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Abstract. Asymmetric information propagation frequently results in distorted financial 
markets and is generally a feature of informationally inefficient markets. We developed a 
model of optimal asset allocation using the martingale method to assist an investor in 
selecting an asset that performs better under the conditions of a market information 
cascade. In order to confirm that the model satisfies the required conditions, we applied the 
verification theorem and ascertained that the results produced were optimal. The model 
outperformed the famous Markowitz mean-variance type model and was shown to produce 
stable and consistent solutions under such market conditions. 
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1. Introduction 
In any investment, investors aim for higher returns with reference to their initial invested 
capital, but at times, investors face challenges on how to design the best trading strategies 
to satisfy their desire to gain from a particular invested asset. Return is always accompanied 
by risk in the financial market (the mantra is that the higher the risk, the higher the return). 
The ability to manage risk in the financial market is crucial for achieving higher future 
profits [1, 2, 3, 4]. There is a challenge in determining how to optimally allocate each equity 
to minimize risk while maximizing the return for a given set of equities and their respective 
investment returns. This challenge stems primarily from the fact that it is difficult to predict 
stock price movement in the financial market [5]. In financial markets, stochastic portfolio 
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theory (SPT) introduced by Fernholz [6] is currently playing a great role in analyzing the 
behaviors of equity markets and portfolio selection than the contributions of modern 
portfolio theory (MPT) by Markowitz [7]. This is motivated by the currently available and 
explosive sources of information (mainly unstructured information), especially on social 
media, which have a direct impact on the existence of market-relative arbitrages. 
       For a long time, it has been a common practice to assume that market weights consist 
of continuous covariations in a pathwise sense, and consequently, Itoˆ calculus has been 
used to construct trading strategies from a given function depending on the market weights 
without taking care of the corresponding probabilities. Strong relative arbitrage in the 
market does not rely solely on nondecreasing functions such as Lyapunov and Gamma 
functions, as proposed by Karatzas and Ruf [8], but rather on a variety of collections of 
functions depending on the corresponding market weights [9]. 
       It is a normal practice when constructing a market portfolio to take into consideration 
historical data, such as the previous historical performance of the particular stock or 
statistical estimates, with the view of better future returns [10]. This argument supports the 
previously mentioned contribution of social media (as a current source of information) to 
the performance of the market. In analyzing the portfolio, the improvement of the 
portfolio’s performance does not rely on only the market weights as proposed by Fernholz 
[6] but also on some other additional input information. The inclusion of other input factors 
apart from market weights reduces the time bound in which the relative arbitrage of the 
market is attainable [11]. 
        Most of the financial markets that are existing in today’s real-world markets are 
inefficient markets. An inefficient market is one that does not succeed in incorporating all 
available information into a true reflection of an asset fair price. Market inefficiencies exist 
due to information asymmetry, transaction costs, market psychology, and human emotions, 
among other reasons. In an inefficient market, the returns (profits) depend on the active 
level of the investors’ manager. In a real-world financial market, investors differ in their 
wealth and financial sophistication, and managers differ in their education and investment 
strategies. Moreover, investors have different levels of absolute risk aversion and search 
cost [12]. According to [12], the inefficiency is greater in markets with higher percentage 
fees (e.g., private equity vs. public) and during times of high-risk aversion (e.g., crisis 
periods). 
        In informationally inefficient markets, classical decision theory assumes the value of 
information to be positive. However, there are some studies that contradict this paradigm. 
For example, Schredelseker [13] in his study found that badly informed traders could 
expect higher returns than traders with more information. The results obtained by 
Schredelseker were based on a small number of traders. Later on, Pfeifer et al. [14] were 
able to verify the negative value of information on returns for a sufficient large number of 
traders. Traders with less information seem to be at an advantage because of the part of that 
information that is unknown to them. 
        This study proposes a probabilistic robust optimization technique for modeling asset 
returns under a broad family of stochastic optimization methods in order to address the 
problem of mispricing of financial instruments in markets that do not conform to the 
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traditional Markowitz portfolio optimdirectly impactization. Stochastic optimization 
techniques are known to provide a wide range of feasible solutions, and thus, with 
appropriate constraints, the solutions are likely to be insensitive to sudden changes in 
parameters. 
       The following is how the rest of the article is structured: local volatility model with 
discontinuities under skew Brownian motion, and construction of an asset return 
optimization model using the martingale method were discussed in Section 2. We presented 
and discussed some of the results in Section 3. Finally, in Section 4, we conclude our paper 
with a brief conclusion. 
 
