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Abstract. For ( , , )L L= ∗ → a complete residuated lattice, a type of L -fuzzy covering rough 
sets was defined by Li [8] in 2017. In this paper, a further study on rough sets was given. 
Precisely, a single axiomatic characterization of the L -fuzzy covering rough sets was 
presented, and the relationships between the �-fuzzy covering rough sets and L -fuzzy 
relation rough sets were established. 
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1. Introduction  
Rough set theory [15,16], proposed by Pawlak in 1982, is a new tool for dealing with 
uncertain and incomplete knowledge. The classical Pawlak rough sets are based on 
equivalent relations, which greatly limits the scope of rough set theory and applications. 
Hence, many kinds of generalized rough sets were proposed [7, 11, 12, 24-28]. The core 
concept of (generalized) rough set theory is a pair of approximation operators. There are 
generally two different approaches to studying those operators: the constructive approach 
and the axiomatic approach. In the constructive approach, the binary relation, covering, 
and neighborhood (system) in the domain of discourse are regarded as the original 
concepts, and the lower (upper) approximation operator is constructed from them. In the 
axiomatic approach, a pair of abstract approximation operators are put as the initial 
concepts, then find an axiom set (or even a single axiom) to ensure the existence of binary 
relation, covering and neighborhood (system) to reproduce the initial approximation 
operators by the constructive approach. 

Fuzzy covering (relation) rough sets are vital generalized rough sets [2-4, 10, 11, 13]. 
Especially, complete residuated lattice-valued fuzzy covering (relation) rough sets have 
attracted much attention for their many-valued logic background [1, 8, 9, 14, 17-22] 
(complete residuated lattice can be regarded as the truth table of many-valued logic [5]). 
In 2017, consider ( , , )L L= ∗ →  a complete residuated lattice, Li [8] introduced a type of 
�-fuzzy covering rough sets and used axiom sets to characterize them. However, a more 
interesting single axiomatic characterization has not been given. In addition, it is known 
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from [28] that the covering rough sets and relation rough sets are interrelated closely. 
Nowadays, the relationships between L -fuzzy covering rough sets and L -fuzzy relation 
rough sets have not been clarified. In this paper, we shall give a further study on L -fuzzy 
covering rough set around the above two problems. 

The arrangement of this paper is as follows. In Section 2, We recall some the basic 
concepts and symbols. In Section 3, we give a single axiomatic characterization of the L -
fuzzy covering approximation operators. In Section 4, we clarify the relationship between 
L -fuzzy covering approximation operators and L -fuzzy relation approximation operators. 
In Section 5, we conclude this paper. 
 
2. Preliminaries 
In this section, we shall recall some notions and notation for later use. 
 
2.1. Complete lattice L  and L -fuzzy sets 
Let X  be a nonempty set. And we use ( )P X  to denote the power set of X , i.e., 

{ }( ) |P X A A X= ⊆ . 

A complete residuated lattice  is an algebra ( , , , ,0,1)L L= ∧ ∨ ∗  fulfills: 

(1) ( , , ,0,1)L L= ∧ ∨  is a complete lattice with the least (resp., largest) element 0  (resp., 
1),  
(2) ( , ,1)L ∗  is a commutative monoid with 1 as the unit element, 

(3)∗ distributes over arbitrary joins, that is, , ( ) , ( ) ( )j j j
j J j J

a a j J L a a a a
∈ ∈

∀ ∈ ∈ ∗ ∨ = ∨ ∗ . 

The binary operation : L L L→ × → determined by { }|a b c L a c b→ = ∨ ∈ ∗ ≤  is 

called the residuated implication w.r.t. ∗ . 
A mapping :A X L→  is called an L -fuzzy set on X  [6]. All L -fuzzy sets on X  are 

denoted by XL . For a L∈ , we also use a to denote the constant value �-fuzzy set values 

a . For ( )A P X∈ , we also use A  to denote the L -fuzzy set values 1 at x A∈  and 0  

otherwise. 
An L -fuzzy set R  on X X×  is called an �-fuzzy relation on X . 
 
Proposition 2.1.  Let L  be a complete residuated lattice. 
(1) 1 ,1 , , 1a a a a a b a a b a b→ = ∗ = ≤ → ≤ ⇔ → = . 

