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Abstract. In this paper, the evolution of a dynamical systepresenting the population
growth of Mozambique is analyzed. The corresponedmtween the boundary value
problem and the integral equation is leverageditivess the issue of the local existence of
solutions to the boundary value problem. The caictuthat the function converges to a
function that is the unique solution to the bougdalue problem is arrived at by way of
constructing a sequence of approximations usingar®& method of successive
approximations and contraction mapping. The exptigefunction is globally Lipschitz,
hence uniformly continuous; however, its solutiaresl not converge to a fixed point
implying that the population will grow without bod# as +>00. The logistic model solves
T () = ¢, whence T has a unique fixed pajnthat is a continuous solution to the integral
equation and consequently to the boundary valuelgmo Therefore, population growth
is bounded. In addition, this function is locallypkchitz and, therefore, not uniformly
continuous.
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1. Introduction
In this article, the evolution of a system desdtillyy a dated vector of real numbers
x(t)eR™ is analyzed. Here the vector-valued function magie seXxRxQ intoR", i.e,
dxRxQ € R*1+P - R™ with x(t) = ¢(x%, t, a) gives the values of the state vector at any
timet as a function of the initial conditiorf ¢ R™ and a vector of parameters RP. By
assigning values tbgivenx®e R"anda € RP the time path of the system obtains [1]. In
this particular case, the system represents thelgkign growth of Mozambique.
Mathematical modelling, in particular, the expornantunction and the logistic
model of limited growth and some of the propertieserning differential equations, are
used in this paper. Specifically, the corresponddretween the boundary value problem
and the integral equation is considered. The caoityinof a function and Lipschitz
condition are also reviewed in a prelude to thallexistence and uniqueness of solutions
as well as contraction mapping concepts. The dad was obtained from the World Bank
database [2].
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2. Methodology
Consider a parameterized continuous time dynamsyetem which characterizes
population growth, given by

Z=f(xat) €N
where the functiorf maps the set XXxI into X, a subset ofR", that is, f: XxQxI <
R™P*1 - X € R™. As described in [3], a differentiable functigiit): J,, — X defined on
the interval, <1 with the property that for alt in J,, (¢(¢),t)eD and ¢'(t) =
flo(t), ¢, t] whereD is an open and connected sefRifit! is a particular solution of
equation (1). Withp(t) being a solution function ang ¢ J,, then by setting® = ¢(t) it
is the case that(t) must be a solution of the boundary value problem

X = f(x,at), x(to) = x° )

Its orbit through the poini{, t, ) induced by the corresponding solution function
p(®): d(tx%ty, ) is given by y(x%ty) = ¢([te, b)) = {xeX;x = (t) for allte
Jm(x% to.0) = (a,b)}, where ], (x°tya) is the maximal interval of definition. The
positive orbit through the pointx{,t,) is specified asy*(x°t,) = ¢([to,b)) =
{xeX;x = @(t), te[a,b) S Jm(x°to,a)} and the negative orbit given py(x°ty) =
p(a,ty] = {xeX;x = @(t),t £ (a,ty ] E]m(xo,tora)}. Note thaty(x°t,) = y+(x°,
tO) u y—(xO, t0) [4]

The problem of the existence and uniqueness otignkito the boundary value
problem is akin to determining the existence ariquaness of continuous solutions of the
integral equation, which is a solution to the baanmydvalue problem, there being a
correspondence between the boundary value probilemntlze integral equationn
particular, given a continuous functiof(x, t) in some domai® = XxI with the point
(x%to) in D for t €]y, the functionp:J €1 —» R" wheret, €] is a solution of the
integral equation

¢(0) = x°+ [ f(s,x)ds 3)
whose solution function is constructed recursiveting Picard’s method of successive
approximations to yield a sequence of functiphs}, ¢, (t) = x° + fti)[cbn, s]ds for
eachte] givend, (t) = x° [5,6].

Local existence and uniqueness of solutions ardiqgaged on a function being
continuous and satisfying the Lipschitz conditidn. particular, a function mapping
f: X" - Y™ atxeR" satisfies the Lipschitz condition if there is dghdourhood in the
open ballB (x°, £) and some constamt > 0 such that||f (x) — f(¥)|l < M||x — y]||, with
M being applicable in the whole interval. If thenttion is globally Lipschitz, then it is
uniformly continuous. Otherwise, it is locally Ligstz, that is,||f(x) — f(W)I <
M,llx — y|| and consequently not uniformly continuous. Hégds not a fixed value [7,8].
By definition a functionf: (X,d) — (Y, ) is uniformly continuous off € X if Vx, yeE
givene > 0 3 6(¢) independent ok such thats[f (x), f(y)] < € wheneverd(x,y) <
&(e) [9].