2. Methodology 
2.1. Local volatility model with discontinuities under skew Brownian motion. 
Consider a local volatility model ��(�) = �(�(�))�(�)��(�)dS(t)                                                         (1) 
where �(�) = 	�
 > 0, if  � ≥ 1,�� > 0, if  � < 1. 
 

Lemma 2.1. [15, Lemma 1] 
Let S(t) be a solution of (1). A stochastic process Z(t) defined by �(�) = ln � (�)σ��(�)� 

 
is a solution of the stochastic differential equation ��(�) = μ��(�)��� + ��(�) + (2� − 1)�!"#(�)                               (2) 
 
where 
 

$(%) = −�(& ')2 = ($
 = −�
2 , if % ≥ 0,
$� = −��2 ,  if  % < 0, 

  !"#(�) is the symmetric local time of �(�)  and �(�)  is the skew Brownian 

motion with parameter                                 � = )*)+,)* and discontinuous µ(x). 

Proof:. 
Letting -(�) = ln�(�) 
Applying It./ formula to equation (1), �-(�) = σ�-(�)���(�) − σ��-(�)�2 �� 

Also, define �(�) = ℎ�-(�)�,  where 
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ℎ(1) = ( 1�
 , if 1 ≥ 01�� , if  1 < 0, 
and applying Itô-Tanaka, we 
 

    ���(�)� = ��(�) − )�2(")�� �� + 
� 3 
)+ − 
)*4 �!"#(-(�))                  (3) 

Again, from Itô Tanaka formula 
                                                                                             |�(�)| = 6 789:��(;)���(;)"# + !"#(�)                                       (4) 

and 

               <ℎ�-(�)�< = 6 79:�-(;)�ℎ=�-(;)��-(;) + 
�"> 3 
)+ + 
)*4 �!"#(-)               (5) 

where 79: denotes the sign function 

79:(?) = @+1, if ? > 00,  if  ? = 0−1, if ? < 0. 
 

From equations (4) and (5), it can be observed that 

  

79:��(;)���(;) = 79:�-(;)�ℎ=�-(;)��-(;) 

and 

     !"#(%) = 
� 3 
A+ + 
A*4 �!"#(-)                                                 (6) 

substituting (6) into equation (3)     ��(�) = ��(�) − σ�-(�)�2 �� + 12 B 1σ
 − 1σ�C �!"#(-) 
                = ��(�) − σ�-(�)�2 �� + 12 B 1σ
 − 1σ�C B 2σ
σ�σ
 + σ�C �!"#(�) 
               = ��(�) − σ�-(�)�2 �� + 12 Bσ� − σ
σ
σ� C B 2σ
σ�σ
 + σ�C �!"#(�) 
               = ��(�) − σ�&D(")�2 �� + Bσ� − σ
σ
 + σ�C �!"#(�) 
               = − σ�&D(")�2 �� + ��(�) + B 2σ�σ
 + σ� − 1C �!"#(�) 

                                         ��(�) = μ��(�)��� + ��(�) + (2� − 1)�!"#(�). 
 
Remark 2.1. In informationally inefficient markets, the flow and trend of volatility follow 
the behavior of skew Brownian motion; therefore, the above-stated lemma will be 
incorporated within our optimization problem constraints to achieve the desired optimal 
asset returns. 
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2.2. The asset return optimization model 
Consider a financial market with n risky assets with price Si(t) given by 

��E(�) = �E(�) FμE(�)�� + G σEH(�)��H(�)I
HJ
 K 

                                                                �E(0) = 7E  for 8 = 0,1,2, … , :.                        (7) 
where �(�) is a d-dimensional Brownian motion, μ(�) is the stock appreciation rate, and σ(�) = {σEH}I×R  is the volatility matrix. The market coefficients μ(⋅) and σ(⋅) are assumed 
to be a square integrable functions satisfying the following conditions 

(i)         |μ(�) − μ(T)| ≤ ! ⋅ |� − T|          |σ(�) − σ(T)| ≤ ! ⋅ |� − T| 
(ii) μ�(�) ≤ !� ⋅ (1 + ��)         σ�(�) ≤ !� ⋅ (1 + ��). 

