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Abstract. To define a new basis function to obtain a basié tan inherit the excellent
properties of the traditional B-spline method aréziér method, global and locality of
shape adjustment, and can accurately represerdlithtical arc and circle. Firstly, an
optimal standard full positive base, the cut armggorithm, thec*and c?continuous
proof of the base under the quasi-extended Chelbygbace in this paper. Secondly, the
base on the rectangular field to the trianguladfie obtain the quasi-cubic triangular
Bernstein-Bézier base on the triangular field. @kirthis base can accurately represent
the elliptic arc and circle, and then gives theebastting algorithm on the triangular
domain, and reverse introduce two conditions unaleich the quasi-cubic triangular
Bernstein-Bézier surfaces a@continuous in surface splicing. After a lot of arsés
and examples, the new basis function has excedltemterties of traditional methods, and
can also flexibly adjust the shape parameters taimlhe required curve surface, which
meets the actual industrial design requirements.

Keywords: Quasi to extend Chebyshev space, Full positiveasb&hape parameter,
Triangular domain
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1. Introduction
There are two main methods in computer aided ge@m#dsign (CAGD), namely 8
zier method and B-spline method. They have the rddgaes of geometric invariance,
convex hull, convex preservation, variation anducdin, local support and other
excellent properties. However, with the rapid depatent of modern industry, A lot of
industrial geometry modelling requirements alreadynot be realized by the simple
traditional Bézier method and B-spline method, tlis reason, scholars put forward
different methods, such as physical and chemicaidBénethod and B-spline method,
some of these methods have gradual problems, senaise of the shape parameters of
the setting problem damaged the shape of the csoréace. Among them, the
construction of basis functions determines the gntigs of curves and surfaces.

In order to meet the actual industrial demand, ddarge number of literature by
adding different parameters for basis function J1e2 increase the number of basis
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functions [3-4] and get the&ier curve in the control under the condition ofdriable
vertex can also adjust the shape of freedom, ssicfoag-Hua Liu [5-6] structure basis
function can not only keep curves and the origfieatures, It can also be adjusted by
shape parameters [7]. Constructed quadratic trlangBé zier curves with a shape
parameter [8-9]. Proposed a class of polynomialesiof trigonometric functions, which
can accurately represent some quadratic curvegramstbendental curves. The new basis
function not only retains the advantages of thealiti@al basis function, but also
represents some transcendental curves. These Spaaiel/ include trigonometric
function space, hyperbolic function space and esptal function space [10-12].
Although although these methods in some way béli@n the traditional method, but
there is plenty of room to improve, such as whethernew basis function has reduced
variation, variation reduction shall protect contgxis testing whether a curve suitable
for one of geometric modelling, design standards thrticle through the most
specification are all base structure on the bddiseobasis function, a new basis function
are all positive, Then the curve defined by it tresproperty of variation reduction.

At the same time, the triangle area curve and seriiathe practical application has
important value, not only to overcome Bézier cuamd surface in the control of the same
vertex conditions can not be flexible to adjust shape of the shortcomings, but also to
solve the irregular data points under Bézier camwe surface modeling design problems.
Bézier surface of the rectangular domain is inftren of tensor product, and Bézier of
the triangular domain is in the form of non-tenpovduct, there is a lot of literature on
the rectangular domainéBier basis function is defined for the triangularndhin [12-23],
which Wu Hongyi [18] et al. The triangular domainéBier with multiple shape
parameters, It increases the operation difficuftguwrves and surfaces. Yu Liping's [19]
curved surface with two shape parameters in triemglomain can be adjusted freely, but
it lacks generality.

In this paper, under the framework of quasi-exten@aebyshev space theory, we
propose a set of bases whose generating functiens a

® ={sin?t,(L-sint)?(L- asint)e™*" (1 -cost)?(1- acost)e P} ,
and prove that the quasi-bases constitute a septirhal normal basis. A stable and
efficient calculation method is proposed for thésis function. It is proved that the basis
function can accurately represent any ellipticard parabola. It is proved that this basis
function possesses the properties of traditionalsbfunctions, such as integrity, local
support, linear independence and full positivithem the corresponding curve of the
basis function is given, which has the propertyafiation reduction. In addition, the
basis function with four parameters is generatedtha triangle domain, and the
corresponding surface is given, and the four patermiean adjust it. The condition of
continuous surface splicing in triangular domainatulated.

