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Abstract. In this short note, we show that the Diophantine equation 29 3x y z− =  has all 
non-negative integer solutions ��, �, �� ∈ {�	, 2	, 0�: 	 ∈  ℕ ∪ {0}} and the Diophantine 
equation 213 7x y z− =  have the unique non-negative integer solution ( , , ) (0,0,0)x y z = .  
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1. Introduction  
In recent articles, Diophantine equations of the form 2x ya b z− = , where ,a bare positive 
integers and , ,x y zare non-negative integers, have been studied (see for instance [1, 2, 3, 
4, 5, 7, 9, 10, 11, 12]). In 2022, Tadee [8] proved that the Diophantine equation 

2( 6)x yp p z+ − = , wherep  is a prime number with 1(mod 28)p ≡ , has the unique non-

negative integer solution ( ) ( ), , 0, 0, 0x y z = . In this paper, we will solve the Diophantine 

equation, for some prime p  with 1(mod 28)p ≡ , which are 3p =  and 7p = . 
 
2. Preliminary 
Theorem 2.1. (Mihailescu’s theorem) [6] The Diophantine equation 1x ya b− =  has the 
unique integer solution ( ) ( ), , , 3, 2, 2, 3a b x y = , where , ,a b x  and y are integers with 

{ }min , , , 1a b x y > . 

 
3. Main results 
Theorem 3.1. The Diophantine equation 29 3x y z− =  has all non-negative integer 
solutions ��, �, �� ∈ {�	, 2	, 0�: 	 ∈  ℕ ∪ {0}}. 
Proof: Let ,x y  and zbe non-negative integers such that 29 3x y z− = . Then 2 23 3x yz− =  

or (3 )(3 ) 3x x yz z− + = . There exists a non-negative integer r  such that 3 3x rz− =  and 
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3 3x y rz −+ = . Then 2y r≥  and 22 3 3 (3 1)x r y r−⋅ = + . This implies thatx r=  and so 
23 1y r− = . Thus 2y r= . Consequently, 0z = . Hence, ��, �, �� ∈ {�	, 2	, 0�: 	 ∈  ℕ ∪ {0}} 

are all non-negative integer solutions of the Diophantine equation 29 3x y z− = . 
 
Theorem 3.2. The Diophantine equation 213 7x y z− =  has only one non-negative integer 
solution ( , , ) (0,0,0)x y z = . 

Proof: Let ,x y  and zbe non-negative integers such that 213 7x y z− = .  

Case 1. 0y = . Therefore 213 1x z− = . If 1x = , then 2 12z = . This is impossible since z  

is an integer. If 1x > , then 1z >  and so { }min 13, , ,2 1z x > . By Theorem 2.1, we have 

13 3= , a contradiction. Thus 0x =  and so 0z = . Then ( , , ) (0,0,0)x y z =  is a solution. 

Case 2. 0y > . Then 7 0 (mod7)y ≡ . This implies that 2 13 7 ( 1) (mod7)x y xz = − ≡ − . If x  

is odd, then 2 1(mod7)z ≡ − , which contradicts the fact that 2 0,1, 2, 4(mod7)z ≡ . Thus,x  

is even. There exists a non-negative integer k such that 2x k= . Then 2 213 7k yz− =  or 
(13 )(13 ) 7k k yz z− + = . Thus 13 7k uz− = and 13 7k y uz −+ = , for some non-negative 

integer u  . It follows that 2y u≥  and 22 13 7 (7 1)k u y u−⋅ = + . If 0u > , then 7 2 13k⋅ , a 

contradiction. Thus 0u = and so2 13 7 1k y⋅ = + . This is impossible since 7 1 1(mod7)y + ≡  

and 2 13 2( 1) 2, 2(mod7)k k⋅ ≡ − ≡ − . 
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