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Abstract. Other than the individuainachine learning models' capabilities, the weighted
voting ensemble (WVE) technique relies on appragriseight assignment in order to
significantly realize prediction performance impeovent. Often evolutionary global or
grid local search heuristics are being appliedsiach a challenging optimization task.
However, these techniques do not guarantee opgiohation finding. In turn, the surprising
outstanding successes of brute exhaustive seaodedure in producing similar results
shed light on its significance and the need to@kjik possible weights solutions search
space(s) with corresponding sizes as a key detarmifactor for implementing a
successful brute search procedure for finding cgitMdVE solution with a trade-off the
computational efficiency. This paper formulatesaagmptotically WVE weights domain
constraints optimal 1EX(-)Z initial term-based arithmetic sequences initidiaa
function, and then a computational multi-precisisearch space-based generation
algorithm is developed to find optimal WVE solutias part of the brute exhaustive search
procedure. It took 45 minutes for a proposed alforito generate 133,192 combinations
and find the optimal solution in weights space m&gsion 0.01.

Keywords: Arithmetic sequences, brute exhaustive searchiclsegspaces, artificial
intelligence, machine learning, weighted votingesnbkle, weights precision.
AMS Mathematics Subject Classification (2010): 68T20

1. Introduction
Machine learning (ML) ensemble model constructias been implemented in several
real-world applications due to their prospectivpasiority in performance as compared to
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individual ML models, for that reason, schemesdb€&have widely been applied in several
studies related to high-performance ML model immatations using ensemble learning
strategies. In particular, weighted voting ensend¥E), among other ensemble schemes
is an ensemble combination strategy that treata@dlels as unequal and weighs their class
probabilities prediction, an act which have theioettand empirical lead to extensive
appreciation due to observed significant modelgrerince improvements by WVE, on
the contrary to its former variant, i.e. simpleimgtwhich assumes all models to be equal

[1].

On the one hand, while the key success of WVE'kighly dependent on the
challenging task of assigning appropriate weigbtdts base ML models predictions
[1,2,3,4,5], various state-of-the-art evolutionatgorithms (EA), greedy search (GS) and
brute force (BF) based boundless search heurigtithadological procedures are being
developed and applied in various WVE optimizatigpeximents to find deemed optimal
weights.

However, although both the stochastic populatioseaevolutionary and greedy-
based search heuristic procedures are often mficeeef than brute exhaustive search,
they may sometimes not guarantee to achieve obbtgdiimum [6,7], whereas greedy and
its variant implementation, such as the greedyoanzied adaptive search which have been
used by (8) may face a hill climbing problem, tielationary extremums may be caused
by its population-based stochastic search heurigtiplementation which may
probabilistically select at that one time from ayvenfit initialized genes chromosomes of
the creature being optimized [9], among other thimgs such, as observed in [10], the
surprising outstanding successes of the systerbatie force-based exhaustive search
counterpart in producing optimal WVE models confggion sets with predictive
performances similar to those created by evolutipbased optimization procedures in
conjunction with its theoretical guarantee for firglan optimal solution through a search
across systematic search spaces [11], it may beooperative to implement the brute
exhaustive search procedures, as given the recuigaccomputational effort is available,
it guarantees exhaustion of all candidate solutmabinations [11,12], for optimality
search problems, such as this of finding the ap@tEpweights for the most accurate
WVE, at a reasonable efficiency tradeoff when theerded global optima solution
estimations has been defined as a key requiretieatis, must occur.

Therefore, given the significance of search spategtimization procedure, this
paper presents a brute exhaustive search heumigtiementation for optimizing weighted
voting ensembles in multi precisions local seanghcss formulated from a 1EXP(?)Z
Initial-term based arithmetic sequence and to nettire deemed optimal weights
configuration, particularly emphasizing on a sarytacross multi precision search spaces
for a systematic brute exhaustive based WVE opétida procedure implementation, as
an advancement as a contribution to the existing®WALE models optimization scientific
knowledge body. Specifically, a mathematically @&finction for computing as search
spaces represented by multi precision weightsatteahsymptotic optimal to WVE weights
domain constraints was derived. Then, an algoritimplementation of the function was
developed to computationally generate multi precisiveights as search spaces for
optimizing ensemble base members using brute séasbhique. Finally, the performance
of the proposed function algorithm in formulatingultitprecision search spaces for
effectively finding the optimal WVE combination asconfiguration set of the individual
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base expert's weights coefficient values was evatlja with an objective to maximize
accuracy.