 
Portfolio optimization emphasizes the diversification of assets, where a common practice 
for investors is to have a mix of risky and riskless assets. If �#(�) denotes the price of 
riskless assets, it can be represented mathematically ��#(�) = �#(�)V(�)��     �#(0) = 7#                                                              (8) 
where V(�) is the nominal interest rate. 

Applying It./ formula to the equation model (7), the price Si(t) is given by                                      

         �E(�) = 7E exp Z6 3μE(7) − 
� ∑ σEH� (7)IHJ
 4 �7"# + 6 ∑ σEH(7)��H(7)IHJ
"# \.        (9) 

 
Definition 2.1. [16, Definition 1.0.2] A pair (π, ^)  consisting of a portfolio π  and a 
consumption rate ̂ 
 is said to be self-financing if the corresponding wealth process _`,a(�), � ∈ c0, de satisfies �_`,a(�) = ∑ πE(�)_`,a(�) Rfg(")fg(")IEJ
 + (1 − ∑ πE(�)IEJ
 )_`,a(�) Rfh(")fh(") − ^(�)��. (10) 

Investors in the financial market at each period can decide what proportion of wealth, πE(�), to invest in the available assets and what the consumption rate, ̂(�) ≥ 0 should be. 
Then, by plugging (7) and (8) into (10), the wealth process equation becomes 

�_`,a(�) = G πE(�)_`,a(�) FμE(�)�� + G σEH(�)��H(�)I
HJ
 KI

EJ
  

 
                                +(1 − ∑ πE(�)IEJ
 )_`,a(�)V(�)�� − ^(�)��.                                 (11)  
 
In vector and matrix format, (11) can be written as 
 �_`,a(�) = _`,a(�)cπi(�)(μ(�) − V(�)1I)�� + V(�)�� + πi(�)σ(�)��(�)e − ^(�)��,    

 (12) 
where i represents the transpose and 1n is the vector of one’s. 
Since we are assuming that an investor is investing in an inefficient market, we are 
expecting the market to exhibit the risk of market price. 
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Let ϕ(�) be risk of market price which is given by ϕ(�) = σi(�) 3σ(�)σi(�)4k
 cμ(�) − V(�)1Ie                 (13) 

Inserting (13) into (12), the wealth process can be represented by the equation 
 �_`,a(�) = _`,a(�)lπi(�)σ(�)�ϕ(�)�� + ��(�)� + V(�)��m − ^(�)��. (14) 
 
Since our aim is to maximize the final wealth for a given utility function, the wealth process 
described in (14) is one of the constraints for our maximization problem. 
 
Remark 2.2. Since our aim is to maximize the investor’s expected utility final wealth, and 
since we are looking for optimal asset returns, it is mathematically convenient to assume 
that there is zero consumption throughout the entire investment period. 

Assuming that the investor lacks complete (exact) information about future prices, an 
optimal decision will be made by observing stock prices in the past and present. Then, a 
stochastic optimization problem is given by max`∈ph(q)rl;�_`(d)�m 7. � �_`(�) = _`(�)lV(�)�� + πi(�)σ(�)\t89�ϕ(�)�� + ��(�)�m _`(0) = ?                                                                                                 (15) 
with p#(?) = {(π, 0) ∈ p(?): vl;k�_`(d)�m < ∞} 
where p(?) represents the class of admissible pairs, ;(⋅) is the investor’s utility function, 
which is chosen as the constant relative risk aversion (CRRA), and ;Ek(⋅) =max{−;E(⋅), 0}. 
             Prominent financial stock pricing models are built on the assumption that asset 
returns follow a normal Gaussian distribution (normal Brownian motion). However, many 
authors (for example, [17, 18, 19]) argue that in practice, stock returns are often 
characterized by skewness and kurtosis. In particular, asset returns in inefficient markets 
do not follow the normal standard Brownian motion but are instead characterized by 
skewness and kurtosis, hence following skew Brownian motion. Through incorporating 
skew Brownian motion in the constraints of maximization equation (15), the desired 
maximization equation becomes max`∈ph(q)vl;�_`(d)�m                                                 (16) 