2. Quasi-cubic triangular Bézier curves
2.1. Full base

The basis functionu,,u,,---u,) is the full positive basis on the closed interj] . If for
any sequence of nodest, <t, <---<t, <b, in the quasi-cubic triangular function space

Toap ={Lsin’t,(L-sint)*(1- asint)e™**™  (1- cost)? (1 - acost)e **} (1)
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is a special form of the space of quasi-cubic tidar functions in [20].
We first prove the differential space
DT.up= {2sintcost,e™*" cost(sint —1)(2+ a+ a — (@ + 3a+aa)sint + agsint), @)
—e P sint(cost —~1)(2+a+ B~ (B +3a+af)cost + aBcost)}
is a 3-dimensional Chebyshev space on the clogedvat in the space of quasi-cubic
triangulated functions, , ,.

Theorem 1.For anyan[o1,a,80[0+«,t0[0,7/2], DT,, ,is a Chebyshev space on the closed

interval.
Proof: For any & OR(i = 012) , Consider the following linear combination

& [2sintcost] + &[e ™ cost(sint —1)(2+a+a - (@ +3a+aa)sint + aasinzt)] 3
- &,[e P sint(cost —~1)(2+a+ S - (B +3a+af)cost + afcost)] = (3)
Fort=0, we know¢ =0. Similarly, whent=7/2, we know¢, =0. Then DT,,, IS a 3-

dimensional Chebyshev space.
The next proofpT, , ,is a 3-dimensional complete extended Chebysheespathe

open interval(0,77/2) .
For anytO[a,b] O (0,77/2), when

u(t) —l *asmt[(2+ a+0’) cost ( _t) —COQ(Q’(3+ 20’)
+ a(3+ 6a +a’)- a(5a+ a)sint + aa?sin’t) + aa?sin2t] > 0
v(t) = le’[mg (-sint(B(3+2B) +a(B+68+ 5%

sint

- B(B+a(5+ P))cost +af’cos’t) - (2+a+/3)(1+/3cost) )>O

(4)
u(t)—l -”s'm[(2+a+b)ﬂ(a —) cost(b+a?(4+b) + a5+ 4b)

—3a(a-h)sint + b23|n t) + a2b3|n2t] <0

\/(t)—l "”S'”‘[(2+a+b)£(a —) cost(b+a®(4+h) +a(5+4b)

-3a(a-b)sint + bzsm t) + a2b3|n2t] >0

Thus, the expression of the Wronskiarnu@f and v(t) gives that
w(u,v) = u(t)v'(t) —u'(t)v(t) > 0,0t 0[O0, 77/2] (5)
For t0O[a,b], three weight functions (t)(i = 012) are defined as follows
w, (t) = 2sintcogt,
w; (t) = Au(t) + Bv(t),
W (u,v)
[Aut) +Bv(t)]*’
where A B,C are three arbitrary positive real numbers. Batf)i = 012) are c* bounded
functions on[a,b], and all greater than zero. The ECC-space is efielow

(6)

w(t) =C
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U () = wg (1),
b(0) = wo(t) [ wi (L), )

U (1) = W (1) | wa (t) [} s 8, )l

It is easy to check that these functig)g,u,(t),u,(t) are in fact some linear combinations
of
{2sintcost,e™*™ cost(sint —1)(2+a+a - (a + 3a+ aag)sint + aasin®t),

—-e P sint(cost ~1)(2+a+ £ - (B +3a+aB)cost +afcost)}, (8)
This implies that spaceT,, ,is an ECC-space opa,b]. As [a,b] are arbitrary subintervals
of (07/2), we can draw the conclusion that the spaagg,,is an ECC-space in
(0,77/2) [20].