The rest of this paper is organized as followsptra2 is preliminary on ensemble
learning, WVE, and brute exhaustive search tectasigohapter 3 presents the materials
and methods used to develop the proposed weiglaragon algorithm solution for the
brute searching procedure, chapter 4 presentsiaodsdes the results of the experiment
carried out to evaluate the proposed algorithmtewiuand chapter 5 concludes the paper
and provides recommendations of future work.

2. Ensemble learning

Ensemble learning in ML is a method used to comtesalts of various ML homogeneous
or heterogeneous hypotheses or base experts’ pioedithat answer the same question in
order to have more predictive accuracy [13,14,h8)e theoretically and empirically
proved to have potential for improving the predietperformance of individual learners
by combining their predictions, through an enserinhetion of all base members, and the
ensemble error becomes a decomposition of avenagaedual members errors essentially
to compensate for the lower average accuracy dviththl members by the higher
disagreement weight the ensemble as long asdrisat [16,17,18].

2.1. Weighted voting ensemble (WVE)

While several alternative implementations of ML@mbles could exist, model predictions
or voting are the two common ways to combine sitiglee model predictions, whereby
averaging mainly reduces variance. Voting seldatsctass mostly predicted by induvial
models. Most importantly, as presented in [19], YW¥E whose output y(x) can be
expressed through equation (1), is an improvedamarof simple voting which was
introduced with an understanding that differentivitthal models to form an ensemble
cannot in most practical cases have same influgitban that formation, in turn specifying
a weight coefficient often between 0 and 1 for @aeimber which can be same or different
depending on optimality of the ensemble thereofw@ndse total weight summation should
be equal to one as in equation (2) can provideebettedictive performance, unlike in
simple voting which barely assume models are €@@g21,22,23].

yOO)=argmaxzi; wXA(Ci(x)=) (1)
“where y of all the unknown instancem the test sets are evaluated as the argmaxdanct
of the respective index with the largest value flamay A = {1, 2, . . ., M} denotes the set

of exclusive class labels and XA indicates the ati@ristics function that considered the
predictiong € A of a classifier<j on instances and create vectors where the j cuates
take values of one and the remaining takes theevaiizero [19]. Andw: which is the
weight of modelCjis constrained by equation (2),

Y, wi=1, w>0,vi=1,....k, @)

Whereby k is the variable representing the indeth e product of the WVE’s base
classifier's probability prediction and its corresgling weightwi.
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2.2. Brute exhaustive search algorithm
Nearly all science and engineering fields use $eatgorithms, which automatically
explore a search space to find high-performingtamis [24]. Brute or exhaustive search
algorithm is a set of instruction used to find oml solution by examining all possible
solution combinations. This search process is Imatt new at all, it has been applied in
several optimization problems to search for thetrdeemed optimal solution [12,23,25].
With respect to WVE’'s optimization, the brute-feror exhaustive search
algorithm have also been used in various studiks,ih [22] were brute search was
implemented to perform best ensemble model sefetbiintegrating capabilities of CNN
architectures and ensemble learning for decoding Eignals collected in motor imagery
experiments. Also, in [26] static and dynamic pceali weighting strategies were
implemented and tested to improve the analog ensepdrformance for wind power
forecasting at on and offshore wind farms by usirgrute force search procedure with
error minimization over all possible predictor cdndiions. Usually, the general basic
algorithm that follows an exhaustive or brute fasearch require two main stages: namely,
Listing all the possible candidate solutions inyatematic way, and checking for the
optimal solution and reporting it [12]. While theain disadvantage of brute exhaustive
technigue being its requirement for massive contfmrtal resources in order to find
solutions in very large search spaces and which swagetimes makes it slow and
infeasible [27], a drawback which can be addre&sedsing the search space reduction
and algorithm parallelization strategies such asguparallel CPU-GPU computing
structure. Its key advantage being the theoresicaplicity in implementation and ability
to always identify global optimal solution givennaputational resources are available [14],
with which may make this algorithm be deemed as@lghoice especially when it will
not require days, months, or years to locate theired solution in a real-life optimization
problem.

3. Materials and methods

This study used ML ensemble techniques, brute estiveuoptimization to implement the
optimal WVE solution. Also, the study applied mattaical linear algebra vectors and
matrices, as well as arithmetic sequences weretos#gkign and implement the proposed
algorithm. Finally, laboratory experimentations weperformed to evaluate the
effectiveness of proposed solution in optimizing Béfor soil fertility stratus prediction
based on a real world agricultural soil chemicalpgrties ML dataset, using the proposed
algorithm’s weights coefficients matrices.

