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Abstract. Asymmetric information propagation frequently résun distorted financial
markets and is generally a feature of informatilyniakefficient markets. We developed a
model of optimal asset allocation using the magiagnethod to assist an investor in
selecting an asset that performs better under d¢inglitons of a market information
cascade. In order to confirm that the model satidfie required conditions, we applied the
verification theorem and ascertained that the tequoduced were optimal. The model
outperformed the famous Markowitz mean-variance typpdel and was shown to produce
stable and consistent solutions under such madketitions.
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1. Introduction

In any investment, investors aim for higher retunith reference to their initial invested
capital, but at times, investors face challengebaw to design the best trading strategies
to satisfy their desire to gain from a particutardsted asset. Return is always accompanied
by risk in the financial market (the mantra is ttreg higher the risk, the higher the return).
The ability to manage risk in the financial marietrucial for achieving higher future
profits [1, 2, 3, 4]. There is a challenge in detigting how to optimally allocate each equity
to minimize risk while maximizing the return fogaven set of equities and their respective
investment returns. This challenge stems priméndiy the fact that it is difficult to predict
stock price movement in the financial market [B]fihancial markets, stochastic portfolio
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theory (SPT) introduced by Fernholz [6] is curremilaying a great role in analyzing the
behaviors of equity markets and portfolio selecttban the contributions of modern
portfolio theory (MPT) by Markowitz [7]. This is niwated by the currently available and
explosive sources of information (mainly unstruethinformation), especially on social
media, which have a direct impact on the existerficearket-relative arbitrages.

For a long time, it has been a common pradt assume that market weights consist
of continuous covariations in a pathwise sense,camgequently, I1to™ calculus has been
used to construct trading strategies from a givectfon depending on the market weights
without taking care of the corresponding probabsit Strong relative arbitrage in the
market does not rely solely on nondecreasing fanstisuch as Lyapunov and Gamma
functions, as proposed by Karatzas and Ruf [8],ratiter on a variety of collections of
functions depending on the corresponding markeghtgi[9].

It is a normal practice when constructingarket portfolio to take into consideration
historical data, such as the previous historicafgpmance of the particular stock or
statistical estimates, with the view of better fatceturns [10]. This argument supports the
previously mentioned contribution of social media & current source of information) to
the performance of the market. In analyzing thetfplim, the improvement of the
portfolio’s performance does not rely on only tharket weights as proposed by Fernholz
[6] but also on some other additional input infotima. The inclusion of other input factors
apart from market weights reduces the time bounghicth the relative arbitrage of the
market is attainable [11].

Most of the financial markets that are &g in today’s real-world markets are
inefficient markets. An inefficient market is orf&t does not succeed in incorporating all
available information into a true reflection ofasset fair price. Market inefficiencies exist
due to information asymmetry, transaction costsketasychology, and human emotions,
among other reasons. In an inefficient market,réterns (profits) depend on the active
level of the investors’ manager. In a real-worldaficial market, investors differ in their
wealth and financial sophistication, and manag#fsrdn their education and investment
strategies. Moreover, investors have differentlkeweé absolute risk aversion and search
cost [12]. According to [12], the inefficiency isegiter in markets with higher percentage
fees (e.g., private equity vs. public) and durimges of high-risk aversion (e.g., crisis
periods).

In informationally inefficient markets, skical decision theory assumes the value of
information to be positive. However, there are s@toglies that contradict this paradigm.
For example, Schredelseker [13] in his study fotimat badly informed traders could
expect higher returns than traders with more infiifom. The results obtained by
Schredelseker were based on a small number ofrgraldgter on, Pfeifer et al. [14] were
able to verify the negative value of informationreturns for a sufficient large number of
traders. Traders with less information seem tatlae@dvantage because of the part of that
information that is unknown to them.

This study proposes a probabilistic rolmmttmization technique for modeling asset
returns under a broad family of stochastic optitiramethods in order to address the
problem of mispricing of financial instruments inarkets that do not conform to the

46



Portfolio Optimization under Informationally Asyminie Markets

traditional Markowitz portfolio optimdirectly impéization. Stochastic optimization
techniques are known to provide a wide range ofifd& solutions, and thus, with
appropriate constraints, the solutions are likelybe insensitive to sudden changes in
parameters.