(2) ( ) ( ) ( )a b c a b c b a c∗ → = → → = → → . 

(3) ( )j j
j J j J

a b a b
∈ ∈

→ ∧ = ∧ → .(4) ( )j j
j J j J

a b a b
∈ ∈
∨ → = ∧ → .(5) ( )j j

j J j J
a b a b

∈ ∈
∗ ∧ ≤ ∧ ∗ . 

(6) ( )j j
j J j J

a b a b
∈ ∈
∨ → ≤ → ∨ .(7) ( )j j

j J j J
a b a b

∈ ∈
∨ → ≤ ∧ → . 

If we have ( 0) 0a a→ → =  for all a L∈ , then we say the complete residuated lattice L  
is regular. 
 

Definition 2.1. [8]  For , XA B L∈ , we define 
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( ) ( )( , ) ( ) ( ) , ( , ) ( ) ( )
x X x X

S A B A x B x I A B A x B x→ ∗∈ ∈
= ∧ → = ∨ ∗ , 

and call them the → -subsethood degree and ∗ -intersection degree of ,A B , respectively. 
 

Lemma 2.1.  [8] For , ,XA B L a L∈ ∈ . 

(O1) ( , ) 1S A B A B→ = ⇔ ≤ . (O2) ( , ) ( , )S A a B a S A B→ →→ = → . 
(O3) ( , ) ( , )S A a B a S A B→ →∗ ≥ ∗ . 

2.2 L -fuzzy relation rough sets via ∗  and →  
 
Definition 2.2.  [19,20] Let R  be an L -fuzzy relation on �. For any XA L∈ , the pair of 

L -fuzzy sets ( )( ), ( )R A R A∗→ defined by x X∀ ∈ , 

( ) ( )( )( ) ( , ) ( ) ( ), ,
y X

R A x R x y A y S R x A→ →∈
= ∧ → =

 

( ) ( )( )( ) ( , ) ( ) ( ),
y X

R A x R x y A y I R x A∗ ∗∈
= ∨ ∗ =

 
is said to be the L -fuzzy relation rough set of A . The associated mappings R→  and R∗  

on XL are called the lower and upper L -fuzzy relation approximation operators, 
respectively. 
 
2.2. Covering rough sets and L -fuzzy covering rough sets 
Definition 2.3.  [10] (1) Let ( )P X∈C . If X∪C =  andK ≠ ∅  for each K ∈C , then 

C is called a covering on X . (2) Let XC L⊆ . If 1C∨ =  and 0K ≠  for each K C∈ , 
then C  is called an L -fuzzy covering on X . 
 
Definition 2.4.  [28] Let C be a covering on X . For any x X∈ , the family 

( ) { | , }Md x x K S x S S K K S= ∈ ∈ ∀ ∈ ∈ ∧ ⊆  =C C  

is called the minimal description of x . Furthermore, C  is called unary if for any x X∈ , 
| ( ) | 1Md x = , i.e., there is only one element in ( )Md x . It is easily observed that C  is 

unary iff { : }K x K∩ ∈ ∈ ∈C C  for all x X∈ . 
 
Definition 2.5  [12] Let C  be a covering on X . For ( )A P X∈ , the pair of subsets 

( )( ), ( )A AC C  defined by  

( ) { | , }, ( ) { ' | , '}A K K K A A K K A K= ∪ ∈ ⊆ = ∩ ∈ ⊆C C C C ,where 'K X K= −  

is said to be the covering rough set of A . The associated mappings C  and C  on ( )P X  
are called the lower and upper covering approximation operators, respectively. 

In [8], Li defined a type of L -fuzzy covering rough sets, which can be regarded as 
the generalization of that in Definition 2.5. 
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Definition 2.6. [8] Let C  be an L -fuzzy covering on X  and XA L∈ . Then the pair of L

-fuzzy sets ( )( ), ( )C A C A→∗  defined by: 

( ) ( )( ) ( , ) , ( ) ( , )
K C K C

C A K S K A C A K I K A→∗ → ∗∈ ∈
= ∨ ∗ = ∧ →  

is said to be the L -fuzzy covering rough sets of A , and C∗  (resp., C→ ) is called the L -
fuzzy covering lower (resp., upper) approximation operator. 