3.1. Development of the 1IEXP(-)Zsearch spaces based computational brute
Exhaustive WVE Optimization Algorithm

Lemma 3.1. From equation (1) in sub section 2.1.7. of theghid voting ensemble
scheme for model performance improvement, If theBAd@mbination equation (1) that is
described by [19], when expressedrasquation (3) of its matrix fornd, that expresses a
mathematical system of linear equation’s that camerated through matrix operations
to compute the overall prediction outcomes for 8AME’s combinations as a summation
of the product of weights coefficients Wi and j @axperts class probability predictions
C1toCjon a datasdd havingd unseen targets instances valwgsgere i > 1, and j > 1.
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WiC  WiC WiC3 WG 1
WiC1 WGy W3C3 WG
Y= | W€ W3C W3C3 WG| (3)

|_Wicl WiC  WiC3 WiCjJ

Thereby,Y can be compared against true classes to scoqgrédetion accuracy of the
WVE, which for all other possibly available WVE cbimations, the optimal set is chosen
based on the one which satisfies an establishedriarisuch as error minimization,
accuracy or other performance measure maximizasam objective function.
Proof: The WVE matrix form in equation (3) has been reddby [19]. Where the study
referenced values of the weights coefficients d&snation of the individual WVE base
learners f1_score performances for evaluating thig@ency of individual learners in the
ensemble during training.

In addition, by using equation (1) of the WVE sctieein the sub section 2.1., or
its corresponding matrix form, the WVE can alsaégresented into the basic system of
linear equations defined in [28,29], as

Yi=WC +WiCo +WiCa+ vovvvevvivnnnns + WC;
Yo2=WiCy + Wolo + WoCz + ..vvivianen. + WC
Y3=WC1 + WaC2 + WaC3 + ..evviininnnns + WG
Yi=WC1+WC+WCs+ ..evennnnnnn. + Wwicj

W; W1 Wp W Cy
Wy Wy Wy W, C
Y[k]= [W2 Wz W3z W+ |C3| (4)

v w w wl lg]

3.1.1. The proposed multi precision search spacewxifnulation function

In general, the generation of a WVE of ML class#imay consider mostly two phases that
are i) Using various candidate ML algorithms to gate potential base members’
classifiers that are to be used to form the WVE lmioations, and ii) selection of base
models optimal weights based on the WVE combinatjpounded by a accuracy
performance criteria.

Proposition 3.1.1.If instead an ordered weights coefficients matNji][n] can be
automatically generated from the permutation oéglicit vector W[n]that isreferred to
as the search spacgsandSpz. herein, of weight values that satisfy the WVE weights
coefficients domain constraints in equation (2)thva variable matrixC[j][d] of j base
expert’s class probability predictions on datd3ebntaining d total instances. Such that
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the resultant WVE combination k constant predictiomatrix Y[K][d] or Y_pred, can be
obtained from the product of the ordered weigbtsfficients matridMK][ n] and variable
matrix C[j][d] as shown in equation (5), which is augmented femaation (4) with the
appending of the dimension of the dataset instandes practical optimization purposes

YIK][d]=

Kywy - KWy
i o

Cily - Clld]

kewy - kewil LGla o+ Glg
At that junctureassuming that theariable matrix C[j][d] of m classifiers class probability
predictions on instancdsof dataset D with length d are provided, and aalization
function for explicitly formulation of/alues for generating the weight coefficients nxatri
WK][n] which satisfy WVE weights constraints in equati@) ¢an be derived and
developed as part of an automatic weighting vajeeeeration algorithm, then a Brute-
exhaustive optimization procedure can be appliesetrch one optimal combination set
from the automatically created WVE combinationgdpptons matrix in equation (5). This
whose general form is that in equation (3). Wheregsation (4) serves to compute the
general form in equation (3) as a product of thehefweight coefficientaMK][n] and
variable matriceC[j][d] of j individual classifiers probability pradtions onsupplied
dataset das represented in equation (But rather this time, theveight coefficientsis
automatically generatedhence the complete WVE general form in equat®mwll be
automatically generatett is to be proved that the general WVE combmatinatrix form
representation in equation (3) can be automatigdiyerated. In such, specifically for
practical optimization purposes, brute exhausta@&ch can be automatically applied as
long as dataset D with instances exist.