The following is how the rest of the artigdestructured: local volatility model with
discontinuities under skew Brownian motion, and starction of an asset return
optimization model using the martingale method vaiseussed in Section 2. We presented
and discussed some of the results in Section allfjin Section 4, we conclude our paper
with a brief conclusion.

2. Methodology
2.1. Local volatility model with discontinuities urder skew Brownian motion.
Consider a local volatility model
ds(t) = a(S()S(t)dw (t)dSt) (1)
where
o, >0,if S$>1,
o(5) = {02 >0,if S < 1.

Lemma 2.1.[15, Lemma 1]
Let §t) be a solution ofl). A stochastic procesgtY defined by
InS (t)

zo = o(5(D)

is a solution of the stochastic differential eqoati
dz(t) = w(Z(@®)dt + dW(t) + (2p — 1)dL(Z) (2)

where

_O.(eZ) 3 Uy =Tl, ifZZ 0,

-0
2 ,u2=72,ifz<0,

w(z) =

L9(Z) is the symmetric local time df(t) andZ(t) is the skew Brownian
motion with parameter p = % and discontinuous ().
Proof:.
Letting

Y(t) =InS(t)
Applying Ité formula to equation (1),

2
ay () = o(Y(0))dW (t) — wdt
Also, definez(t) = k(Y (¢)), where
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al, if y >0
h(y) = yl ;
0_—2,| y <0,
and applying It6-Tanaka, we
Y
d(Z(D) = dw(t) — @dt + (Ui1 - Jiz) dLO(Y (1)) 3)
Again, from It6 Tanaka formula
12(0)] = [, sign(Z(w)dz(u) + LY(Z) (4)
and
IR(Y(®)] = [ sgn(Y @)h'(Y()dY W) + 3 ( Ui) dLo(Y) (5)
wheresgn denotes the sign function
+1,ifx>0
sgn(x) =40, ifx=0
—1,if x < 0.

From equations (4) and (5), it can be observed that

sgn(Z(u))dZ(u) = sgn(Y(u))h’(Y(u))dY(u)
and
1@ =3 (5 +5) dLim) (6)
substituting (6) into equation (3)

dZ(t) = dW (t) — (Y(t)) (1 DY arer

01 02
v A Ey 2o
:dW@)__o(YZ@) #3(22) (2% anger
— dW(t) — (ezm)dw(z: )dLO(Z)

G(ez(t))
=——=—Zdt+dw () + (
2 (O8] (o))

dZ(t) = w(Z(@®))dt + dW (t) + (2p — 1)dLI(Z).

— 1) dL2(z)

Remark 2.1.In informationally inefficient markets, the flowdtrend of volatility follow
the behavior of skew Brownian motion; thereforeg thbove-stated lemma will be
incorporated within our optimization problem corastits to achieve the desired optimal

asset returns.
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2.2. The asset return optimization model
Consider a financial market withrisky assets with pricg(t) given by

dSy() = Si(0) | Ode + ) 0y (OO
j=1

S5;(0) =s; for i=012,..,n. (7
whereW (t) is ad-dimensional Brownian motiomq(t) is the stock appreciation rate, and
o(t) = {0;;}nxa i the volatility matrix. The market coefficient¢-) ando(-) are assumed
to be a square integrable functions satisfyingalewing conditions

(i) lu@) — W@l <L-Ip—ql lo(p) —o(@)| <L-|p—ql
(i) p*(p) <L*-(1+p*»  o*(p) <L*- (1 +p?).

Portfolio optimization emphasizes the diversifioatiof assets, where a common practice
for investors is to have a mix of risky and risklexssets. 1f,(t) denotes the price of
riskless assets, it can be represented mathenhatical
dSy(t) = So(H)R(t)dt
S0(0) = so (8)
whereR((t) is the nominal interest rate.
Applying Ité formula to the equation model (7), the pr&f) is given by

Si(6) = spexpf (wi(s) = 32y 0%(5) ) ds + [y By 0y (aw(s)|. (9)

Definition 2.1. [16, Definition 1.0.2] A pair(m, C) consisting of a portfoliat and a
consumption rat€

is said to be self-financing if the correspondiveglth procesg ™ (t),t € [0, T] satisfies
dX™C(8) = T mOX (O T2+ (1 - T m @)X (O U2 — c(de. (10)
i 0
Investors in the financial market at each periad decide what proportion of wealth,
m;(t), to invest in the available assets and what tihewmption rate; (t) = 0 should be.

