Sum Augmented and Multiplicative Sum Augmented Indices of Some Nanostructures

V.R.Kulli
Department of Mathematics
Gulbarga University, Gulbarga 585 106, India
Email: vrkulli@gmail.com

Received 3 January 2023; accepted 15 February 2023
Abstract. We put forward the sum augmented index, multiplicative sum augmented index of a graph. We determine the sum augmented index and the multiplicative sum augmented index for polycyclic aromatic hydrocarbons and jagged rectangle benzenoid systems.

Keywords: sum augmented index, multiplicative sum augmented index, polycyclic aromatic hydrocarbon, benzenoid system.
AMS Mathematics Subject Classification (2010): 05C05, 05C07, 05C09, $05 C 92$

1. Introduction

Let $G=(V, E)$ be a finite, simple connected graph. Let $d(u)$ denote the degree of a vertex $u[1,2]$.

In the modeling of Mathematics, a molecular or a chemical graph is a simple graph related to the structure of a chemical compound. Each vertex of this graph represents an atom of the molecule and its edges to the bonds between atoms. Topological indices are useful for finding correlations between the structure of a chemical compound and its physicochemical properties [3].

The augmented Zagreb index [4] is defined as

$$
A Z I(G)=\sum_{u v \in E(G)}\left(\frac{d(u) d(v)}{d(u)+d(v)-2}\right)^{3}
$$

This topological index has been found to be a useful predictive indicator in the research on heat generation in octanes, and heptanes, with a prediction power that is superior to the atom bond connectivity index [4]. This index has also been researched in the past $[5,6,7,8,9,10]$.

We define the sum augmented index as

$$
\operatorname{SAI}(G)=\sum_{u v \in E(G)}\left(\frac{d(u)+d(v)}{d(u)+d(v)-2}\right)^{3}
$$

The multiplicative sum augmented index is defined as

V.R.Kulli

$$
\operatorname{SAIII}(G)=\prod_{u v E E(G)}\left(\frac{d(u)+d(v)}{d(u)+d(v)-2}\right)^{3}
$$

Some multiplicative indices have been researched in the past $[11,12,13,14,15,16$, 17, 18].

In this paper, we compute the sum augmented index and multiplicative sum augmented index of polycyclic aromatic hydrocarbons and jagged rectangle benzenoid systems. For information about these chemical compounds, see [19].

2. Polycyclic aromatic hydrocarbons

The first three members of the family polycyclic aromatic hydrocarbons $P A H_{n}$ are presented in the below graph.

Figure 1:

The graphs of polycyclic aromatic hydrocarbons have $6 n^{2}+6 n$ vertices and $9 n^{2}+3 n$ edges are shown in the above graphs. Let $A=P A H_{n}$.

We obtain that $\{d(u), d(v): u v \in E(A)\}$ has two edge set partitions.

$d(u), d(v) \backslash u v \in E(A)$	$(1,3)$	$(3,3)$
Number of edges	$6 n$	$9 n^{2}-3 n$

Table 1:

Theorem 1. The sum augmented index of $P A H_{n}$ is

$$
\operatorname{SAI}(A)=\frac{243}{8} n^{2}+\frac{303}{8} n .
$$

Proof: Applying definition and edge set partition of A, we conclude

$$
\begin{aligned}
\operatorname{SAI}(A) & =\sum_{u v E(A)}\left(\frac{d(u)+d(v)}{d(u)+d(v)-2}\right)^{3} \\
& =\left(\frac{1+3}{1+3-2}\right)^{3} 6 n+\left(\frac{3+3}{3+3-2}\right)^{3}\left(9 n^{2}-3 n\right) \\
& =\frac{243}{8} n^{2}+\frac{303}{8} n .
\end{aligned}
$$

Theorem 2. The multiplicative sum augmented index of $P A H_{n}$ is

Sum Augmented and Multiplicative Sum Augmented Indices of Some

 Nanostructures$$
\operatorname{SAIII}(A)=2^{12 n} \times\left(\frac{3}{2}\right)^{9\left(3 n^{2}-1\right)}
$$

Proof: Applying definition and edge set partition of A, we conclude

$$
\begin{aligned}
\operatorname{SAIII}(A) & =\prod_{u v \in E(A)}\left(\frac{d(u)+d(v)}{d(u)+d(v)-2}\right)^{3} \\
& =\left(\frac{1+3}{1+3-2}\right)^{3 \times 6 n} \times\left(\frac{3+3}{3+3-2}\right)^{3\left(9 n^{2}-3 n\right)} \\
& =2^{12 n} \times\left(\frac{3}{2}\right)^{9\left(3 n^{2}-1\right)}
\end{aligned}
$$

3. Benzenoid systems

Three chemical graphs of a jagged rectangle benzenoid system $B_{m, n}$ for all m, n, in N are shown in the below graph.

Figure 2:
The graphs of a jagged rectangle benzenoid system have $4 m n+4 m+m-2$ vertices and $6 m n+5 m+n-4$ edges. Let $H=B_{m, n}$.

We obtain that $\{d(u), d(v): u v \in E(H)\}$ has three edge set partitions.