The lemma on local existence and uniqueness ofieofumakes it precise that a
solution to the boundary value problem in somemsigirhoods of° exists. Specifically,
given a function defined on a closed box bxBt,) = Bxxl, = {(x,t);|t —to| <
allx — x°|| < b} and some constant M 0 such that|f (x,t) — f(y,t)|| < M||x — y|| for
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all (x,t) and(y,t) in B(x°,t, ) then there is a numbkr< a such that the boundary value
problemx = f(x,t) with x(t,) = x° has a unique solutioh(t) defined on the interval

] = [to — h, to + h] with $(t) in Bx° vVt € J.Now consider a space of continuous real-
valued functions C(J) defined on the interval= [ty — h,ty + h] with ¢(t) in

B(x° ty) forall te]. Letp(t) = x° + f;f[go(s),s]ds v t ¢ J] and define the operator

T:C(J) = C(J). This operator is applied to obtain successivaréis approximation given
by the sequence of functiofig,,} defined for each in J by ¢y = x° and 1 () =
To,(t) forn =1,2,3,.... The functiong is a solution of the integral equation provided
thatT (¢) = ¢, meaning that it has a fixed point©f10]. Given a metric spad&, d) and
some constant the distance function giving the met(T,,T,) < cd(x,y) for all
x,y € X wherec € (0,1) ensures the existence and uniqueness of solufanfunction in
view of the fact thaT is a contraction mapping and therefore a fixedhpdil,12,16].

3. Analysis and results
Population growth is a function of tim@nd population: described by the equation

—=fx0) @)
where f: Xx1 € R"*1 - X € R". The assumption that migration does not affect the
system’s trajectory yields a function that dependsbirth rateb(t,p) and death rate
d(t,p), thatis, f(x,t) = b(x,t) — d(x,t). Given a functiorf(x, t) the evolution of the
system x(t)eR"™ satisfies the growth equatioh= (x,t)x which together with the
prescribed initial condition(t,) = x° yields the boundary value problem

x = (t,x)x, x(ty) = x° (5)

Assuming a constant rate of growth, that i&(x,t) = a V(x,t)e R**1, with

a € RP the following dynamical system obtains

X =ax x(ty) = x° (6)
wheref: Xx 2 € R™P - X € R" anda > 1 is the base of the exponential function and
x # 0. Thus the solution depends on the initial conditibe R" and a parametere RP
[13].

Showing that the function in equation (6) is gldpdlipschitz and, therefore,
uniformly continuous is straightforward. For thisrpose, leg > 0 be given and assume
that there exists some constant> 0 in the interval/,,[t,, o) satisfying the Lipschitz
condition. Then by definitionljax —ay|l < M|lx -yl = allx —yll/llx —yll <M =
a < M, where the derivative is bounded by a unique valuat every point in the
interval[ty, ). The function f(x) = ax is uniformly continuous since for all
X,y € [tg, ) and givere > 0 there is some numbéie) > 0 independent ok such that
If (x) — fF(M]l < & whenever|lx —y|| < §. Obviously, forM = 0,||x —y|| <0 <e.
Next, lete > 0 be arbitrary and choos¥e) = ¢/M. Then for anyllax — ay|| <& =
e/M itis the case thdlax — ay|| < M||lx — y|| < Me/M = ¢ and we are done.

Picard’'s method of successive approximations yieldsequence of functions
¢, () =x°+ X% ax™/n! to the unique solution to the boundary value [enob(5) as
n — co and satisfies this equation. Notice that theresduoat exist € (0,1) satisfying
d(T,.T,) < cd(x,y) for al xyeX since d[f(x)—f]= Ilf(x)—fOll =
la(f(x) = fO)Il <eallx—yll < ad(x,y) wherea > 1. Hence no fixed point implying
that the model predicts that population growthrnibaunded. It can also be said that the



Gabriel Jamo

system is not exponentially stable [14]. The exmtiaéfunction has been modified to take
into account the assumption that population groisthounded by some numbé&r> 0
such thatifv < &, f(x,t) > 0andf(x,t) < 0if x > ¢. It is generally assumed tHas a
linear function ofx: f(x,t) = B(§ —x) Vx e X S R™ wheref, & > 0 anda = B¢. Thus
the growth equation now becomes

x=(a—Px)x?=ax—Px* x(ty) = x° (7)
For small population size the population growtlyéserned by the exponential function
while for large size the terw? dominates with the result that population growgh i
dumped until it reaches[15].