Proof: Frst, the variable K which represents the combaraicounts is introduced into
equation (3) to obtain a new representation forim &gjuation (6),

kiwic; - k]_WnCJ d
YiK=| [ ] ©6)
G I G |

kew,cp - kkW]_CJ d

Then in subsequent sub sections 3.1.2, and 3.HiBcdion is derived to initialize the
weights variable values, and incorporated as dattegproposed “1EXP(-)Zinitial term
based arithmetic sequences multi precision segaxtes algorithm function for systematic
brute exhaustive optimization of intelligent sm#MVE (1EXP(-)Z-tASMPSS-BEO-
isSWVE)”.

3.1.2. 1EXP(-)Z-rASMPSS-BEO+sWVE weight coefficients values formulation
function closed loop equation

Whereas, as observed in [30], Taylors series ctandfe used for the derivation of
algorithmic system’s closed loop equation that egpes a particular problem domain.
Herein, through lemma 3.1 and proposition 3.1.ithmetic sequence are used as a basis
for the search space generation. These were agditallows: A search space referenced
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by a positive integer denoted &S which is first set wittZ"1 to represent the search space
1, whose precision is the first teagof an arithmetic sequenéein equation (7),

A= YU (35 + g*n), (7)

3.1.3. 1EXP(-)Z based weights coefficients matrix and search spacematrix
computation

In order to automatically generate the search spaees, represented as weights
coefficients values matrix. Firdghe functionF(Z") in equation (8) whose computational
representation is provided by the function in eipmt(9), is proposed hereirto
automaticallyinitialize the first termsy's of the sequence, for all search spaces as seguen
referenced by Z+, thgositive integers greater than zero

F(Z*)=lexp (-) Z*, for Z+ > =1 (8)
F(Z*) or ap = lexp-Z*, or simply 1/(1epZ™), 9)

ThenF(Z") whichisa,from equation (9)is used t®serve as the basis for computationally
generating the respective second'tdermsa; to a, of the arithmetisequence by using
the arithmetic sequencettosed loop equatidrf10).

an =ao + dkn, (10)

Consequently, by substitutirag in the arithmetic sequence expressidnom equation (7)
by the proposed initialization function equation Y@lues, to obtain arithmetic sequence
Az+ in equation (11).

Ay, = YWD (1exp-7 + 1exp-Z*n), (11)
Whereas, values, to a,, are used herein to represent weights values rébaplgc
w1 to wi specifying the WVE weights values domain. the pgation of the valuesy to
a, as weightsvi to wn, to the list of WVE's constituting base modelsaiter performed to
complete the development of the proposed functigardghm for generating the search
domain as WVE combinations proposed in proposiidnl. This of which will be brute
exhaustively searchefinally, The weights coefficients values matrixsaarch space&z.
of K combinations is formulated as a permutatios@duencesz+ in equation (11) that
represents the automatically computed weightingesby the WVE's list of base model
Clj] in equation (12), to form the final automaticatignerated combinations matrix in
equation (13).

SPz.= permutation (Az+, C[j]), (12)

1 0. Levin, “2.2: Arithmetic and Geometric Sequentdsathematics LibreTexts, 2019.
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SPz.= permutation((’ ngl(lap-z *+ lep-Z* *n)),C[j]1) (13)

wherelL is the reciprocal of the initialized fractionallwa based on 1éZand Z+s greater
or equal to OA re-arrangement of the generated permutation sfoze , from equation
(13) in order of the dimensions of the variable nratepresenting available classifiers
class probability predictions would represemeighted output predictions for K
combinations aexpressed in equation (14).

Y, K1 kilexp-Zc, -+ kylexp-Z* ng
Ky

Y, Ki lexp-Z = ngg - kelexp-Zcgy
And by decomposing the matrix in equation (14) itd@onstant, coefficients, and variable
matrices as defined {i81,32] equation (15) is obtained, which computestiier constant
matrix as an output prediction as a product ofabefficients, variable matrices of the
general WVE matrix form in equation (14).

ylkl

kilexpzt - Kkjlexpz®x nl [C1
: - : ]* [ : ], (15)
C2

Yike| Llkilexpz®+n - ki lexpz™t

This of which when subjected ttass probability predictions atataset with d instances,
the vector Y or Y[K][d] of equation (15) could filabe calculated as the argument max of
the product of weights coefficient matrix and cifisss class probability predictions, which
is then scored for accuracy against the true mrggetobserved in the data set D with |
instances, for each k combination the accuracytispared with the previous maximum
score to pick it as a new maxim if the previousrigll otherwise the algorithm proceed to
the next combination iteration k. Until terminatsooonditions, the kth combinations with
maximum accuracy is return as optimal WVE combarationfiguration set.

