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Abstract. This paper is dedicated to investigating a quasilinear elliptic system with p-
Laplacian in RN, which involves critical Hardy-Littlewood-Sobolev nonlinearities and
critical Sobolev nonlinearities. Based upon the Hardy-Littlewood-Sobolev inequality and
variational methods, we obtain the attainability of the corresponding best constants and
the existence of nontrivial solutions.
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1. Introduction
In this paper, we study the existence of solutions for the following multiple critical
quasilinear coupled system in RN:
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Littlewood-Sobolev upper critical exponent; 0,i  , 1,i i   and
*
0i i p   ( 1,2, , )i m N  ; * *

0 : Npp p
N p

 


is the Sobolev critical exponent.

The problem (1) originates from the following nonlinear Choquard equation
2( ) | | | | , in ,( )q q Nu V x u I u u u R

    (2)

where , (0, )
2

N Nq N
N N
   
  


. If 3N  , ( ) 1V x  , 2  and 2q  , the problem (2)

is simplified to the Choquard-Pekar equation, which was proposed by Pekar [1] in 1954
to describe the quantum theory of a polaron. In 1976, Choquard applied it to explain an
electron trapped in its own hole, as an approximation to Hartree-Fock theory of one-
component plasma [2]. For more relevant research on the Choquard equation, please refer
to [3-7] and the references therein.

In the last decades, the problem of solutions for differential systems is widely
studied [8-10]. In particular, the elliptic partial differential with multiple critical nonlinear
have attracted many scholars’ attention. For instance, we refer, the Laplacian and
fractional Laplacian to [11-14], the p-Laplacian to [15-17] and the biharmonic operator to
[18]. Compared with only one critical nonlinear term, the asymptotic competition
between the energy carried by different critical nonlinear terms makes the problem more
difficult. Among these, Filippucci, Pucci and Robert [15] were concerned with the p-
Laplacian equation with doubly critical nonlinearities as follows
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
is the

Hardy-Sobolev critical exponent. Based on truncation skills, the authors verified that
there exists a positive weak solution to the problem (3) in RN via Mountain Pass Lemma
and some analytical techniques. Later on, Ghoussoub and Shakerian [14] extended the
problem (3) to the case of fractional Laplacian, and studied the existence of solutions
through the s-harmonic extension and concentration compactness principle.

To the best of our knowledge, the classical methods mentioned above for solving
doubly critical problems are no longer directly applicable to the Choquard equation
because the convolution terms are nonlocal. For example, Lei and Zhang [19] considered
the doubly critical nonlinearities with the upper and lower Hardy-Littlewood-Sobolev
critical exponents, and overcame the lack of compactness caused by the doubly critical
nonlinearities with the help of Pohozǎev-type identity. When the Sobolev-Hardy term of
(3) is replaced by

* * 2| | | |( )p pI u u u 


 , Shen [20] proved the existence of nontrivial
solutions through the variational method together with the refinement of Hardy-
Littlewood-Sobolev inequality in [21]. While in [22], Su, Chen, Liu and Che considered
the following p-Laplacian equation with multiple critical nonlinearities
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where * * ( )
3, 4,5, [0, ), (1, 2], ,
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, The authors established

the refined Sobolev inequality with the Coulomb norm. Under some conditions about the
parameters i , they verified that the problem (4) admits a nonnegative ground state
solution by variational methods. After that, for 3N  , (1, )p N , Xia and Su [23]
obtained the same conclusion as [22] while relaxing the conditions required in [22].

Recently, the doubly critical coupled systems have also been studied by scholars
(see [24-26]). Wang and Zhang [25] generalized the equation in [13] to the following
doubly critical fractional elliptic system in NR
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♯ is the fractional Hardy-LittlewoodSobolev critical upper exponent. By

utilizing the variational methods, the authors established the extremal function of the best
constants and proved the existence of solutions for the problem (5). The main idea comes
from the discussion of a single equation by Yang and Wu [13]. Subsequently, Yang [26]
established the improved Sobolev inequality with partial singular weight and extended
the results in [27] to the doubly critical coupled systems. Li and Yang [24] established
two new improved Sobolev inequalities and overcame the difficulties caused by the
strongly coupled terms in the doubly critical elliptic systems they studied. Finally, they
proved the existence of a nontrivial weak solution with the same idea as [11].

