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Abstract. In this study, we propose the first and second modified E-Banhatti indices and 
the first and second (a, b)-KA E-Banhatti indices of a graph. We compute the first and 
second (a, b)-KA E-Banhatti indices for HC5C7 [p, q] nanotubes. We also establish some 
other E-Banhatti indices directly as a special case of these indices for some special values 
of a and b.  
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1. Introduction 
Let G be a finite, simple, connected graph. Let V(G) be the vertex set and E(G) be the edge 
set of G. The degree dG(u) of a vertex u is the number of vertices adjacent to u. For 
undefined terms and notations, we refer [1]. 
 A graph index is a numerical parameter mathematically derived from the graph 
structure. The graph indices have their applications in various disciplines of Science and 
Technology [2].  
 
           Kulli [3] defined the Banhatti degree of a vertex u of a graph G as  

( ) ( )
( ) ,G

G

d e
B u

n d u
=

−  
where |V(G)|= n and the vertex u and edge e are incident in G. 
            Kulli introduced the first and second E-Banhatti indices in [3] and they are defined 
as 
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           The first and second hyper E-Banhatti indices were proposed by Kulli in [4] and 
they are defined as 
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        Kulli [5] proposed the E-Banhatti Nirmala index of a graph G is 
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       The modified E-Banhatti Nirmala index [5] of a graph G is 
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The E-Banhatti Sombor index [6] of a graph G is 
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Kulli [6] introduced the modified E-Banhatti Sombor index of a graph G and it is 
defined as 
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Kulli [7] introduced the product connectivity E-Banhatti index and the reciprocal 
product connectivity E-Banhatti index of a graph G and they are defined as 
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In [8], the FE-Banhatti index of a graph G is defined as 
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           We introduce the first and second modified E-Banhatti indices of a graph G and they 
are defined as 
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        Motivated by the work on E-Banhatti indices, we introduce the first and second (a, 
b)-KA E-Banhatti indices of a graph and they are defined as  
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where a and b are real numbers. 
Recently, some graph indices were studied in [9, 10, 11, 12].  
This paper determines the first and second (a, b)-KA E-Banhatti indices for HC5C7 [p, q] 
nanotubes.  
 
2.  Observations 
We observe the following 

(1) ( ) ( )1
1 1,1EB G KAB G=                          (2) ( ) ( )1

1 1,2HEB G KAB G=  

(3) ( ) ( )1
1

1,
2

EBN G KAB G=                      (4) ( ) ( )1
1

1,
2

m EBN G KAB G
−

=  

(5) ( ) ( )1
1

2,
2

EBS G KAB G=                       (6) ( ) ( )1
1

2,
2

m EBS G KAB G
−

=  

(7) ( ) ( )1
2,1FEB G KAB G=                       (8) ( ) ( )1

1 1, 1
m EB G KAB G−=  



The (a, b)-KA E-Banhatti Indices of Graphs  

57 
 

Furthermore, we also see that  
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3. HC5C7 [p, q] Nanotubes 
We consider HC5C7 [p, q] nanotubes, see Figure 1. 
 

 
 

Figure 1: 2-D lattice of HC5C7 [8, 4] nanotube 
 

       The graphs of a nanotube HC5C7 [p, q] have 4pq vertices and 6pq – p edges are shown 
in the above graph. Let G= HC5C7 [p, q]. 
        In G, there are two types of edges as follows:  
 E1 = {uv ∈ E(G)| d(u)=2, d(v) = 3},          |E1| = 4p. 
 E2 = {uv ∈E(G)| d(u)= d(v) = 3},          |E2| = 6pq – 5p. 
 
       Therefore, in G, we obtain that {B(u), B(v): uv � E(NHPX[m, n])}  has two  Banhatti 
edge set partitions.  

            BE1 = {uv ∈ E(G) | B(u) =
3

4 2pq −
, B(v) =

3

4 3pq −
},          |BE1| = 4p. 

    BE2 = {uv ∈ E(G) | B(u) = B(v) =
4

4 3pq −
},    |BE2| = 6pq−5p.                                                

       We calculate the first (a, b)-KA E-Banhatti index of a nanotube 5 7[ , ]HC C p q  as 
follows: 
 
Theorem 1.  Let G= 5 7[ , ]HC C p q be a nanotube. Then 
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Proof: From definition and by cardinalities of the Banhatti edge partition of G, we obtain 
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      ( )3 3 4 4
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 By solving the above equation, we get the desired result.        

We obtain the following results by using Theorem 1.      

Corollary 1.1.  Let G= 5 7[ , ]HC C p q be a nanotube. Then 
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      We calculate the second (a, b)-KA E-Banhatti index of a nanotube 5 7[ , ]HC C p q  as 
follows: 
 
Theorem 2.  Let G= 5 7[ , ]HC C p q be a nanotube. Then 
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Proof: From the definition and by cardinalities of the Banhatti edge partition of G, we 
obtain 
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 By solving the above equation, we get the desired result.        

We obtain the following results by using Theorem 1.      

Corollary 2.1.  Let G= 5 7[ , ]HC C p q be a nanotube. Then 
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4. Conclusion 
In this study, we have defined the first and second modified E-Banhatti indices and the first 
and second (a, b)-KA E-Banhatti indices of a graph. The first and second (a, b)-KA E-
Banhatti indices and some other E-Banhatti indices for particular values of a and b for 
HC5C7 [p, q] nanotubes have been determined.   
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