                                                    s.t �_`(�) = _`(�) ZV(�)��+ πx(�)σ(�) 3ϕ(�)�� + μ��(�)��� + ��(�) + (2� − 1)�!"#(�)4\ _`(0) = ? 
with p#(?) = {(π, 0) ∈ p(?): vl;k�_`(d)�m < ∞} 
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and 

                                  ;(?) = q+yz
,{ ,         γ ≠ −1                                                              (17) 

in which γ represents the constant coefficient of risk aversion of an investor. 
The solution of the optimal problem (16), will be obtained by using martingale method as 
used by [20]. in which the maximization equation (16) is equivalent to max~ v �;(�)� s.t v(�(d)�) = ?                                                    (18) 
where � denotes all possible ℱ(d)-measurable contingent claims, given by � = _`(d) 
and �(�)  is the stochastic discount factor defined by 

    �(�) = exp{− 6 V(7)�7"# − 
� 6 ||ϕ�7�||�"# �7 − 6 ϕi�7����7�}"#            (19) 

Ψ��� = &k 6 ����R��h , 
or, simply 
in which Ψ��� is given by ���� = Ψ���-#���, 
and -#��� is given by 

     -#��� = &k+* 6 |����|�h *R�k6 �i���R�����h .                                        (20) 
The Lagrangian function of equation (18) is given by !��, λ� = vc;��� + λ�? − ��d���e, 

where λ�> 0�  is the Lagrangian multiplier whose value is obtained from the budget 
constraint of the maximization equation (18). From the first-order condition, the derivative 
of Lagrangian function with respect to �  is equal to zero. Mathematically, first-order 
condition can be represented as 

   
���~ = vc;=��� − λ��d�e = 0.                                                           (21) 

 
Solving for � from equation (21), the optimum contingent claim, denoted by �∗ is given 
by 
                                                                        �∗ = �;=�k
�λ��d��. (22) 
 
For the constant relative risk aversion (CRRA) utility function (17), its inverse is given by 

                                                                         �;=�k
�?� = ?+z.     (23) 
 
Using equation (23) in equation (22), the optimum can be written as 

�∗ = �λ��d��+z = λ+z���d��+z.                                (24) 
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Recall that the Lagrangian multiplier λ(> 0) is obtained from the budget constraint vc�(d)�e = ? v ��(d)λ
{��(d)�
{� = ? 
v �λ
{��(d)�{,
{ � = ? 

 λ+z = q
r���(x)�zy+z �.                                                             (25) 

Substituting equation (25) into equation (24), we obtain 

 �∗ = q��(x)�+z
r���(x)�zy+z �                       (26) 

 
Corollary 1. If �∗ is the optimum of the maximization equation (18), then there exists a 
portfolio π∗ ∈ p(?) and π∗ is the optimal for the terminal wealth optimization equation 
(16). The corresponding value of the optimal portfolio process satisfies 

  _`∗(�) = 
�(") v"c�(d)�∗e,       � ∈ c0, de                    (27)                                         

where v" is the conditional expectation with respect to the filtration {ℱ"}"�#. 
Substituting equation (26) in equation (27), the optimal wealth process becomes _`∗(�) = 1�(�) v"c�(d)�∗e

= 1�(�) v" ⎣⎢⎢
⎢⎡�(d) ?��(d)�
{

v ���(d)�{,
{ �⎦⎥⎥
⎥⎤

= ?�(�) v" ���(d)�{,
{ �
v ���(d)�{,
{ � .