Based on the above researches, we naturally raise a question: whether the
corresponding best constant and nontrivial solution exist for the elliptic system with
multiple critical nonlinearities and strongly coupled terms like (1)? We emphasize that in
addition to the difficulty caused by the nonlocality of convolution terms, the strong
coupling makes the previous works in [13, 20, 22, 23, 25] no longer fully applicable to
the problem (1). For this reason, we introduce some crucial tools in Section 2, which are
useful to prove the existence of minimizers for the corresponding best constant and are
also important to exclude the case where the ( )PS sequence is zero.

This paper is organized as follows. The appropriate functional framework for the
system (1) and the main results are presented in Section 2. The extremals of the
corresponding best constants are achieved in Section 3, and the existence of solutions to
(1) is proved in Section 4.
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2. Preliminaries and main results
Throughout this article, we will utilize , , ( 1, 2, )iC C C i   to represent the positive
constants, which vary from line to line. We employ ( )rB x to stand for the ball with radius
r and center x in RN. And for convenience, let ( ) | | NI x x 


 .

Consider the usual Sobolev space 1, ( )p ND R , which is the completion of 0 ( )NC R with

the norm
1

| |( )
N

p p

R
u dx . We recall the standard Hardy inequality (see [28, Lemma 2.1])
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According to the Hardy inequality (6),
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In the current paper, we work in the space 1, 2 1, 1,( ) : ( ) ( )( )p N p N p NE D R D R D R   , E
is a reflexive separable Banach space with respect to the norm
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The energy functional associated with the system (1) is defined on E by
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It is trivial to verify that 1( , )C E RJ . Consequently, we see that the solutions of (1) are
in fact critical points of ( , )u vJ . More precisely, we call that ( , )u v E is a weak solution
to (1), if for any 1 2( , ) E   , there holds
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In the following, the Morrey space will be introduced, which is indispensable to the
refinement of Hardy-Littlewood-Sobolev inequality and the refinement of Sobolev
inequality.

Definition 2.1. (See [29]) Let 1 r   and (0, ]N  . A measurable : Nu R R is said
to belong to the Morrey space , ( )r NRL if and only if
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The following refinement of Sobolev inequality has been proved in [30].

Lemma 2.1. ([30, Theorem 1.2]) For any 1 p N  , there exists 1 1 ( , ) 0C C N p  such
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Lemma 2.2. (Hardy-Littlewood-Sobolev Inequality, see [31, Theorem 4.3]) Let , 1r t ,
(0, )N  with 1/ ( ) / 1/ 2, ( )r Nr N N t f L R     and ( )t Nh L R . There exists a
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Moreover, by virtue of (11) and (13) Su and Chen [21] verified the refinement of Hardy-
Littlewood-Sobolev inequality as follows.
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Next, we introduce a basic but crucial inequality, which proof is similar to that of
[31, Theorem 9.8] and [32, Lemma 2.3].
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where ( )U x is a radially symmetric, decreasing function and possesses some asymptotic
conditions (see [33] for details).

Moreover, for 0, , 1i i i    with *
i i p   ( 1, 2, , )i m  , we define
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The main results of the current paper are as follows.

Theorem 2.1. Suppose [0, ), (0, )N    .
(i) , min( ) .

i
h  S S

(ii) , i S has the minimizers , min ,( ), ( ) , 0,( )U x U x       where , ( )U x 
 are the extremal

functions of S defined as in (19).

Theorem 2.2. If [0, )  ,1 p N  , (0, )N  , , 1i i   with *
i i p   , then system (1)

has at least one nontrivial solution in E .

