b, andsoa <b.

Case 2:There exists noXx 1A, s.t. X <b. Then x>b for any x JA since x
is comparable withb, and soa = DA =Db.

(2) Let LA exist. Takea := [JA and b JL , we check thata is comparable with

b. Obviously, if A =0, then 0 = DA OUC(L). We assume thaA is nonempty.

Case 1:There existsx A, s.t. X 2b. Then we havea =X =b, and soa=b.
Case 2There exists nox JA ,s.t. X =b. Then x<b forany x [JA since x
is comparable withb, and soa = A <b.

Hencea = A JUC(L)and a = A JUC(L).
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Corollary 3.2.[9] If L is complete, then solkC (L) with the inherited order froni. .
Proposition.3.3.Let X,y [JL.

@ 1f x<y,then{aOUC(L)|azx} O{aDUC(L)|azy}.

(2) If x||y, then
{anuc)lazx} ={aDuc()la>x} ={anuC ) la>y} ={a0UC ()azy}

3 1f x <y, then{aDUC(L)|a<x} OfaOuC(L)lasy}.

4 If xy, then
{anuc)lasx} ={aDuc()la<x} ={aDuC()la<y} ={aOUC ()a<y}
Proof: (1) and (3) are obvious.

(2) Suppose thate||y. Then for anya OUC(L) with a = x, we have a>x

(otherwisea = x means thatx is comparable withy). By a is comparable withy
we havea <y or a>y. Butif a <y, then together withx<a we have X<y,

which contradicts withx [y . So, a>y . Now we have proved that

{anuc)lazx} ={anuc(L)|a>x} O{aOuc)la>y}.
Similarly, we can prove that
{anuc)lazy} ={anuc)la>y} O{aDuc L) la>x} .
A combination of the above two inequality, we det tlesired equality.
(4) Suppose that||y. Then for anya OOUC(L) with a < x, we have a<x

(otherwisea = x means thatx is comparable withy). By a is comparable withy
we havea =y or a<y. Butif a =Yy, then together withx>a we have x>y,

which contradicts withx ||y . So, a<y. Now we have proved that

{aoucw)lasx} ={aDuc()a<x} D{aDUC()la<y}.
Similarly, we can prove that
{anuc)lasy} ={anuc()la<y} O{aDuc L) la<x} .

A combination of the above two inequality, we det tlesired equality.
In the following, we discuss the closure operatoadounded lattice WidC (L) .
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Definition 3.4. A function M: L — L is defined as:[x OJL

fiy = D{aDUC(L)|a2x}, D{aDUC(L)|a2x} exists
%, otherwise.

Remark 3.5.When L is complete (particularlyL. is finite), then UA, UA always

exist for any A DUC(L). In this case, the functiol=1 .
Proposition 3.6.The function ﬁ: L — L has the following properties.
(1) For x OL,x <M x. (2) For x OL, if x OUC(L), then fI x =x .

(3)For x OL,if Ofa0UC(L)|a2x} exists, thenfl x DUC(L).

@ ForxOL, Mx =N x. &)1 x <y implies T x <Ny.

Proof. (1) and (2) are obvious, and (3) follows by Protiosi3.1.
(4)Let X LIL, we divided into two cases .

Case 1: Ofa DUC(L) |a 2 X} exists. Then it follows by (2), (3) thafi Tl x =Tt x.

Case 2: D{a OUC(L) |a= x} not exists. Thefl x =x and so fift x =M x..

(1) Let x £y, we divided into four cases to prove thﬁtx sﬁ y.

Case 1: D{a OUC(L) |la= X} and D{a OUC(L) |a= y} exist. It follows by
Proposition 3.3 (1) that x = D{a OUC(L) |a = X} < D{a OUC(lL)|az= y} = y.

Case 2: D{a OUC(L) |a= X} exists and D{a OUC(L) |a= y} not exist. It
follows by (3) T x DUC(L),so T x <y or x>y,

tet x = 0{aDUC(L) |a 2 x}, thefa DUC(L) |a 2 x} O fa DUC(L)
|a =y} . Then by Proposition 3.3(1{a OUC(L) |a= X} = {a OUC(L)la= y} ,

which implies that D{a OUC(L) |a= y} exists, a contradiction. Hencl x < y =N y
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because D{a OucC(L) |a= y} not exists.

Case 3: D{a OUC(L) |a= X} not exists and D{a OUC(L) |a= y} exists.

Then ﬁx =X sysﬁy.
Case 4: D{a OUC(L) |a = X} and D{a OUC(L) |a = y} not exist. Then

fix=x¢ y =} y.

Theorem 3.7.The function ﬁ L — L isaclosure operator.

Proof: By Proposition 3.6 (1) (4), we only proi&,y [JL, i xof y =f (x Oy).
(1) xis comparable withy . It follows by the order-preserving Qzﬁ that

ﬁxDﬁy:ﬁy:ﬁ(x Oy) or ﬁxDﬁy:ﬁx:ﬁ(x y)

(2) x ||y . We divide it into three cases.
Case 1: D{a OUC(L) |a = x} exists. Thenfl x OUC(L) is comparable with

Yy, SO ﬁx >y (otherwise, we havex sﬁ X<y, which contradicts withx ]y ). It
follows that I x = x Oy, and so i x =Mt x >f (x Oy) , that meand] xDﬁy

>fi (x Oy) . Since i (x Oy) >t xofi y holds, then ! (x Oy) = xof y.
Case 2: D{a OUC(L) |a= y} exists. Similarly, i (x Oy) = xO 1t y.