Then, by plugging (7) and (8) into (10), the wegthcess equation becomes

AXmE(©) = D mOX O | wOde + ) 0y (AW ©)
i=1 =1
+(1 =3I, m(O))XSC(H)R()dt — C(t)dt. (11)

In vector and matrix format, (11) can be written as

dX™C(t) = X™C(t)[n” () (u(t) — R(t)1,)dt + R(t)dt + 7 (t)o(t)dW ()] — C(t)dt,
12)

whereT represents the transpose dni$ the vector of one’s.

Since we are assuming that an investor is invedtingn inefficient market, we are

expecting the market to exhibit the risk of manete.
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Let ¢(t) be risk of market price which is given by

$® = o7(®) ((e”(®) " [n(®) ~ R(O)L,] (13)
Inserting (13) into (12), the wealth process candpeesented by the equation

dX™C(t) = X () [T (o @®) (PO dt + dW () + R(D)dt]| — C(t)dt. (14)

Since our aim is to maximize the final wealth fajigen utility function, the wealth process
described in (14) is one of the constraints formaximization problem.

Remark 2.2.Since our aim is to maximize the investor’s expkotéity final wealth, and
since we are looking for optimal asset returnss itnathematically convenient to assume
that there is zero consumption throughout the entivestment period.

Assuming that the investor lacks complete (exadtrimation about future prices, an
optimal decision will be made by observing stockes in the past and present. Then, a
stochastic optimization problem is given by

max [u(X“(T))]

MEA(X)E
s.t
dX™(t) = X™(O)[R(®)dt + 17 ()o(O)\big(d(t)dt + dW (1))]
X7(0) = x (15)

with

Ap(x) = {(1,0) € AX):E[u™(X™(T))] < o0}
whereA(x) represents the class of admissible paifs), is the investor’s utility function,
which is chosen as the constant relative risk awergCRRA), andu; () =
max{—u;(-), 0}.

Prominent financial stock pricing mtsdare built on the assumption that asset
returns follow a normal Gaussian distribution (narrownian motion). However, many
authors (for example, [17, 18, 19]) argue that nacfice, stock returns are often
characterized by skewness and kurtosis. In paaticakset returns in inefficient markets
do not follow the normal standard Brownian motiount lre instead characterized by
skewness and kurtosis, hence following skew Browmtion. Through incorporating
skew Brownian motion in the constraints of maxirti@ma equation (15), the desired
maximization equation becomes

ngl/lao)((x)E [u (X1T (T))] 6§1

s.t
dX™(t) = X™(t) [R(t)dt
+ 17 (6)o(t) ((I)(t)dt +u(Z@®)dt +dw(©) + (2p — 1)dL‘§(Z))]
X™0) =x
with
Ao(x) = {(m,0) € A(X): E[u™(X™(T))] < o0}
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and
1+y
u(x) = xlTy’ Y -1 (17)

in whichy represents the constant coefficient of risk aversioan investor.
The solution of the optimal problem (16), will betained by using martingale method as
used by [20]. in which the maximization equatiof)(s equivalent to

m(;ng (u(G))

s.t

E(P(T)G) = x (18)
whereG denotes all possiblE(T)-measurable contingent claims, given by

G =X"(T)
andP(t) is the stochastic discount factor defined by
P(t) = exp{— [, R(s)ds — 3 [ l1o(&)]|? ds — [§ &7 (s)dW (s)} (19)
t
‘P(t) — e—fo R(S)ds,

or, simply
in whichW¥(t) is given by P(t) = W(£)Y, (t),

andY, (t) is given by
Vo(t) = e 3o 0@ ds=[y &7 aw(s) (20)
The Lagrangian function of equation (18) is givgn b
L(G,A) = E[u(G) + A(x — P(T)G)],
whereA(> 0) is the Lagrangian multiplier whose value is obgginfrom the budget
constraint of the maximization equation (18). Fittw first-order condition, the derivative

of Lagrangian function with respect fbis equal to zero. Mathematically, first-order

condition can be represented as

%L = E[w'(6) - AP(T)] = 0. 21)