Remark 2.1. As we know, our paper improves and generalizes the result of the doubly
critical p-Laplacian equation in [20] to the multiple critical coupled system. In addition, it
is worth noting that the result on the existence of solutions is still new even if 0i  .
3. Minimizers of  , A and , i S

In this part, we demonstrate that the best constants  , A and , i S can be achieved. Firstly,

we show the minimizer of  , A . Our method is similar to [32, Lemma 2.6]. In order to
convince the readers, we complete it here.

Lemma 3.1. If [0, ), (0, )N    , then 
, ,2   A A .

Proof: Let { }n be a minimizing sequence of , A , and let 1n nu r , 2n nv r  , 1 2, 0r r  to
be chosen later. Then, by (18) that
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
* * * *

*

* *
*
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1 2
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1 22 2

2 1 2

| | | || | | |
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| || |
| |

| ( ) | | ( ) |
| |
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[( ) ( ) ]
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N N
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N N

p p p p
p p p p n n

n n pR

pp p p p
pn n

NR R

p
p n

p p n pR

pp p
pn n

NR R

r rr r dx
x

r r x y dxdy
x y

dx
r r x
r r x y dxdy

x y

   


 


 





   

 

 

 






   





 
 





 



 

A

(23)

Setting the function 2 2( )
p p

x x x


  . It is easy to calculate that 0min ( ) (1) 2x x    .
Then, we choose 1r , 2r in (23) such that 1 2r r . Therefore, we infer from (23) that


, ,2 as .n    A A (24)

Then, suppose {( , )}n nu v is a minimizing sequence of  , A . Let n n nz r v for some 0nr 

such that
* * * *

| ( ) | | ( ) | | ( ) | | ( ) | .
| | | |N N N N

p p p p
n n n n

N NR R R R

u x u y z x z ydxdy dxdy
x y x y

   

  
    

This along with Lemma 2.4 gives
* * * *

* *
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| ( ) | | ( ) | .
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N N N N
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
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   

 
Then, we derive

* * * *
* *

*
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| | | | | | | |(| | | | ) (| | | | )
| | | | | | | |

| ( ) | | ( ) | | ( ) | | ( ) |
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pp p p p
p p p pn n n n

n n n n np p p pR R

p pp p p p
p pn n n n

N NR R R R

p
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n n

p
n

u v u vu v dx r u v dx
x x x x

u x v y u x z ydxdy dxdy
x y x y

r u

u x

   
 



 



   

 

         


 



 

   

* * *
* *

2

2 2

2 2
, , ,

( ) | | ( ) | | ( ) |
| | | |

( ) 2 .

) ( )

( )

N N N N

p
pp

n n n
p pp p p
p pn n n

N NR R R R

p p

n n n

r r z

u y z x z ydxdy dxdy
x y x y

r r r

  
 



 

     



 





 

   

   

A A A

(25)

As n in (25), we deduce


, ,2 .   A A (26)
From (24) and (26), we get the conclusion desired. □

Lemma 3.2. If [0, ), (0, )N    , then 
, A is achieved by a radially symmetric,

nonnegative and nonincreasing function in RN.
Proof: From [21], we know that the extremal of , A is radially symmetric, nonnegative
and nonincreasing. Combining with Lemma 3.1, we complete this proof. □
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To prove Theorem 2.1, we just need to find the relationship between the best
constants , i S and S by the similar method in [34, Theorem 2.2].

