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Abstract. This paper shows that the Diophantine equation (p+6)x - py = z2 where p is a 
prime number with p ≡ 1 (mod 28), has a unique non-negative integer solution. The 
solution is ( , , ) (0,0,0)x y z = . 
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1. Introduction  
In 2019, Thongnak, Chuayjan and Kaewong [8] proved that the Diophantine equation 

22 3x y z− =  has three non-negative integer solutions ( , , ) {(0,0,0),(1,0,1),(2,1,1)}x y z ∈ . 

In the same year, Burshtein [1] studied the Diophantine equation 2( 1)x yp p z+ − =  in 
which p  is a prime number and , ,x y zare positive integers with 2,3,4x y+ = . Burshtein 

[2] showed that the Diophantine equation 26 11x y z− =  has exactly one positive integer 
solution when 2x = , and no positive integer solution when 2 16x< ≤ . Burshtein [3] 
found all positive integer solutions of the Diophantine equation 2x yp p z− = , when p  is 
a prime number.  
 In 2020, Burshtein [4] showed that the Diophantine equation 213 5x y z− =  has 
exactly one positive integer solution ( ) ( ), , 2,2,12x y z =  and the Diophantine equation 

219 5x y z− =  has no positive integer solution. Elshahed and Kamarulhaili [5] studied all 
non-negative integer solutions of the Diophantine equation 2(4 )n x yp z− = , where p  is 
odd prime and n  is a positive integer. In 2021, Thongnak, Chuayjan and Kaewong [9] 
showed that ( ) ( ), , 0,0,0x y z = is the unique non-negative integer solution of the 

Diophantine equation 27 5x y z− = . In 2022, Tadee and Laomalaw [7] found all non-
negative integer solutions of the Diophantine equation 22x yp z− = , for some primep . 

 In this paper, we solve the Diophantine equation of the form 2( 6)x yp p z+ − = , 
where p  is a prime number with 1(mod28)p ≡ and , ,x y zare non-negative integers. 
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2. Main results 
We begin this section by presenting an important theorem. 
 
Theorem 2.1. (Mihailescu’s theorem) [6] The Diophantine equation 1x ya b− =  has the 
unique integer solution ( ) ( ), , , 3, 2, 2, 3a b x y = , where , ,a b x  and y are integers with 

{ }min , , , 1a b x y > . 

 
Lemma 2.1. Let p  be an odd prime number. Then the Diophantine equation 21 yp z− =  
has the unique non-negative integer solution ( , ) (0,0)y z = . 

Proof: Let y  and z  be non-negative integers and( ),y z  be a solution of the Diophantine 

equation 21 yp z− = . Then (1 )(1 ) yz z p− + = . Since p  is prime, we have 1 vz p− =  and 

1 y vz p −+ = ,  for some non-negative integer v . Therefore 2y v≥  and 22 ( 1)v y vp p −= + . 

Since 2p ≠ , we have 0v = and so 2 1yp= + . Then 0y = . It implies that  0z = . Hence,  

( , ) (0,0)y z =  is the unique non-negative integer solution. 
 
Lemma 2.2. Let p  be a prime number with 1(mod4)p ≡ . Then the Diophantine equation 

2( 6) 1xp z+ − =  has the unique non-negative integer solution ( , ) (0,0)x z = . 

Proof: Let x  and z  be non-negative integers and( ),x z  be a solution of the Diophantine 

equation 2( 6) 1xp z+ − = . We consider three following cases. 

Case 1. 0x = . Then  2 0z = . Hence,  ( , ) (0,0)x z =  is a solution. 

Case 2. 1x = . Then 2 5z p= + . Since 1(mod4)p ≡ , we have 2 2 (mod4)z ≡ , which 

contradicts the fact that 2 0,1(mod4)z ≡ . 

Case 3. 1x > . It is easy to check that 1z > . Therefore { }min 6, , ,2 1p z x+ > . Since 
2( 6) 1xp z+ − =   and Theorem 2.1, we have 6 3p + = , a contradiction. 

 
Theorem 2.2. Let p  be a prime number with 1(mod 28)p ≡ . Then ( , , ) (0,0,0)x y z =  is 

the unique non-negative integer solution of the Diophantine equation 2( 6)x yp p z+ − = . 

Proof: Let , ,x y zbe non-negative integers and( ), ,x y z  be a solution of the Diophantine 

equation 2( 6)x yp p z+ − = . If 0x = or 0y = , then ( ), , (0,0,0)x y z = , by Lemma 2.1 and 

2.2, respectively. Now, we consider case 0x > and 0y > . Since 1(mod28)p ≡ , it 

implies that 1(mod4)p ≡ and 1(mod7)p ≡ . Therefore ( 6) ( 1) 1(mod4)x y xp p+ − ≡ − − . 

Since 1(mod 4)p ≡ , we obtain that p  and 6p +  are odd. Thus, 2z  is even and so 
2 0 (mod4)z ≡ . Since 2( 6)x yp p z+ − = , it follows that ( 1) 1 0 (mod4)x− − ≡ . We see 

that 2x k= , for some positive integer k . Therefore (( 6) )(( 6) )k k yp z p z p+ − + + = . 

Since p  is prime, there exists a non-negative integer u  such that ( 6)k up z p+ − =  and 

( 6)k y up z p −+ + = . Then 2y u≥   and 22( 6) ( 1)k u y up p p −+ = + .  
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 Assume that 0u > . Then 2( 6)kp p+  and so 2p =  or 3p = . This is impossible 

since 1(mod28)p ≡ . Thus 0u = . Consequently, 2( 6) 1k yp p+ = + . Since 1(mod7)p ≡ , 

we get 2( 6) 0 (mod7)kp + ≡  and 1 2(mod7)yp + ≡ . Thus 0 2 (mod7)≡ , a contradiction. 
 
Corollary 2.1. The Diophantine equation 235 29x y z− =  has the unique non-negative 
integer solution ( , , ) (0,0,0)x y z = . 
Proof: This corollary follows directly from Theorem 2.2. 
 
Corollary 2.2. Let n  be a positive integer andp  be a prime number with 1(mod 28)p ≡ . 

Then the Diophantine equation 2( 6)x y np p z+ − =  has the unique non-negative integer 

solution ( , , ) (0,0,0)x y z = . 

Proof: Let , ,a b cbe non-negative integers such that 2( 6)a b np p c+ − = . Then ( , , )na b c  

is a non-negative integer solution ( , , )x y z of the Diophantine equation 2( 6)x yp p z+ − = . 

By Theorem 2.2, we obtain that ( , , ) (0,0,0)na b c = . Then 0a b c= = = . Hence, (0,0,0) 

is the unique non-negative integer solution of the equation 2( 6)x y np p z+ − = . 
 
3. Conclusion 
In this article, the Diophantine equation 2( 6)x yp p z+ − = , whenp  is a prime number 

and , ,x y z are non-negative integers, is investigated. We found that ( , , ) (0,0,0)x y z =  is 
the unique non-negative integer solution of the equation in the following cases: 1) 

0x = and 2p ≠ , 2) 0y =  and 1(mod4)p ≡ , and 3) 1(mod28)p ≡ . For example, if 

29p = , then the Diophantine equation 235 29x y z− =  has the unique non-negative 
integer solution ( , , ) (0,0,0)x y z = . 
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