Whereas the final automatically generated seargtbatations in equation (14) is
similar to the general WVE matrix equation (4) whigas decomposed from matrix (3) in
Lemma 3.1. In addition, as the WVE’s full-form miatin equation (13), and its
corresponding variable and constant matrices iatimu (14) are also similar to the WVE
matrix forms in equations (5) and (6) in the idifioposition 3.1.1. Then, it entails that
the automatically derived matrix form based ongraposed arithmetic sequences weights
coefficients formulation function can well serve fepresentation of K possible WVE
combinations in equation (1). Hence, the general BABbmbination matrix form
representation in equation (3) can be automaticaignerated. These could be
implemented, which can then serve as automatichstiot search space for brute
exhaustive search.

3.1.4. The complete 1EXP(-)ZrASMPSS-BEO1sWVE algorithm

A pseudo-code of the straightforward implementatiérthe derived 1EXP(-)Zinitial
term-based sequences formulation and weights caaffs matrix generation algorithm is
presented in Table 1. The algorithm execution strstep 1, in step 2, the first sequence
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or search space reference is set to 1. Repeatediysetp 3 until step 11, the search spaces
SPZ" are generated. In step 12 the brute exhaustiege is called to search the formed
search space SPZnd return an optimal weights configuration sefrfithe corresponding
SPZ" based on class probability predictiong][@]. In step 13, the next sequence is
initialized. In step 14, the algorithm checks ifestive criteria and computational capacity
are still not limited; the process repeats untii@i one or both of the termination conditions
are satisfied. Finally, it provides the optimizaticesults in step 15 before ending the
execution in step 16. Whereas IEEE’s mathematicgirocessor FPA units permissible
operation denoted by e substitutes ‘exp’ for pcattimplementation in the algorithm.

Table 1: The Complete 1EXP(-J2rASMPSS-BEOsWVE Algorithm.
Input: Base epxerts Probability predictions, true tau
Step 1:Start
Step 2:initialize search space precision (Z) =1
Step 3:REPEAT
Step 4. Compute first term of sequence asao =1e —-Z
Step 5. Initialize Search_space reference N = 1
Step 6: REPEAT
Step 7: Compute nth term an, an = (1e - Z) + ((Z& * N)
Step 8: Sequence &.Sequence+ an
Step 9: Increment N=N + 1
Step 10: UNTILN <=1ez
Step 11: SPZ = permutations(Sequence, E[ j])
Step 12: Brute_Exhaustive_ optimization(SRZ[j][d])
Step 13: IncrementZ=2+1
Step 14:UNTIL Z reach computational lim. or combination k
Step 15:Display optimization results
Step 16:End
Output: Optimal WVE subsets weights configuration

The 1EXP(-)Z-tASMPSS-BEOsWVE computational complexity was then
asymptotically analyzed by calculating the proposddorithms instructions lines
asymptotic execution time as follows: substitutthg complex for each execution line
from the algorithm in Table 1, the total complexiguld then represented as :

Total Complexity (TC) = F@ = {L}+H1}+{1}+{le-Z M{1+{L+H((1eZ %) + ((le-
Z)(N-1))} +H{1}+{1} +{leZ “P{I}H{1}H{1H{1}+H{1}+{1}

TC={11+{1e™pH{( (e™M)+(( @) (N-D] )}+{1e"} (16)

From equation (16), it can be seen that {1e”Nhé&highest order term, which is the worst-
case scenario. Therefore, the algorithm has a wasst scenario exponential complexity
of {1e"}. When this type of computational time complexityght be undesired in cases

where search space precision grows so large, ther ippund running time could even fast
be reached when the search spaces are integrédethénbrute exhaustive-based search
heuristics algorithm execution that would mainlysarfrom the size of ensemble base
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expert predictions to be weight estimated duringinggation. Whereby, algorithm

execution acceleration procedures namely, the @nstg of search spaces with weights
points, coupled with the vectorization of data cftwes thereof, and computation on
reasonable computational hardware resources wetetagacilitate for rapid execution of
the algorithm computations in attempts to provite tlgorithm execution run time
minimization.