Proof of Theorem 2.1. (i) Let { }n be a minimizing sequence of S , and let
1 2 1 2ˆ ˆ, , , 0n n n nu v        to be chosen later. Then, it follows from (16) that

*

** *

1 2
1 2

,

1 2
1

1 2

1 2
1

| | | || ( ) | | ( ) |
| | | |

| | | |

| |(| | )
| | .

| |

( )

( )

( ) ( )

N

i

i i
N

N

i i
N

p p
p pn n

n np pR

pm
p

i n nR
i

p
p n

np p pR

p pm
pp p

i nR
i

dx
x x

dx

dx
x

dx

 
 

 

        

    

 
 

  





    


 


 







 

S

(27)

It is worth noting that from (20)-(22), 0min ( )h  is achieved at finite min 0  . Then,

choosing 1 2, 0   in (27) such that 2
min

1





 with the minimum value

*

2 1 2
min

1
1 2

1

( ) .( )
( )i i

p p

pm
p

i
i

h h
 

  



  




 


Therefore, we infer from (27) that

, min( ) as .
i

h n   S S (28)
For another, suppose ˆ ˆ{( , )}n nu v is a minimizing sequence for , i S and let ˆˆn n nz v for
some 0n  such that

ˆ| |
.

ˆ| |

i i
N

i i

i i
N

nR
n

nR

u dx

v dx

 
 

 







 


Then,
ˆˆ| | | | .i i i i

N Nn nR R
z dx u dx      (29)

According to the Young inequality, we have
ˆ ˆ ˆˆ| | | | | | | |

ˆ ˆ| | | | .

i i i i i i
N N N

i i i i
N N

i i
n n n nR R R

i i i i

n nR R

u z dx u dx u dx

u dx z dx

     

   

 
   

 

 

 
 

 

  

 
(30)

Consequently, we infer from (29) and (30) that
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As n in the above inequality, we derive
, min( ) .
i

h  S S (31)
It follows from (28) and (31) that

, min( ) .
i

h  S S (32)
(ii) By (16), (20) and (32), the desired result follows. □

4. The nontrivial solution of system (1)
In this part, we demonstrate the existence of solutions for the problem (1) and seek
critical points of J by some technical lemmas and Mountain Pass Lemma.

Firstly, we define the Nehari manifold with respect to J as follows
1, 2( , ) ( ) \{0} : ( , ),( , ) 0 .{ ( ) }p Nu v D R u v u v    N J

Hence, a minimizer of the minimization problem
0 ( , )

inf ( , )
u v

c u v



N
J

is a solution to the problem (1). Meanwhile, we set
[0,1]inf max ( ( )),tc t 


 J

where [0,1], : (0) 0, (1){ ( ) }C E e       , and set 0( , )
inf max ( , ).m tu v E

c tu tv
 J Using the

argument of [35, Theorem 4.2] under the condition (0, )N  , we obtain
0 .mc c c  (33)

Lemma 4.1. If [0, )  and (0, )N  , then


,*
,

1: min , .
( )

2
{ ( ) }

i

N N
p p

m N p
N

pc c
N p N


  

 












 


A

S

Proof: Lemma 3.2 and Theorem 2.1 imply that  , A and , i S are achieved in E .

Generally, we suppose that 1, 2
1 1( , ) ( ) \{0}( )p Nu v D R and 1, 2

2 2( , ) ( ) \{0}( )p Nu v D R are the
minimizers of  , A and , i S respectively. Define the following for any 0t  ,
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We infer from (8) that
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Thus, it implies that
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Then, we show that
0 1 1 1 1 0 2 2 2 2max ( , ) ( ), max ( , ) ( ).t ttu tv g t tu tv g t  J J

Assuming that there exist 1 20, 0t t   satisfying 1 1 1 1 1 1( , ) ( )t u t v g t J , 2 2 2 2 2 2( , ) ( )t u t v g t J ,
that is,
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Above two equalities imply that 1 1 1 1( ) ( )g t g t  and 2 2 2 2( ) ( )g t g t  , which yields a
contradiction. Thus, we get the desired result. □

Then, we demonstrate that the functional J satisfies the geometry structure of
Mountain Pass Lemma without the ( )PS condition.

Lemma 4.2. Suppose [0, ), (0, )N    .
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(i) There exist , 0R  such that ( , )( , ) |
Eu v Ru v  J for all ( , )u v E .