 

Multiplying by �(�) both sides, we have 

    �(�)_`∗(�) = ? r����(x)�zy+z �
r���(x)�zy+z � .                                                        (28) 

Introducing the exponential martingale 

   -(�) = &k3zy+z 4 6 �i(�)R�(�)�h k+*3zy+z 4* 6 ||����||�h *R�.                          (29) 
 
If we define a function 9��� by 

9��� = &k3zy+z 4 6 3����R�k +*z||����||*4R��h                          (30) 
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then ��(�)�zy+z = exp { 3{,
{ 4 3− 6 V(7)�7"# − 
� 6 ||ϕ�7�||�"# �7 − 6 ϕi�7����7�"# 4}                                              
= B&k3zy+z 4 6 3����R�k +*z||����||*4R��h C �&k3zy+z 4 6 �i���R�����h k+*3zy+z 4* 6 ||����||*�h R�� 

                            = 9���-���.                                                                        (31) 
 
Noting that the martingale -��� has an expectation of one, the fraction on the left-hand side 
of equation (28) can be written as 

r�����x��zy+z �
r����x��zy+z � = r�c��x�2�x�erc��x�2�x�e  = ��x�r�c2�x�e��x�rc2�x�e     

                                                     = -���.                                                                              (32) 
 
Substituting equation (32) into equation (28), we have ����_`∗��� = ?-���.                                                      (33) 
Differentiating, equation (33) becomes   

 � 3����_`∗���4 = ?��-����, 
         = −?-��� 3{,
{ 4 ϕi��������.                                   (34) 

 
Substituting equation (33) into equation (34) 

     � 3����_`∗���4 = −����_`∗��� 3{,
{ 4 ϕi��������.      (35) 

 
Applying It./ formula on the stochastic discount factor ����, equation (19) can be written 
as    ������� = −����cV����� + ϕi��������e.                                          (36) 
 
Using equation (36) and ��_`���� found in the maximization equation (16), then we can 

also compute ������_`���� using the product rule for the stochastic processes ���� and _`���, to have ������_`���� = _`���������� + ������_`���� + ���������_`���� = −����_`���cV����� + ϕi��������e+ ����_`��� ZV�����
+ πi���σ��� 3ϕ����� + μ�������� + �����
+ �2� − 1��!"#���4\ − ����_`���ϕi���π���σ����� 
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= −�(�)_`(�)V(�)�� − �(�)_`(�)ϕi(�)��(�) + �(�)_`(�)V(�)��+ �(�)_`(�)ϕi(�)π(�)σ(�)��+ �(�)_`(�)πi(�)σ(�)μ��(�)���+ �(�)_`(�)π(�)σi(�)��(�)+ �(�)_`(�)πi(�)(2� − 1)�!"#(�)− �(�)_`(�)ϕi(�)π(�)σ(�)��. 
 

Collecting like terms together we have ���(�)_`(�)� = �(�)_`(�)cσi(�)π(�) − ϕ(�)ei��(�) +�(�)_`(�)πi(�)σ(�)lμ��(�)��� +   (2� − 1)�!"#(�)m.          (37)                                                                                   
 
Replacing _`(�) by _`∗(�), equation (37) becomes � 3�(�)_`∗(�)4 = �(�)_`∗(�)cσi(�)π∗(�) − ϕ(�)ei��(�) +�(�)_`∗(�)πi(�)σ(�)lμ��(�)��� + (2� − 1)�!"#(�)m.                      (38) 

  Comparing ��(�) terms of equation (35) and equation (38), the optimal portfolio π∗(�) 
is given by σi(�)π∗(�) − ϕ(�) = − 3{,
{ 4 ϕ(�)   = − 
{ ϕ(�) − ϕ(�) 
          π∗(�) = − 
{ �σk
(�)�iϕ(�).                (39)                            

 

To obtain the optimal expected utility of the final wealth of an investor, we substitute �∗ 

of equation (26) into the objective function of the maximization equation (16) 

 max`∈ph(q) v l;�_`(d)�m = v�;(�∗)� 
= v

⎣⎢⎢
⎢⎡;

⎝
⎜⎛ ?��(d)�
{

v ���(d)�{,
{ �⎠
⎟⎞⎦⎥⎥

⎥⎤ 

= v
⎣⎢
⎢⎢
⎡ 11 + γ ⎝

⎜⎛ ?��(d)�
{
v ���(d)�{,
{ �⎠

⎟⎞

,{

⎦⎥
⎥⎥
⎤ 

= ?
,{1 + γ v
⎣⎢
⎢⎢
⎡
⎝⎜
⎛ ��(d)�
{

v ���(d)�{,
{ �⎠⎟
⎞
,{

⎦⎥
⎥⎥
⎤ 



Portfolio Optimization under Informationally Asymmetric Markets 

55 
 

                                                                  = q+yz
,{ Bv ¡��(d)�zy+z ¢Ck{.                          (40)                                                               