3.2. Experimentation

3.2.1. Datasets and base ML models

As part of this study, the dataset used to expearinige algorithms effectiveness in
formulating search spaces on which the optimal ktsigf a WVE's could be estimated,
was primarily obtained from the Tanzania AgricuitiResearch Institute (TARI), under
the African Soil Information Services (AFSIS), amihistry of agriculture. The dataset
contained sixteen (16) features, 15 of which agek#ty soil chemical properties necessary
for the determination of fertility level as definéd [33], and the corresponding maize
yields in harvested tons estimates mapping as indebertility. With respect to ML
classifiers, a total of seven algorithms classifieere used, namely the support vector
machine  (SVM) [34], DecisionTreeClassifier (DT), BaianNB (NB),
KNeighborsClassifier (KNN), AdaBoostClassifier (ARlzost),
GradientBoostingClassifier(GB), and RandomForest§ifeer(RF) [35].

3.2.2. Performance evaluation

In order to evaluate the performance of the progppd§eXP(-)Z-tASMPSS-BEOsWVE,

an asymptotic analysis of its 1EXP(*)Znitial term based search space sequence
formulation function algorithm procedures codes wasformed to determine the
algorithm computational complexity. Furthermoree throposed algorithm’s hardware
clock cycles based execution times, and size cofditpleere obtained by executing it and
profiling its search space function on the Intel®re(TM) i7-8550U CPU @ 1.99 GHz
with 16 GB RAM, as well as in the Core i8 hardwaiith 64 GB RAM, 64-bit operating
system, which produced a result set constitutingjraflar results from Core i7, with more
additional better results due the Core i8 hardwameacity which permitted for more
computations. Accuracies and receiver operatingacheristic's area under the curve
(ROC AUC) of the WVE's found from search spacesagated by the proposed algorithm
were used to evaluate its effectiveness. Thestunotions of the basic confusion matrix
respective true positives (TP), false positiveg(EBe negatives (TN), and false negatives
(FN). Accuracy as defined in equation (17), is pneportion of all predictions that are
correctly identified as “Positive class” and “négatclass”.

Accuracy= (TP + TN) / (TP+TN+FP+FN), (17)

Whereas accuracy is the most intuitive performaneasure of model performance, the
area under the curve (AUC) of the ROC AUCs, whiochd multiclass problem can be
computed by equation (18), was used as the maisureaf effectiveness by observing
the scores of the various WVE that are estimateoh fihe formulated previously deemed
effectual search spaces that resulted from theogeap 1EXP(-)Z initial-term based
arithmetic sequences search spaces with accuradynimation as an objective function.
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AUC= =32 B (AUCGI+AUC(KI))), (18)

“where ¢ denotes a total number of classes, AU[K]jrepresent AUC having positive
class j, and negative class k” [36]. This of whietm also be plotted and presented through
ROC-AUC curves as false positive rate (1-specifjciigainst the true positive rate
(sensitivity) [37,38,39].

4. Results and discussion

Following multiple execution of the proposed al¢fum function and its overall search
heuristic procedure runs, the results for its bdth efficiency and effectiveness
performance evaluation could be presented hereointlie proposed 1EXP(-)Z
TASMPSS-BEOsWVE function efficiency and its brute exhaustiveast based
integration procedure effectiveness in optimizingr fhigh performance WVE.
Additionally, following an asymptotic analysis ohet proposed algorithm’s overall
sequences generation function of equation (11ylnsection 3.1.2., it could be seen that,
the 1EXP(-)Z based function would be mathematical validity é@mputing the WVE
weighting values combinations as expressed by thEWEXP(-)Z based matrix in
equation (14), or its corresponding weight coedfits values matrix in equation (15).

As shown in Figure 1 of the derived 1EXP(-)initial term based arithmetic
sequences formulation function expressions 3-D Hgcap display of its valid
computational space, portrayed asymptotic optimadithe WVE constrained boundaries
in equation (2). Whereas it can be observed theesegs initial term values represented
by the y-axis in Figure 1 may get smaller as mulha never equal to 0 on the y-axis,
hence the weights greater than 0 constraint isy&lwmaaintains through that presented
asymptotic characteristic, in turn the size of sdkquence may grow larger to as much as
the reciprocal of the 1EXP(-)s read form the x-axis based on the initializsglisnce’s
first term on the y-axis. Based on those facts, ghaposed function is considered
mathematical valid for an optimal algorithmic systeomputational implementation. At
that juncture a function for explicitly formulatingalues as weight coefficients W[K][n]
which satisfy WVE weights constraints in equati@) ¢ould be derived based on the
proposed 1EXP(-)Z initial term arithmetic sequences , then a baxieaustive
optimization could be applied to search one opticaahbination set, hence that function
provide for an algorithmic computational implemdiuta. As shown in Figure 1 of the
sequences formulation function, it is evident thatproposed weights coefficients values
formulation algorithm’s function is asymptotic apl to the WVE weights domain
constraints in equation (2), hence this study dedtmat it can be computationally
implemented to compute for the WVE combinationsdjmtions Y[K][d], which is
computed as the argument max function of the proofuareights coefficient matrix and
classifiers class probability predictions as présgim equation (15), which is then scored
for accuracy against the true targets as obsenvgtidata set D with | instances, for each
k combination the accuracy is compared with theipres maximum score to pick it as a
new maxim if the previous is small otherwise thgoathm proceed to the next
combination iteration k. Until terminations condiis, the kth combinations with
maximum accuracy is return as optimal WVE combaorationfiguration set.
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Figure 1: 1IEXP(-)Z based Sequence Initial term function asymptottmugdity to WVE
weights constraints