(ii) There exists e E with
E

e R  such that ( ) 0e J .
Proof: (i) By (16) and (18), we see that
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for ( , ) 0
E

u v R  small enough. We complete the proof of the first assertion.
(ii) For a fixed 0 0( , )u v E ,
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as t . Choosing 0t large enough such that 0 0 0 0( , )
E

t u t v R  and letting 0 0 0 0( , )e t u t v ,
the conclusion (ii) follows. □

Next, we display the nonzero ( )cPS sequence with the help of the following.

Lemma 4.3. Suppose {( , )}n nu v E is a ( )cPS sequence of J with *(0, )c c , where *c
is given in Lemma 4.1. If (0, )N  and [0, )  , then
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Proof: By ( , )n nu v cJ and ( , ) 0n nu v J as n , there holds
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which means {( , )}n nu v is uniformly bounded in E . Let us now assume that
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u v dx 

 


It follows from ( , )n nu v cJ , ( , ) 0n nu v J that
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Consequently,
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By (18) and (36), we obtain
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N p


  
















A

which contradicts *(0, )c c . Similarly, we can complete the proof of (35). □

Finally, we will show the existence of solutions for (1).

Proof of Theorem 2.2. We infer from Lemma 4.2 and Lemma 4.3 that there exists a
( )

mc
PS sequence {( , )}n nu v of J which is bounded in E . Combining Lemma 4.1, 4.3 and

Lemma 2.3, 2.4, one can find 0C  such that
, ,( ) ( )

, .p N p N p N p Nn nR R
u C v C  

L L

Thus, there exist 0n  and N
nx R such that

, ( )( )
( ) 0,

2
| | p N p N
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p p
n n n RB x

Cu y dy u C
n

 
     

L
(38)

and

, ( )( )
| ( ) | 0.

2p N p N
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p p
n n n RB x

Cv y dy v C
n
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     

L
(39)

Setting ( ), ( )
N p N p
p p

n n n n n n n nu u x v v x   
 

  . By direct computation, we derive
1 2( , ) ( , ) , ( , ), ( , ) 0 as .n n n n m n nu v u v c u v n      J J J

Proceeding as in Lemma 4.3, we obtain that {( , )}n nu v is bounded in E uniformly.
Therefore, there exists {( , )}u v such that

1,

*
loc

, in ( ),

, in ( ) for any [ , ),

, a.e. in ,
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n n

q N
n n

N
n n

u u v v D R

u u v v L R q p p

u u v v R

  

 

 

and ( , )u v is a weak solution of (1). From (38) and (39), we have
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1 1( ) ( )
| ( ) | 0, | ( ) | 0.

n n

n n

p p
x xn nB B
u y dy C v y dy C

 

      (40)

Now, we verify that { }n
n

x


is bounded. For any 0 p  , it follows from Hölder

inequality that
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Using the rearrangement inequality [31, Theorem 3.4], we derive
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Then, suppose | |n

n

x

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  . Hence, we infer from Hölder inequality that
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which contradicts (41). Therefore, { }n
n

x


is bounded. By (40), we derive that there exists

0R  such that
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Through the compact embedding 1,
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Thus, 0, 0u v   . Applying the arguments in [36, Lemma 2.1], there holds
| | | | | | | | | | | | (1).i i i i i i

N N Nn n n nR R R
u v dx u u v v dx u v dx o            (42)

By the similar argument of claim (2) in [32, Theorem 4.13], we derive
* * * *
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Finally, combining (42) with (43), we deduce that
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J J
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iv dx o

u v u v u v u v c
p

 

     J J J

Therefore, ( , )u v is a nontrivial solution of (1) with 0( , )u v cJ . We finish the proof. □

5. Conclusion
Choquard equation with multiple critical exponents is widely studied, and this kind of
equation can be extended to coupled systems. In this paper, we use the variational method
to discuss the existence of the best constants and solutions for strongly coupled Choquard
systems with multiple critical exponents in RN. Next, we will continue to study the best
constant of the system in the case of fractional and discuss the existence of its solution on
this basis.
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