Li also used axiom sets to characterize the lower and upper L -fuzzy covering 
approximation operators. 
 
Proposition 2.2. [8] For a mapping : X Xp L L→ , there is an �-fuzzy covering C  on X  

s.t. p C∗=  iff p  satisfies 

(L1) (1) 1p = , (L2) ( ) ( )A B p A p B≤  ≤  for all , XA B L∈ , (L3) ( )p A A≤  for all 
XA L∈ , (L4) ( ) ( )p A pp A≤ , (L5) ( ) ( )a p A p a A∗ ≤ ∗ . 

 

Proposition 2.3.  [8]  Let L  be a regular complete residuated lattice and : X Xh L L→  be 

a mapping. Then there is an L -fuzzy covering C on X  s.t. h C→=  iff h  satisfies 

(U1) (0) (0)h = , (U2) ( ) ( )A B h A h B≤  ≤  for all , XA B L∈ , 

(U3) ( )h A A≥  for all XA L∈ , (U4) ( ) ( )h A hh A≥  for all XA L∈ , 

(U5) ( ) ( )a h A h a A→ ≥ → . 
 
3. The single axiomatic characterizations on L-fuzzy covering approximation 
operators 
In this section, we shall use a single axiom to characterize the L -fuzzy covering 
approximation operators. 
 
3.1. On lower approximation operator C∗  

A mapping : X XL LΦ →  is called order-preserving if for any , XA B L∈ , A B≤   implies 

( ) ( )A BΦ ≤ Φ . 

Lemma 3.1.  Let : X XL LΦ →  be an order-preserving mapping. Then the following two 
conditions are equivalent. 

(1) ( ) (a A a A∗Φ ≤ Φ ∗ ） for any , Xa L A L∈ ∈ . 

(2) ( ) ( )a A a A→ Φ ≥ Φ →  for any , Xa L A L∈ ∈ . 

Proof: (1)  (2). It follows by ( ) ( ( )) ( )a a A a a A A∗ Φ → ≤ Φ ∗ → ≤ Φ , which means 

( ) ( )a A a AΦ → ≤ → Φ . 

(2)  (1). It follows by ( ) ( ( )) ( )a a A a a A A→ Φ ∗ ≥ Φ → ∗ ≥ Φ , which means 

( ) ( )a A a AΦ ∗ ≤ ∗Φ . □ 
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Remark 3.1.  From Lemma 3.1, it is noted that the condition (L5) in Proposition 2.2 can 

be restated equivalently as: ( ) ( )p a A a p A→ ≤ →  for all , Xa L A L∈ ∈ . 
 

Lemma 3.2.  Let : X Xp L L→  be a mapping. Then (L2)+(L5)⇔ (POD): , XA B L∀ ∈ , 

( , ) ( ( ), ( ))S A B S p A p B→ →≤ . 

Proof. ⇒. Let , XA B L∈  and ( , )a S A B→= . Then 

, ( ) ( )x X a A x B x∀ ∈ ≤ →  , ( ) ( )x X a A x B x∀ ∈ ∗ ≤ a A B ∗ ≤ ,by(L2) 

( ) ( )h a A h B ∗ ≤ , by(L5) ( ) ( ) ( )a h A h a A h B ∗ ≤ ∗ ≤  ( )( ), ( )a S h A h B→ ≤ .  

⇐. Let , XA B L∈  and a L∈ . 

If A B≤ , then it follows by Lemma 2.1(O1) and (POD) that  

( )1 ( , ) ( ), ( ) ( ) ( )S A B S h A h B h A h B→ →= ≤  ≤ , 

which means (L2) holds. In addition, note that 

( ) ( )( ) ( ) ( )( )

L 2.1( 1)

( )

1 ( , ) ( , )

, , ,

emma O

HOD

S a A a A a S a A A

a S h a A h A S h a A a h A

→ →

→ →

= → → = → →

≤ → → = → →
 

which means ( ) ( )h a A a h A→ ≤ → , i.e., (L5) holds. □ 
 

Theorem 3.1.  (The characterization by a single axiom) Let : X Xp L L→  be a mapping. 