0.00 025 050 075 100 125 150 175
time (in seconds)

Figure 2: 1EXP(-)Z-wASMPSS-BEOsWVE sequences formulations total hardware
clock cycles time in the most stable search spefezence Z= 2

4.1. 1IEXP(-)Z-rASMPSS-BEO+WVE and optimization efficiency

Results of the algorithm efficiency are presenkégure 2 displays results of the proposed
1EXP(-)Z-wASMPSS-BEOsWVE sequences formulations total hardware execution
time profile in stable search space referente 2, the algorithm could be observed to
consume approximately 90 MiBs, with total optimiaatexecution time of approximately
1.7 seconds to formulate the sequences in for Isegrace with reference22 having
precision factor 0.01, in Core i8 64 GB RAM, whichaybe reasonable in WVE
optimization procedure.

4.2. 1IEXP(-)Z-rASMPSS-BEOWVE effectiveness

The proposed 1EXP(-JZrASMPSS-BEOsWVE was highly effective in formulating
multi-precision 1EXP(-)Zbased sequences that were processed to genenatie spaces
with varying combinations sizes in both search gpdcand 2, of which executions across
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referenced to these spaces were observably congeffgllowing execution of the
proposed implementation a countless number @<itwith 10 different sequence values
in search space one (1), 100 in two(2), and 10A0seiarch space three(3) where the
experimental core i8 64 GB hardware capacity litiota was reached to invoke the
termination criteria, as a result forming an incdetg search space which was stored in
log files. Among other reason, that could be exmdiby IEEE 754 standard for FPN
system’s FPA requirements specifying hardware’shmai-processor world bit size
memory limitations for FPA [40].

o1 W02

94000000

5040

20 133192

Initial Mitered

Figure 3: WVE initial and filtered potential search combimaiis in the stable domain
search space 1 and 2

As annotated by the search space domain 2 filmetbinations plot in Figure 3. It can be
seen that, unlike in search space 1, where fivastnod and forty (5040) combinations
were initially generated and filtered expressivieyyusing the WVE weights boundary
constraints in equation (2) as a reduction strategy lead into only twenty candidate
solutions, whereas these may be tractable byardlerror heuristic procedure, it would
be a tedious task to do the same in search spasas?the total number of generated
combinations grew exponentially to one hundred thirtly-three thousand nine hundred
and ninety-two (133,192) further filtered combioat of candidate solutions subsets
which is a reduction from the initial formed nindtur million (94,000,000) combinations
due the maximum weight coefficients value being st@ined to max of 1. Such
combinations would be challenging to formulate witha computational, algorithmic
implementation, such as the one proposed in thdysto effectively find optimal weights
configuration sets based on prediction accuracyopaance maximization as main
objective criteria through brute exhaustive seaigluy considering the available hardware
capacity.

In order to scrutinize the search space precidi@tteon the optimality based on
accuracies of the various best WVE subsets, thpogexl 1EXP(-)ZrASMPSS-BEO-
isWVE was executed in search spaces 1 and 2, whigh fegpective precision factors of
0.1 and 0.01. The partially logged combinationsewnprocessed independently of the
package where it could not complete execution Seapace reference*Z 3, with a
precision factor of 0.001. As observed in Figursehrch space with lower precision led
to lower WVE accuracies, unlike those with higheegisions which showed to produce
WVEs model with higher prediction accuracies. Thaist explains not only that refined
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solution values could be achieved in search spaithsnore higher precisions, but also it
represent a good indication about the effectivenéd®e proposed 1EXP(-)ZrASMPSS-
BEO-sWVE algorithm function in generating search spaxsene of the key requirement
for the successful execution of the consequentbgapcedure, as illuminated in [24], that
how search spaces are a determinant factor ahthveya significant effect in the overall
optimization algorithm procedures implementatiodrsas in finding WVE optimal subset,
other than its diversity and constituting indivilbase model accuracies.