This function is locally Lipschitz since by defiioib for anye > 0 there is some
constant, > 0 such thaf|(ax — fx?2) — (ay — By?) || < Myllx — y|| = ||(ax — fx?)
—(ay = By)I/lIx =yl < My < (a — 2x) < M. The slope of the function at any given
pointx° is bounded bya — 2fx) wherea andg are fixed positive parametess0 with
B « a, but it is not unique hendevaries in the intervdlt,, «). In order to show that the
function is not uniformly continuous it is necegsér negate the definition of uniform
continuity. In particular, we must show that given- 0 there isé > 0 such that for
X,y € [ty, ), |f(x) — f(¥)|| = ¢ whenever||x — y|| < 6. To proceed let > 0 and fix
some § independent ofx. Then ||[f(x) — fFW)Il = l|(ax — fx?) — (ay — By*) || =
allx =yl =B lIx? =yl = allx =yl = Bllx = yll llx+yll}. Now seta =[x —
y|| = a < § and without loss of generality let< y. Since||x — y|| one can also write
ly—x|| and so|ly—x||=a=>y—x=a=y=x+a. It follows that ||f(x) —
fOll=aa—Lalx+y)=>aa—PLalx+x+a)=2e=>—-LR2x+a)=c—aaj/a=>
x > —& + aa — Ba?. Solving fora results in two solutions but the case where /¢ is
considered. Given > 0 fix some arbitrarys and any numbet = inf(8,v/¢) and let
y=x+a=(1/2B)[-¢+ aa — Ba® + 2fa?] > 0.

Thenlly — x|l = [Ix = (x + @)|| = [|=all = [lall <6 = a <.

sincellf(x) = F)Il = ally — x|l = Blly — xlllly + x| = BlaCx + )}, +¥)}.
Observes > ¢, following the substitution of the expressionsX@andy and simplification.
This concludes the proof.

Next it is shown that the function is a contractinapping, to this end let

d=[f)—fO]=fGx) = fOI = ll(ax — px*) = (ay — By?) |l

= allx —yll = llx + I} = allx =yl (1/2)Bllx = yll = (1/2) (a = B)lIx —
yll < (1/2) (@ — B)d(x,y). So there is € (0,1) satisfying the condition

(T, Ty) < cd(x,y) Vx,y € X = f(x) = ax — fx?* is a contraction mapping and
therefore has a fixed poift(a/B) = (a/B).

It is immediately clear following a few Picard’sifiitions in respect of equation of
(7) that the solution function i, (t) - x° + (X%, at™/n! — 3%, B @~y
(3%)"2(2™ — 1) converging to a function that is the unique soluto the boundary value
problem (7) a1 —» c. Notice that this solution is the maximal solatid’he solution
function of equation (7) can be exhibited explicitBy method of separation of variables
and patrtial fractions it is shown that the solutionction is

x(t) = ax®/Bx® + (a — Bx)e %"t vteR (8)
Differentiating equation (7) yields& = [(a — Bx)x(a — Bx)]x, henceforthi > 0 if
x€(0, (a/2B)) U (a/B),©) meaning that population rises rapidly and< 0 if
x e((a/2B),a/B)) implying that population rises at a decreasing faf¢ To determine
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the parametew, as described in [18] l&t, t; andt, be the years with corresponding
population sizec?, x* andx? respectively then from equation (8) the followimgression
emerges

e =x%(x? —x1)/x?(x — x°) 9)
Considering population values fef, t; andt, corresponding to years 2002, 2003 and
2004 beingx® = 19139658, x! = 22846758 andc? = 20312705, respectively, then
a =0.026802. The procedure for calculatfhgs as follows [19]. Given that the growth
rate of the population per year in 2002 is 2.96% since(1/x)x = (a — x°), thenp =
1.48073E — 10 so thata/p = 1.81E+ 08 is the fixed point which the solution
converges to. With the parametersand g as well asx® andt, the orbit can now be
obtained and is shown in figure 1 fot (a, «0). Notice that this is the maximal interval of
the existence of the solution.

4. Conclusion

The objective of this article is to determine thates trajectory of the population of
Mozambique. The exponential function is uniformbntinuous, being globally Lipschitz,
while the logistic function is locally Lipschitz dntherefore, not uniformly continuous.
The former predicts unlimited population growth, ilhthe latter indicates that it is
bounded and has an S-shaped curve. The populat®nssexpected to increase rapidly
until 2082; thereafter, it will increase at a deiag rate until 2301, when the upper bound
is reached.
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Appendix
Figure 1. Population projection for Mozambique
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