Then there is an L -fuzzy covering C  on X  s.t. p C∗=  iff it satisfies (POM): for any 

index set T  and any , ( ) X
t tA B t T L∈ ∈ , 

(1) ( ( ), ) ( ( ), ( ))t t t tt T t T
p S p A B S p A p B→ →∈ ∈

∧ =∧ ∧ . 

Proof: From Proposition 2.2, we need only to verify that (POM)⇔ (L1)-(L5). 
⇒. (L1): Take T = ∅  in (POM), we get (1) 1p =  since 1∧∅ =  for L∅ ⊆ . 

For any , XA B L∈ , put {1}T = and ,t tA A B B= = , then applying (L1) in (POM), we 

have that( ) : ( ( ), ) ( ( ), ( ))POM S p A B S p A p B∗
→ →= . 

(L3): Take A B=  in ( )POM ∗ , it follows by Lemma 2.1 (O1) that ( )( ), 1S p A A→ = , 

i.e., ( )p A A≤ . 

(L2)+(L5): Applying (L3) in ( )POM ∗  we get 

( , ) ( ( ), ) ( ( ), ( ))S A B S p A B S p A p B→ → →≤ = ,i.e., (POD) holds. It follows by 

Lemma3.2 that (L2) and (L5) holds.  

(L4): Take ( )B p A= in ( )POM ∗ , it follows by Lemma2.1(O1) that  

( )( ), ( ) 1S p A pp A→ = , i.e., ( ) ( )p A pp A≤ . 

⇐. At first, we prove that (L2)-(L5) implies ( )POM ∗ . Indeed, for any , XA B L∈ , 
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( )( )
( )

( )( ) ( )( ) ( )( )
2 ( 5) ( ) ( 4) ( 3)

, , ( ) , ( ) ,
L L POD L L

S p A B S pp A p B S p A p B S p A B
+ =

→ → → →≤ ≤ ≤
. 

Hence, ( ( ), ) ( ( ), ( ))S p A B S p A p B→ →= , i.e., ( )POM ∗ holds. Then together( )POM ∗  

and (L1) we obtain (POM). □ 

 

3.2. On upper approximation operator C→  
The following lemma is just a restatement of Lemma 3.2 by replacing p  with h . 

Lemma 3.3.  Let : X Xh L L→  be a mapping. Then (U2)+(U5)⇔ (HOD): , XA B L∀ ∈ , 

( )( , ) ( ), ( )S A B S h A h B→ →≤ . 

 
Remark 3.2. From Lemma3.3, it is noted that the condition (U5) in Proposition 2.3 can be 

restated equivalently as: ( ) ( )h a A a h A∗ ≥ ∗  for all , Xa L A L∈ ∈ . 
 
Theorem 3.2. (The characterization by a single axiom) Let L  be a regular complete 

residuated lattice and : X Xh L L→  be a mapping. Then there is an L -fuzzy covering C  

on X  s.t. h C→=  iff it satisfies (HOM): for any index set T and any , ( ) X
t tA B t T L∈ ∈ ,  

(0) ( , ( )) ( ( ), ( ))t t t tt T t T
h S A h B S h A h B→ →∈ ∈

∨ =∨ ∨ . 

Proof: From Proposition 2.3, we need only to verify that (HOM) ⇔ (U1)-(U5). 
⇒. (U1): Take T = ∅  in (HOM), we get (0) 0h =  since 0∨∅ =  for L∅ ⊆ . 

For any , XA B L∈ , put {1}T =  and ,t tA A B B= = , then applying (U1) in (HOM), we 

have that ( ) : ( , ( )) ( ( ), ( ))HOM S A h B S h A h B→
→ →= . 

 

(U3): TakeA B=  in ( )HOM → , it follows by Lemma 2.1 (O1) that ( , ( )) 1S A h A→ = , i.e., 

( )A h A≤ . 

(U2)+(U5): Applying (U3) in ( )HOM →  ,we get

( , ) ( , ( )) ( ( ), ( ))S A B S A h B S h A h B→ → →≤ = ,i.e., (HOD) holds. It follows by Lemma 3.3 

that (U2) and (U5) holds. 
 