Further, it is necessary to prove a quasi-exter@eebyshev spacer,, ,in the
closed intervalgo, /2] . First, it is necessary to prove that any non-Zermtion of any
spacepT, , , has at most two zeros on the closed intef@at/2] (note that the heavy root
is calculated up to the double root). Consider mmy-zero function in the spaar, , ,,
For tO[o,77/2],

F(t) = C,[2sint cost] + C,[e "™ cost(sint —1)(2 + a+ a — (a + 3a + aa)sint + aasin’t)]
-C,[e”™sint(cost —1)(2+a+ B - (B +3a+aB)cog +aBcost)] = 0. ©)
BecausepT,, ,is a fully extended Chebyshev space on the opesrvit 0,7/2), the
function F(t) has at most two zeros i@ 7/2) . Assumingt =0the zero point of the
function F(t) , there isc, =0. In this case, ifc, =0, thenF(t) has a singular zero at 0 and
a singular zero atn/2 ; If c,=0 , The only root of Fit) is t=0 . If
Cc,C,>0(c,>0,C, >0perhapsc,<0,C,<0), The root ofF(t)is t=0. WhentO 0,77/2),
F(t) =sint[2C, cost — C,e”**%(cost —1)(2+a+ B - (B + 3a+af)cos +afcost)] = 0, (10)
e P (1-cost)(2+a+ - (L +3a+aB)cost +aBcost) >0
whent0(0,77/2), F(t)is either constant positive or constant negativdéel\t 0[0,77/2],
The only root ofF(t) is tO[0,7/2] . Whenc,c, <0(C, >0,C, <0perhapg, <0,C,>0),
g(t) = 2C, cost — C,e#*% (cost —1)(2 + a+ B - (B + 3a+ af) cos + afcogt), (12)
g'(t) =sint{-2C, + € #*3C,[2+ 45 - 5 + 4a+2aB - (43 + 2[5 + 6a +8af + aff*) cost
+ (8% +6a8 + 2a8%) cost — af* cost]},
h(t) =2+ 45 - §° + 4a+2aB - (453 + 2[3% + 6a+8af + afB?)cost + (52 + 6af + 2a3%) cos' t — af? cost,
(13)
We can knowh(t)=4. So whenc,>0,C,<0,g'(t)<0, g(t) decreases monotonically in
t0(0,7/2) ; when c,<0,C,>0,g'(t)>0 , g(t) increases monotonically im0 (0,7/2) .So
g(t) has at most one zero qnn/2) . When =o0is the root ofrF(t), F(t) has at most two
zeroes ino,77/2] . Similarly, whent = 7z/2is the roof ofF(t), F(t) has at most two zeroes
on [0,77/2] . Therefore, the conclusion can be proved.

(12)
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BecauseDT, , ,is the 3-dimensional QEC space above, known froenliterature
[20] in the existence of flowering. Thus, whenjoy,a,s0(-21,t0[0,7/2], T,, ,Suitable for

the design of the curve, artg, ,is also the optimal standard full positive basis.

3. Construction of B basis
Theorem 2.For anya,0[0,+»],a0[04],t0[0,77/2] , The optimal standard full positive
basis (B basis) of the function spateg , is

T, = @-sint)?(L- asint)e ™™,

T, =cog't - (1-sint)?(L-asint)e ",

T, =sin’t - (1- cost)? (L - acost)e #™, (14)
T, = (L-cost)?(L- acost)e %,
It is called the QCT-Bernstein basis function wtiree parameters.
Proof: For anya,g0[0,+»],a0[04],t0[0,77/2] , By the parent function
® ={sin?t,(L-sint)?(L- asint)e™*"  (1- cost)?(L—- acost)e#**"'}
acquirability
®(0) = (010), ®(1) = (101,
' (0) = (O0-(2+a+a),0), P'@D) = (002+a+p), (15)