Best WVE accuracies in Space Z+ and Z+2

o= 7+=1 |ower precision o= 7+=2 high precision

Accuracy

5

Ensemble ID

Figure 4: Best WVE accuracies in SpacéZland Z=2

Finally, as shown in Figure 5 of ROC AUC's plots fhe three base models WVE that
consisted of RF, SV, and KNN (See Figure 5 (a)jyelbas another with four base models
namely GB, RF, SVM and KNN (See Figure 5 (b)). Ehebwhich were brute optimized
in search space having 0.01 precision and scalghtgeicoefficient matrices, the
effectiveness of the proposed 1EXP{-}/ASMPSS-BEOsWVE algorithm in generating
effective search space with respect to the numibafE's base models could be inferred.

08

Sensitivity (TPR)

Sensitivity (TPR)

02 —— micro-average ROC curve (area = 0.92)
—— macro-average ROC curve (area = 0.83)
ROC curve of class LF (area - 0.83)
—— ROC curve of class MF (area = 0.82)
—— ROC curve of class HF {area - 0.82}

02

of class MF (area = 0.70)
= ROC curve of class HF (area = 0.62)

0.0 0.2 0.8 1.0

0.0 02 04 06 08 10

04 06
1 - Specifity (FPR)
1 - Specifity (FPR)

(a) (b)
Figure 5: Optimal WVE results in respective 0.01, and 0.08&jsons and scales search
space for three and four WVE base models ROC pludsAUC results
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It could be observed that, while the optimal WVEhnihree base model was good in
correctly predicted target classes low and mediuth respective ROC AUC scores of
71%, 70%, it almost guesses the high target cléts62% ROC AUC scores which is
close to the 50% (0.5) cut point. In the contréng one with four base models exhibited a
very good ability in increasingly discriminatingdaproviding correct prediction for all
low, medium, and high target classes with resped®@C AUC scores of 83%, 82%, and
82%. Whereas, as presented in the results, ROC idts of both these WVE's clearly
outperforms results in another study by [41], othan the increased WVE diversity, such
an achievement was due to the increase in theigahsearch space resulting from extra
permuted base model.

5. Conclusion

In this paper, a 1IEXP(-JZrASMPSS-BEOWVE algorithm for optimizing weighted
voting ensembles by using multi precisions seapeltas was proposed to generate search
spaces by using a 1EXP()iitial term based arithmetic sequences generdtination
algorithm which is mathematically valid to WVE whitg domain constraints.

The proposed algorithm was observed to be effedtifermulating multi precision
search spaces and finding appropriate weights garafiions sets across the 1EXP{-)Z
computationally generated multi precision WVE's doaxperts vs weights combinations
search spaces. Whereby, ninety four million (94,000) possible values were formulated
in the stable search space 2 whose sequence tgitialvalue is 0.01, with 100 values as
search space weights points, whereby by using(#ubase models, ninety four million
(94,000,000) combinations could be generated, thbgsh reduced through WVE weights
constraints, into one hundred thirty three thousand hundred and ninety two (133,192)
candidates. An optimal GB, RF, SVM, and KNN classf WVE could be obtained at a
score of 94% prediction accuracy, with 83% AUC scfar the macro average and 92%
for the micro AUC score, which was 6% higher thammeviously obtained RF, SV and KN
combinations micro AUC score of 86%. Nevertheleiss to massive computational
requirements that prematurely halts execution ardespace 3 using Core i8 hardware
with 64 GB RAM, with independent processing of ffaatially logged combinations to
find a combination of GB, DT, RF, SVM, and KNN differs scoring an accuracy of
98.98%. Therefore, while the proposed algorithm theen effectively to optimize WVE
combinations through its search space 2 and 3 genkweights coefficient matrices, it
cannot be applied to very large WVEs.

Future work could be to investigate metaheurigticsmproving the efficiency of the
proposed 1EXP(-)27rASMPSS-BEOsWVE algorithm. Also, to experiment
implementation of the proposed algorithm throughrqum computation in capitalizing
the rich qubit storage structures to deal with mgntiitations, and inclusion of large
WVESs optimization.
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