(U4): Take A = h�B�in ( )HOM → , it follows by Lemma 2.1 (O1) that  

( )( ), ( ) 1S hh B h B→ = , i.e., ( ) ( )hh B h B≤ . 

⇐. At first, we prove that (U2)-(U5) implies ( )HOM → . Indeed, for any , XA B L∈ , 

( )
( )

( )( ) ( )( ) ( )
2 ( 5) ( ) ( 4) ( 3)

, ( ) , ( ) , ( ) , ( )
U U HOD U L

S A h B S h A hh B S h A h B S A h B
+ =

→ → → →≤ ≤ ≤ . 

Hence, ( )( , ( )) ( ), ( )S A h B S h A h B→ →= ,i.e., ( )HOM → holds. Then together ( )HOM →  

and (U1) we obtain (HOM). □ 
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4. The relationships between �-fuzzy covering approximation operators and �-fuzzy 
relation approximation operators 
In this section, we shall prove that some special L -fuzzy covering approximation operators 
and L -fuzzy relation approximation operators can be mutually induced. 
An L -fuzzy relation R  on X  is called reflexive whenever , ( , ) 1x X R x x∀ ∈ = ; and ∗ -

transitive whenever , , ( ( , ) ( , )) ( , )
y X

x z X R x y R y z R x z
∈

∀ ∈ ∨ ∗ ≤ . 

Definition 4.1.  Let R  be a reflexive L -fuzzy relation on X . Then the family 

{ ( ) | }R XC R x L x X= ∈ ∈ ,where , ( )( ) ( , )y X R x y R x y∀ ∈ =  

forms an L -fuzzy covering on X , called the L -fuzzy covering induced by R . 

The following theorem shows that R  and RC yield the same L -fuzzy approximation 
operators if R is reflexive and ∗-transitive. 
 
Theorem 4.1. Let R  be a reflexive and ∗ -transitive L -fuzzy relation on X . Then 

RC R→∗ =  and 
R

C R∗→ = . 

Proof: Let XA L∈ . We prove below that ( ) ( )RC A R A→∗ =  and ( ) ( )
R

C A R A∗→ = . 

For any x X∈ , note that 

( )( ) ( )( )

( )
( )

( )( ) ( ) , ( )( ) ( ),

( , ) ( ), ,

1 ( ), ( )( ).

R

R

y XK C

y x

C A x K x S K A R y x S R y A

R x x S R x A by reflexivity

S R x A R A x

∗ → →∈∈

=

→

→→

= ∨ ∗ = ∨ ∗

≥ ∗

= ∗ =

 

Conversely, 

( ) ( )( )
( )

( ) ( )
( )

( )( ) ( , ) ( ( ), ) ( , ) ( , ) ( )

( , ) ( , ) ( ) ,

( , ) ( , ) ( , ) ( )

( , ) ( ) ( )( ).

R

y X y X z X

y X z X

y X z X

z X

C A x R y x S R y A R y x R y z A z

R y x R y z A z by transitivity

R x z R y z R y z A z

R x z A z R A x

∗ →∈ ∈ ∈

∈ ∈

∈ ∈

→∈

= ∨ ∗ = ∨ ∗ ∧ →

≤ ∨ ∧ ∗ → ∗ −  

≤ ∨ ∧ → ∗ →  

≤ ∧ → =

 

Hence  ( ) ( )RC A R A→∗ = . 

For any x X∈ , note that 

( )( ) ( )( )

( )
( )

( )( ) ( ) , ( , ) ( ),

( , ) ( ), ,

( ), ( )( ).

R

R

y XK C

y x

C A x K x I K A R y x I R y A

R x x I R x A by reflexivity

I R x A R A x

→ ∗ ∗∈∈

=

∗

∗∗

= ∧ → = ∧ →

≤ →

= =

 

Conversely, 
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( )( )
( )( )( )

( ) ( )
( )

( )( ) ( , ) ( , ) ( )

( , ) , ( ) ,

( , ) ( , ) ( , ) ( )

( , ) ( ) ( )( ).