 
Using equation (31) with vc-(d)e = 1, we have max`∈ph(q) v l;�_`(d)�m = q+yz
,{ exp{(γ + 1) 6 3V(�) − 
�{ ||ϕ���||�4 ��}x#  (41) 

 
Equation (41) is the desired model for optimal asset returns in informationally inefficient 
markets, whereby its corresponding optimal portfolio is defined in equation (39). 
 
Verification theorem 
The main task under this section is to check whether or not our constructed model (41) 
satisfies the Hamilton Jacobi Bellman (HJB) equation, and if it does, the verification 
theorem tells us that our obtained value function (model 41) is optimal. 
 
Theorem 2.2. (Verification theorem) [21, Theorem 19.6] Suppose that we have two 
functions £��, ?� and ¤��, ?�,  such that 

• £ is sufficiently integrable, and solve the HJB equation 

¥∂£∂� ��, ?� + sup¨∈© {ª��, ?, t� + «£��, ?�} = 0 ∀��, ?� ∈ �0, d� × ℛ®
              £�d, ?� = Φ�?� ∀? ∈ ℛ®.  

• The function ¤��, ?� is an admissible control law. 
•  For each fixed point ��, ?�, the 

supremum in the expression 

sup¨∈© {ª�?, �, t� + «£��, ?� 

is attained by the choice t = ¤��, ?� 
 
Then, the following holds: 

1. The optimal value function °��, ?� to the control problem is given by °��, ?� = £��, ?�. 
2. There exists an optimal control law t±��, ?�, and in fact t±��, ?� = ¤��, ?�. 

Proof: See [21]  
 
Remark 2.3. « in Theorem 2.2 is the partial differential operator defined by 

« = μ��, ?� ∂∂? + 12 σ���, ?� ∂�∂?� 

in which μ�⋅� and σ�⋅� stand for the drift and diffusion coefficients for the corresponding 
dynamic equation respectively. 
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Proposition 2.3.  If the optimal portfolio π∗ is given by (39) with the market price 

of risk ² = ³k�)  

and $ = V + �´2Vµ, then the value function 
 °(�, ?) = ?
,{1 + γ &(
,{)3�k 
�{�*4"

 

satisfies the HJB 

 
�¶�" (�, ?) + sup`∈ℛ,aJ# {ª(�, ^) + «°(�, ?)} = 0, (42) 

and hence (from the verification theorem) °(�, ?) is an optimal value function. 
Proof: The main aim is to show that the value function °(�, ?) satisfies the corresponding 
HJB. Now, assuming that the parameters γ, V, ϕ and μ are deterministic, then the value 
function (41) can be written as 
 °(�, ?) = ?
,{1 + γ &(
,{)3�k 
�{�*4", 

 
from which we obtain ∂°∂� = ?
,{ BV − 12γ ϕ�C &(
,{)3�k 
�{�*4". 

 ∂°∂? = ?{&(
,{)3�k 
�{�*4". 
 ∂�°∂?� = γ?{k
&(
,{)3�k 
�{�*4". 
 

By using the dynamics given in equation (15), the corresponding HJB becomes ∂°∂� + sup`∈ℛ,aJ# {ª(�, ^) + (?V) ∂°∂? + (?πσϕ) ∂°∂? + B12 ?�π�σ�C ∂�°∂?�}= 0. 
 
Substituting the optimal portfolio π∗ obtained in equation (39) and letting the instantaneous 
utility function for consumption be given by ª(�, ^) = &k·"^{ 
where ρ > 0 is the rate of time preference, then we have ∂°∂� (�, ?) + sup`∈ℛ,aJ# {ª(�, ^) + «°(�, ?)} 
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= ?
,{ BV − 12γ ϕ�C &(
,{)3�k 
�{�*4" + (?V)?{&(
,{)3�k 
�{�*4"  
+ (?πσϕ)?{&(
,{)3�k 
�{�*4" + B12 ?�π�σ�C γ?{k
&(
,{)3�k 
�{�*4". 