Solving forG from equation (21), the optimum contingent clairandted byG*is given
by

G* = W) Y(AP(T)). (22)
For the constant relative risk aversion (CRRA)itytflunction (17), its inverse is given by

@) (@) = xv. (23)

Using equation (23) in equation (22), the optimwan be written as

G* = (AP(T))$ = ﬁ(P(T))%. (24)
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Recall that the Lagrangian multiplie{> 0) is obtained from the budget constraint
E[P(T)G] = x

E [P(T)A%(P(T))%] =x
1 y+1
E[AV(P(T)) Y ] =

= —vm (25)
E[(P(T)) Y ]
Substituting equation (25) into equation (24), vatain

SR

A

G* = x(P(T))% (26)

YT
E|(P(D) ¥ ]

Corollary 1. If G*is the optimum of the maximization equation (18grt there exists a
portfolio ™ € A(x) andm*is the optimal for the terminal wealth optimizatieguation
(16). The corresponding value of the optimal pdidfprocess satisfies

X" (t) = %Et[P(T)G . te[o,T] (27)

whereE; is the conditional expectation with respect toftlteation {F;};-¢-
Substituting equation (26) in equation (27) théropl wealth process becomes

X (6) = P(t) E.[P(T)G"]

x(P(T))%

Y+1

E|(er) Y
L [(P(T))yvi]
= P(t) E [(P(T))YTH] .

Multiplying by P(t) both sides, we have
y+1
Ef(P(D) ¥ ]

P(OX™ (t) = x 13- (28)
E|(P(D) ¥ ]
Introducing the exponential martingale
y+1 T y+1
Y(t) =e ( ) Jy 07 ()aw (s)- ( ) IN eI as 29)
If we define a functiorg (t) by
9(0) = e (TG (REa—0I7)as o)
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then

i +
(P@)Y =exp {(%2) (= fy RE)ds = f; 1611 ds = f; &7 ()dW (s))}
_ (e—(VT“) f(f(R(s)ds—%||¢(s)||2)ds> (e—(yyi) i o7 @aws) -5 (L) fy ||¢(s)||2ds>

=gy (). (31)

Noting that the martingalg(t) has an expectation of one, the fraction on thehiahd side
of equation (28) can be written as

y+1
Et[(” ™) Y ] _ BElgMmYM] _ gMEY(D)]

Yy — =
E (P(T))T] E[g(T)Y(T)] g(TE[Y(T)]

=Y (). (32)
Substituting equation (32) into equation (28), e@dn

P(OX™ (t) = xY (¢). (33)
Differentiating, equation (33) becomes

d (P(t)Xﬂ* (t)) = xd(Y(D)),

= —x¥ (@) (57) o7 (0w (). (34)
Substituting equation (33) into equation (34)
d(POX™ ®) = -POX™ ©) (%) " @aw (). (35)

Applying Ité formula on the stochastic discount fad®gt), equation (19) can be written
as

d(P(®)) = —P(O[R®)dt + dT ()dW (¢)]. (36)

Using equation (36) arwl(X“(t)) found in the maximization equation (16), then \&a c
also computel(P(t)X“(t)) using the product rule for the stochastic proceB§e) and
X™(t), to have
d(P(OX™(®)) = X™(O)d(P®)) + P(O)A(X™(®)) + d(P(©))d(X™(1))
= —P(OX™()[R(t)dt + &7 (t)dW ()]
+ P(OX™(2) [R(t)dt

+ 17 (o (t) (d)(t)dt +u(Z(®)dt + dw (t)
+(2p — DAL(D))]| - POXT ()T (Dn(t)o(t)dt
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= —P(®)X™(R()dt — P()X™()d” ()dW (t) + P()X™(t)R(t)dt
+ P(OX™ ()7 (OT(t)o(t)dt
+ POX™ ()1’ ()o(®)n(Z(r))de
+ P(OX™()n(t)o” (t)dW (t)
+PMX™(O)n” (£)(2p — 1)dLY(Z)
— P(OX™(t)” (OT(t)o(t)dt.