R

y X z X

y X z X

z X

z X

C A x R y x R y z A z

R y x R y z A z by transitivity

R x z R y z R y z A z

R x z A z R A x

→
∈ ∈

∈ ∈

∈

∗
∈

= ∧ → ∨ ∗

≥ ∧ ∨ → ∗ ∗ −

≥ ∨ → → ∗  

≥ ∨ ∗ =

 

Hence ( )= ( )
R

C A R A∗→ . □ 
 

Let C  be an L -fuzzy covering on X . It is well known that the L -fuzzy relation CR  on 

X defined by ,x y X∀ ∈ , ( )( , ) ( ) ( )C

K C
R x y K x K y

∈
= ∧ → is reflexive and ∗ -transitive, 

and called the L -fuzzy relation induced by L -fuzzy covering C . 
 
Definition 4.2. An L -fuzzy covering C  on X  is called unary if ( )CR x C∈  for any 

x X∈ . 
 
Remark 4.1.  When {0,1}L = , an L -fuzzy covering C  degenerates into a crisp covering, 

and the L -fuzzy set ( )CR x  degenerates into a crisp set { : }K C x K∧ ∈ ∈ . Hence from 

Definition 2.4, we know that the notion of unary L -fuzzy covering C  is a generalization 
of the corresponding crisp notion. 
 

The next theorem shows that C  and CR  yield the same L -fuzzy approximation operators 
if C  is unary. 
 

Theorem 4.2. Let C  be an unary L -fuzzy covering on X . Then 
CR C→ ∗=  and 

C
C R∗→ = . 

Proof: Let XA L∈ . We prove that ( ) ( )CR A C A→ ∗=  and ( ) ( )
C

C A R A∗→ = . 

Note that for any x X∈ , 

( ) ( )( )
( )( ) ( )( )

( )( )

( )( ) ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ),

C C

y X y X K C

y X K C y X K C

K C y X

R A x R x y A y K x K y A y

K x K y A y K x K y A y

K x K y A y C A x

→ ∈ ∈ ∈

∈ ∈ ∈ ∈

∗∈ ∈

= ∧ → = ∧ ∧ → →

≥ ∧ ∨ → → ≥ ∧ ∨ ∗ →

≥ ∨ ∗ ∧ → =

 

which means ( ) ( )CR A C A→ ∗≥ . On the other hand, 
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( )( )
( )

( )
( )

( )( ) ( ) ( ) ( ) ,

( , ) ( , ) ( )

1 ( , ) ( ) ( )( ),

C

K C y X

K R x
C C

y X

CC

y X

C A x K x K y A y byunary condition

R x x R x y A y

R x y A y R A x

∗ ∈ ∈

=

∈

→∈

= ∨ ∗ ∧ →

≥ ∗ ∧ →

= ∗ ∧ → =

 

which means ( ) ( )CC A R A→∗ ≥ . Hence 
CC R→∗ = . 

Note that for any x X∈ , 

( ) ( )( )
( )( ) ( )( )

( )( )

( )( ) ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ),

C C

y X y X K C

y X K C y X K C

K C y X

R A x R x y A y K x K y A y

K x K y A y K x K y A y

K x K y A y C A x

∗
∈ ∈ ∈

∈ ∈ ∈ ∈

→
∈ ∈

= ∨ ∗ = ∨ ∧ → ∗

≤ ∨ ∧ → ∗ ≤ ∨ ∧ → ∗

≤ ∧ → ∨ ∗ =

 

which means ( ) ( )
C

C A R A∗→ ≥ . On the other hand, 

( )( )
( ) ( )

( )

( )( ) ( ) ( ) ( ) ,

( , ) ( , ) ( ) 1 ( , ) ( )

( )( ),

C

K C y X

K R x
C C C

y X y X

C

C A x K x K y A y by unary condition

R x x R x y A y R x y A y

R A x

→
∈ ∈

=

∈ ∈

∗

= ∧ → ∨ ∗

≤ → ∨ ∗ = → ∨ ∗

=

 

which means ( ) ( )
C

C A R A∗→ ≤ .Hence 
C

C R∗→ = . □ 
 
5. Concluding remarks 
In this paper, a further study on L -fuzzy covering rough sets was given. The single axiom 
characterization on L -fuzzy covering approximation operators was presented, and the 
connections between L -fuzzy covering approximation operators and the L -fuzzy relation 
approximation operators were constructed. 
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