$d(u), d(v) \backslash u v \in E(H)$	$(2,2)$	$(2,3))$	$(3,3)$
Number of edges	$2 n+4$	$4 m+4 n-4$	$6 m n+m-5 n-4$

Table 2:

Theorem 3. The sum augmented index of $B_{m, n}$ is

$$
\operatorname{SAI}(H)=\left(\frac{81}{4}\right) m n+\left(\frac{4729}{216}\right) m+\left(\frac{3811}{25}\right) n-\frac{1}{54} .
$$

Proof: Applying definition and edge set partition of H, we conclude

$$
S A I(H)=\sum_{u v E(H)}\left(\frac{d(u)+d(v)}{d(u)+d(v)-2}\right)^{3}
$$

V.R.Kulli

$$
\begin{aligned}
& =\left(\frac{2+2}{2+2-2}\right)^{3}(2 n+4)+\left(\frac{2+3}{2+3-2}\right)^{3}(4 m+4 n-4)+\left(\frac{3+3}{3+3-2}\right)^{3}(6 m n+m-5 n-4) \\
& \quad=\left(\frac{81}{4}\right) m n+\left(\frac{4729}{216}\right) m+\left(\frac{3811}{25}\right) n-\frac{1}{54} .
\end{aligned}
$$

Theorem 4. The multiplicative sum augmented index of $B_{m, n}$ is

$$
\operatorname{SAIII}(H)=2^{3(2 n+4)} \times\left(\frac{5}{3}\right)^{3(4 m+4 n-4)} \times\left(\frac{3}{2}\right)^{3(6 m n+m-5 n-4)}
$$

Proof: Applying definition and edge set partition of H, we conclude

$$
\begin{aligned}
\operatorname{SAIII}(H) & =\prod_{u v \in E(H)}\left(\frac{d(u)+d(v)}{d(u)+d(v)-2}\right)^{3} \\
= & \left(\frac{2+2}{2+2-2}\right)^{3(2 n+4)} \times\left(\frac{2+3}{2+3-2}\right)^{3(4 m+4 n-4)} \times\left(\frac{3+3}{3+3-2}\right)^{3(6 m n+m-5 n-4)} \\
& =2^{3(2 n+4)} \times\left(\frac{5}{3}\right)^{3(4 m+4 n-4)} \times\left(\frac{3}{2}\right)^{3(6 m n+m-5 n-4)}
\end{aligned}
$$

4. Conclusion

This paper introduced two new augmented indices and obtained some new results on these indices. The results of the above study may be used in the further development of chemical compounds used for biological and chemical characteristics.
Acknowledgement: The author is thankful to the referee for useful comments.
Conflict of interest. A single author writes the paper, so there is no conflict of interest.
Authors' Contributions. It is a single-author paper. So, full credit goes to the author.

REFERENCES

1. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
2. F.Harary, Graph Theory, Addison-Wesely, Reading, (1969).
3. I.Gutman and N.Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
4. B.Furtula, A.Graovac and D.Vukicevic, Augmented Zagreb index, J. Math. Chem. 48 (2010) 370-380.
5. T.V.Asha and V.R.Kulli and B.Chaluvaraju, Different types of augmented Zagreb indices of some chemical drugs: A QSPR model, Eurasian Chemical Communications, 4 (2022) 513-524.
6. Y.Huang, B.Liu and L.Gan, Augmented Zagreb index of connected graphs, MATCH Commun. Math. Comput. Chem. 67 (2012) 483-494.
7. D.Wang, Y.Huang and B.Liu, Bounds on augmented Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012) 209-216.
8. V.R.Kulli, ABC Banhatti and augmented Banhatti indices of chemical networks, Journal of Chemistry and Chemical Sciences, 8(8) (2018) 1018-1025.

Sum Augmented and Multiplicative Sum Augmented Indices of Some Nanostructures

9. A.Bharali and R.Bora, Computation of some degree based topological indices of silicates SiO2 layer, Annals of Pure and Applied Mathematics, 16(2) (2018) 187193.
10. V.R.Kulli, Computation of $A B C, A G$ and augmented status indices of graphs, International Journal Mathematics Trends and Technology, 66(1) (2020) 1-7.
11. W.Gao, M.K.Jamil, W.Nazeer and M.Amin, Degree based Multiplicative atom bond connectivity index of nanostructures, IAENG International Journal of Applied Mathematics, 47:4, IJAM-47-4-04 (2017).
12. V.R.Kulli, Two new multiplicative atom bond connectivity indices, Annals of Pure and Applied Mathematics, 13(1) (2017) 1-7.
13. V.R.Kulli, Computation of multiplicative (a, b)-status index of certain networks, Journal of Mathematics and Informatics, 18 (2020) 50-55.
14. V.R.Kulli, Computing some multiplicative temperature indices of certain graphs, Journal of Mathematics and Informatics, 18 (2020) 139-143.
15. V.R.Kulli, Computation of multiplicative minus F-indices of titania nanotubes, Journal of Mathematics and Informatics, 19 (2020) 135-140.
16. V.R.Kulli, On multiplicative inverse Nirmala indices, Annals of Pure and Applied Mathematics, 23(2) (2017) 57-61.
17. T.V.Asha, V.R.Kulli and B.Chaluvaraju, Multiplicative versions of Banhatti indices, South East Asian Journal of Mathematics and Mathematical Sciences, 18(1) (2022) 309-324.
18. V.R.Kulli, Multiplicative Sombor indices of certain nanotubes, International Journal of Mathematical Archive, 12(3) (2021) 1-5.
19. V.R.Kulli, Multiplicative connectivity Revan indices of polycyclic aromatic hydrocarbons and benzenoid systems, Annals of Pure and Applied Mathematics, 16(2) (2018) 337-343.