Case 3: D{a OUC(L) |a= X} and D{a OUC(L) |a Zy} not exist. From

X [y and Proposition 3.3(2) we obtain
{anuc)lazx} ={aOucq)lazy}.

It follows by
{anuc()lazx0y} ={fanuc)lazx}n{anuce)lazy}

90



On Constructing Uninorms via Closure (Interior) Operators on a Bounded Lattice

Thafa DUC(L) a2 x Oy} ={a0UC(L) |a2x} ={a0UC()]a =2y} S0
D{a OUC(L) |a=x Dy} not exists. Hench xDﬁy =x Oy = (x Oy).

A combination of the above (1)-(3), we show thaty [ L,ﬁ x0 1 y = (x dy).

Example 3.8.Let L =L, UL, UL, UL, UL and
" BN / - :d\ /e
f
< L, =[0,1) with the usual orderL, = (2, 3] with the usual order;
> L, :{m +n | mn0 (1,2} with m +nji<m_ +nj iff m <m,n <n;

< x<y forany x UL y L 1,234

ol =
It is easily seen that. is bounded but not complete (for exampl§l, 2) and [{1,2)
not exist), andUC (L) ={D,C} Ulo,npuU (2, SU{f o } . Furthermore:
(Lfor xOL,, D{y OuUC(L) |y = X} exists, andft x =c if x D{a,b} and
ﬁ X =X otherwise
(2) for x OL,, Ry OUC(L) |y 2 }exists, andfl x =x :
not exists, and sdl x = x ,

(4) for x OL,, 0y OUC(L) |y =

{
(3 for x OL,, O{y DUC(L) |y = X
{ X
(5) for x 0L, Of

}
} exists, andﬁ X =X,
yOUC(L) ]y = x} exists, andfl x == if X D{d,e} and

1 x =x otherwise.
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Cc, X D{a,b} ;
Hencel X = ., XD{d,e};
X, otherwise

Similar to closure operator, we cartend Ouyang-Zhang’s interior operatar s.t.

it can be defined for any bounded lattice.

Definition 3.9. A function U: L — L is defined as:[x O L ,

= {D{a OUC(L) |asx}, D{a DUC(L)|asx} exists
Ux = .
X, otherwise.

Theorem 3.10The function U L — L is a interior operator.

Proof: It is similar to Proposition 3.7.

4. Uninorms constructed by the closure (interior) perator via UC(L)
In this section, we shall extend Ouyang-Zhang'sstrmictions for uninorms vi&JC (L)

from complete lattice to arbitrary bounded lattice.
From Theorem 2.6 and Theorem 2.7 we know that wiecoastruct uninorms from

closure (interior) operators compatible withC (L) . Indeed, we may construct at most
twelve uninorms as the following three theoremsasho

Theorem 4.1.Let T :[0,e]x[0,e] - [0,€] be at-norm ande [JL . Then the function

T(xy), xyd0el

| - _y, xUO [OelyD [Ce]
Ujp tLXL L determined by, (xy) =1 x 0 [Cely O [Oe]

fi
i xOfty, otherwise.

is a uninorm onL has neutral elemenrs .

Theorem 4.2.Let S:[gl]x[e1l] - [€1] be at-conorm ande 0L . Then the function
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S(xy), xyOg,1]
, Ue,lly U ¢,1]
Upg L XL — L defined by (x,y) = i iD:,l}zﬂi,l}

i,
Ux0ly, otherwise.

is a uninorm onL has neutral elemerg .
From Proposition 2.4 (1) and Theorem 4.1 (respp@®sition 2.4 (2) and Theorem

4.2), we obtain the following corollary.

Corollary 4.3. Let e O L
(1) The functionUﬁT :LxL - L determined by
"l
Uxoly, xyO][oe);
U 2 x=eandyOLor xOO [ and yO [@ ]
- (X, =
m( Y) X, y =eand x OL,or yJ[0e)and x O [0g];

ffxof Y, otherwise.

is a uninorm onL has neutral elemenrs .
(2) The functionUaS_ :LxL - L determined by

n

Dﬁy, xy O e,1]
x=eand yOLor xO & ,1and y O € ,1]
y =eand x OL,or y [ (,1]and x O B, 1];

Ixol 2 otherwise.

X < =0
x

u Is. (xy) =

is a uninorm onL has neutral elemerg .

Remark 4.4. If L is complete, thenUﬁ’T :Uﬂ’T ,Ua’S :Uu,s ’Uﬁ,Tﬂ :Uﬂ,m and
U@,sﬁ =U . . In this case, Theorem 4.1, 4.2, and Corollary (4)3 (2) degenerate as
Theorem 4.7, 5.6, 5.8 and 5.10 in [9], respectively

5. Concluding remarks
In this paper, on a bounded lattlce we defined a closure operafband an interior

operator{l, and discussed the uninorms constructed by theenvéfified that wheh is
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complete, it holds thé}:ﬂ andﬂ:U . Hence our study generalizes and enriches Ouyang-
Zhang's work on complete (bounded) lattice in [9].
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