Collecting like terms together we have
d(P(X™(1)) = POX™(®)[0” ()T(t) — d()]"dW (t) +
POX™ O’ ()o@ [w(Z(®))dt + (2p — 1)ALYU(Z)]. (37)

ReplacingX™(t) by X™ (t), equation (37) becomes
d (POX™(®) = POX™ (O] (" (£) - $(O)] dW () +

POX™ ()n” ®)o(®)[u(Z(@®)dt + 2p — 1ALI(Z)]. (38)
ComparingdW (t) terms of equation (35) and equation (38), thenogitportfolion™(t)
is given by
o (O () = d(©®) = = (L) 0(0) = —26(®) — d(®)
() = —;(o‘l(t)) o). (39)

To obtain the optimal expected utility of the five¢alth of an investor, we substituté
of equation (26) into the objective function of theximization equation (16)

max E[u(X“(T))] E(u(G")

u/ x(P(T))Y \I

\E (P(T)) ] Jl

1+y+

1 x(P(T)ﬁ

[(P(T))Yyi]

( (P |
\ (P(T))YYLI]
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1+ i\ 7Y
- %(E [(P(T)) v ]) . (40)
Using equation (31) witB[Y(T)] = 1, we have
max E[u(X(0)] = S ep(r+ D [y (RO — 3 1611 de) (41)

Equation (41) is the desired model for optimal assirns in informationally inefficient
markets, whereby its corresponding optimal porf@didefined in equation (39).

Verification theorem
The main task under this section is to check whiethaiot our constructed model (41)

satisfies the Hamilton Jacobi Bellman (HJB) equatiand if it does, the verification
theorem tells us that our obtained value functiondel 41) is optimal.

Theorem 2.2. (Verification theorem) [21, Theorem 19.6] Suppokettwe have two
functions
Q(t,x) andf(t,x), such that

» (@ is sufficiently integrable, and solve the HJB dtpra

E;—(t)(t, x)+sup {F(t,x,b) +DQ(t,x)} =0 V(t,x) € (0,T) xR"
beB
Q(T,x) = ®(x) Vx€R"

» The functiorf (¢, x) is an admissible control law.
»  For each fixed poinft, x), the

supremum in the expression

sup {F(x,t,b) +DQ(t, x)
bEB

is attained by the choide= f(t, x)

Then, the following holds:
1. The optimal value functioki(t, x) to the control problem is given by
V(t,x) = Q(t, x).
2. There exists an optimal control lat, x), and in fach(t, x) = f(t, x).
Proof: See [21] L]

Remark 2.3.D in Theorem 2.2 is the patrtial differential operatiefined by
2

D = u(t g + L2 t
_u(lx)ax Zo(tx)axz
in whichp(:) anda(-) stand for the drift and diffusion coefficients fbe corresponding
dynamic equation respectively.
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Proposition 2.3. If the optimal portfoliar*is given by(39)with the market price
of risk¢p = ==
andu = R + 0,/2Ry, then the value function

x1+y 1.,
V(t,x) = —e(1+Y)(R 2v® )
1+y

satisfies the HIB

Yie,x)+ sup {F(C)+DV(Lx)} =0, (42)

at TER,C=0
and hence (from the verification theore¥(}, x) is an optimal value function.
Proof: The main aim is to show that the value functidn, x) satisfies the corresponding
HJB. Now, assuming that the parametgm®, ¢ andu are deterministic, then the value

function (41) can be written as

x1+y

e(1+y)(R—i 2)t
1+vy

V(t,x) = 2y

)

from which we obtain

a_V — X1+Y (R _ iq)z) e(1+Y)(R—% Z)t

1
W _ (e
ox

1

o%v Y_le(”Y)(R_W 2)t

ax2 '

By using the dynamics given in equation (15), tbeesponding HIB becomes
v, F(tC)+(R)aV+( )6V+<1 2.2 2)52V
ot nesﬂgglo tF x 0x xmod 0x Zx ™o axz}

=0.