= B2V − 12γ ϕ� + πσϕ + 12 π�σ�γC �?
,{&(
,{)3�k 
�{�*4"� 
= B2V − 12γ π�σ�γ� + πσϕ + 12 π�σ�γC �?
,{&(
,{)3�k 
�{�*4"�     since π∗ = − ϕγσ 
= (2V + πσϕ) �?
,{&(
,{)3�k 
�{�*4"� 
= �2V + BV − μγσ� C σ Bμ − Vσ C� �?
,{&(
,{)3�k 
�{�*4"�                       since ϕ = μ − Vσ  
= �2V − (V − μ)�γσ� � �?
,{&(
,{)3�k 
�{�*4"� 
= 0 ⋅ �?
,{&(
,{)3�k 
�{�*4"�                     since μ = V + σ´2Vγ 

              = 0. 
Since the value function °(�, ?)  satisfies the HJB, it implies (from the verification 
theorem) that °(�, ?) is an optimal value function.                                                                                                                              

 
Figure 1: Efficient frontiers. 

 
 (a) Based on Markowitz model (b) Based on the constructed model 
 
3. Results and discussion 
The comparison was made between the efficient frontier of the mean-variance Markowitz 
model [7] and our constructed model (41). The results were presented in Figure 1. Our 
constructed model (41) (Figure 1(b)) clearly outperforms the Markowitz mean-variance 
model (Figure 1(a)) because it has a higher efficient frontier (portfolios with higher 
expected returns or portfolios with lower standard deviation of return). Only two assets in 
Markowitz’s model are within the frontier curve, whereas all four considered assets are 
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within the efficient curve in our constructed model. Additionally, it can be clearly observed 
from the two frontier curves that Markowitz’s mean variance model restricts the number 
of possible portfolios. 
 

Table 1: Stability and consistency of the model when input parameters are perturbed. 

 
Initial parameters γ = 1.00, R = 0.900, ϕ=-0.7100 

 Number of Mean Squared Error 

Perturbed parameters assets (MSE) 

 20 0.000236228 

γ = 1.01, R = 0.901, ϕ=-0.7101 15 0.000240055 

 10 0.000244013 

 5 0.000248097 

 20 0.000252327 

γ = 1.02, R = 0.902, ϕ=-0.7102 15 0.000256651 

 10 0.000261149 

 5 0.000265772 

 20 0.000275467 

γ = 1.03, R = 0.903, ϕ=-0.7103 15 0.000280496 

 10 0.000285698 

 5 0.000291047 

 20 0.000296556 

γ = 1.04, R = 0.904, ϕ=-0.7104 15 0.000302217 

 10 0.000308045 

 5 0.000314034 

 
According to [22], stability describes the situation where small variations of the output 

results correspond to small variations of the input parameters. Through small perturbations 
of the parameters in the constructed model (41), the stability has been tested, and the results 
were presented in Table 1. The closeness of the return from the original input parameters 
and the return from the perturbed parameters were tested using Mean Squared Error (MSE). 
MSE was found to be relatively small in each case, indicating that the difference between 
the original and perturbed parameter returns was also relatively small. It was discovered 
that MSE grew as the number of assets declined, supporting the theory that the more asset 
diversification, the better the returns. This finding indicates the consistency of the model. 
It can be clearly seen from the table that small changes in parameters do not give rise to 
large changes in the return. This situation indicates that our constructed model (41), does 
not suffer from error maximization, hence the stability and robustness of the model. 
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4. Conclusions 
In this paper, we have adapted the martingale method to construct the asset return model 
in informationally inefficient markets. As the constituent number of assets increases, the 
impact on return and variance increases, indicating that the constructed model was 
efficient. The performance of the model was tested by comparing the corresponding 
efficient frontier with that of the Markowitz mean-variance model, and it was found that 
our constructed model performs better than that of the Markowitz mean-variance model. 
Our constructed model was found to be stable as the small change in the input parameters 
did not result in a large change in the output. 
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