Substituting the optimal portfolier obtained in equation (39) and letting the instastas
utility function for consumption be given by

F(t,C) = e~PtCcY
wherep > 0 is the rate of time preference, then we have

v
—(t,x) + sup {F(t,C) + DV (t,x)}
at TER,C=0
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1 L
XY (R - 2_y¢2> (1+Y)( 2Y¢2)t + (xR)xYe(1+Y)(R 2Y¢2)t

+ 1 L
(Xﬂ0¢)xye(1+Y)(R 2y ) + (2 xznzoz) yxy_le(1+Y)(R 2y )t
1 1 12
(ZR B 2—Y¢2 + mod + 2 T[ZGZY) <x1+ye(1+Y)(R 2y? )t>
1 1 1
= (ZR - z—ynzczyz + mod + —nzczy)( +ve (1+Y)(R 2y )t> since 1* ¢

= (2R + ncd))( e G (r 2v¢2)t>

R — —R I —R
= (ZR + ( y02u> 0<MT>> (x1+ye(1+Y)(R 2y? )t> since ¢ = ! 5
2
_ (ZR _ w> (x1+ye(1+y)(R—%¢2)t>
Yo
— 051+, (1+y)(R—% 2)e . _
=0- since p = R + o,/2Ry
= 0.

Since the value functiolf (t,x) satisfies the HJB, it implies (from the verificaii
theorem) thaV (¢, x) is an optimal value function.

|
Figure 1. Efficient frontiers.
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(a) Based on Markowitz model (b) Based on the toated model

3. Results and discussion

The comparison was made between the efficientifoof the mean-variance Markowitz
model [7] and our constructed model (41). The teswkre presented in Figure 1. Our
constructed model (41) (Figure 1(b)) clearly oufpens the Markowitz mean-variance
model (Figure 1(a)) because it has a higher efficfeontier (portfolios with higher
expected returns or portfolios with lower standdegtiation of return). Only two assets in
Markowitz’'s model are within the frontier curve, reas all four considered assets are
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within the efficient curve in our constructed madsdiditionally, it can be clearly observed
from the two frontier curves that Markowitz's meeariance model restricts the number
of possible portfolios.

Table 1: Stability and consistency of the model when inparameters are perturbed.

Initial parameters = 1.00, R = 0.900,¢=-0.7100
Number o Mean Squared Err

Perturbed paramett asset (MSE)
20 0.00023622
y=1.01,R=0.901,4=-0.710: 15 0.00024005
10 0.00024401
5 0.00024809
20 0.00025232
y=1.02,R=0.902,4=-0.710: 15 0.00025665
10 0.00026114
5 0.00026577
20 0.00027546
y = 1.03,R=0.903,4=-0.710: 15 0.00028049
10 0.00028569
5 0.00029107
20 0.00029655
y=1.04,R=0.904,4=-0.710¢ 15 0.00030221
10 0.00030804
5 0.00031403

According to [22], stability describes the situatiwhere small variations of the output
results correspond to small variations of the ilgarameters. Through small perturbations
of the parameters in the constructed model (4&)sthbility has been tested, and the results
were presented in Table 1. The closeness of thenréiom the original input parameters
and the return from the perturbed parameters wested using Mean Squared Error (MSE).
MSE was found to be relatively small in each casgicating that the difference between
the original and perturbed parameter returns wes i@latively small. It was discovered
that MSE grew as the number of assets declinegostipg the theory that the more asset
diversification, the better the returns. This fimglindicates the consistency of the model.
It can be clearly seen from the table that smadingfes in parameters do not give rise to
large changes in the return. This situation indisahat our constructed model (41), does
not suffer from error maximization, hence the difgbaind robustness of the model.
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4. Conclusions

In this paper, we have adapted the martingale rdetin@onstruct the asset return model
in informationally inefficient markets. As the caibgent number of assets increases, the
impact on return and variance increases, indicativeg the constructed model was
efficient. The performance of the model was tedtgdcomparing the corresponding
efficient frontier with that of the Markowitz meamariance model, and it was found that
our constructed model performs better than thaheMarkowitz mean-variance model.
Our constructed model was found to be stable asrttal change in the input parameters
did not result in a large change in the output.
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