®"(0)= (2a*+4a+2+4a+2aa0), "(1)=(-206%+48+2+4a+2ap).
So
My =®(0) = (02.0),N; = ®(77/2) = (101),
{N,} =0sc,®(0) n Osc,d(77/2) = (000), (16)
{n,} =0sc,®(0) n Osc,d(77/2) = (100).
For tO[0,77/2], ®(t) :iA(t)I'Ii , SO
T, (t) + T,(t) = sin’t
T,(t) = @- asint)@-sint)?e "™ a7
T,(t) = - acost)(1- cost)?e™
Simultaneous formula (17) ai@x‘ri =1, we can get the expressiQ,,T,,T, .

i=0
Next, for anyg OR(i = 0123), it haveigiTi t)= O,igﬁ'l'i’(t) =0. When =0, it have
i=0 i=0

& =0,

{(a+1)(fo-<i) -0 (18)
So¢g =&=0, Similarly, §=&=0. WhentO[o,7/2] , T.(t)(i = 0123 have non-negative.
Whent0(0,77/2), T(t)(i = 0123) have strict positivity. Fom (t)i = 01,23), At the endpoint
there are the following propertieg,0) =1and T,(t) have double root at=/2; T,(77/2) =1
and T,(t) have double root at=0; T,(t) has two roots at=oandt=7/2, T,t) has two
roots att=oandt= /2.
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Therefore, we know from literature [20] that the @Bernstein basig, (t),i = 0123
with three parameters is the optimal normative fiotmal basis of function spadg, ,.

Therefore, the conclusion can be proved. For thee saf discussion, Let's write
T (t),i = 0123 tO T (t;a,a,5),i = 0123.

3.1. The properties of the basis function
For anya,0[0,+»],a0[04],t0[0,77/2] , The following properties of the basis functions
are shown
(1) Normative: ¥’ T (taa,5)=1
(2) Non-negativeT (t;a,a,8) 2 0,i = 01234
(3) Symmetry:T (t;a,a,8) =T, (7/2-t; 8,a),i = 01
(4) Endpoint properties: for anyg0[2+x), have
T.(0)=T,(71/12) =1 T,(0)=T,,(77/2)=0,i = 01,234,
{TO'(O)=—(2+a+a), T/(0)=2+a+a, T'(0)=0, i=23 (29)
T(mI2)=-@2+a+p), Timl2)=2+a+BT(7/2)=0, i=0L
For anya, g0[k +3+w), have

T/0) =a’+ g aa’® +2aa +4a +4a+2, T(0)=—(a®+2aa +4a +4a+4),i = 01,234,

T(0)=0i=23
; (20)
(/2 =~(B" +2aB+ 45+ da+4), (/)= f*+ap’ +2af+ 4B +4a+2,
T'0)=0,i = 01
For anya, B0k + 3+x), have
TO(J')(O)+T1(J')(0):0, Ti(j)(O)ZO, i= 01234,
_ . A _ (21)
T2+ T (m12) =0, T (/2)=0, i =01,

(5) Linear independence: For anyaa,p0(2+x), T(;aa,B8), i= 01234 linearly
independent.

(6) It has a strict positivity, where, 8 0[0,+«],a[01],t 0 (0,77/2)

Proof: Easy to prove prove (3) below, the remaining prips

Whenab,a,f0,EOR,( = 0123, it haveian(t;a,a,ﬁ):o, the two ends are derived
i=0

from t, it has i{i‘l}’(t;a,a,,b’)=0,24:gﬁ'l'i'(t;a,a,,8)=0 whent=0,it has §=¢§=¢==0.
i=0 i=0

Therefore, the conclusion can be proved.
The different parameter diagram of the basis fands shown below
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] a=0,0=0,5=0 ; a=0,0=6,3=0
0.8 0.8
0.6 0.6
0.4 04
0.2 0.2
0 0
0 0.5 1 15 0 0.5 1 1.5
] a=0,0=0,3=6 ] a=1,0=0,3=0
0.8 0.8
0.6 0.6
04 04
0.2 0.2
0 0
0 0.5 1 1.5 0 0.5 1 15

Figure 1. The different parameter diagram of the basis fancti

4. Curve
4.1.Definition and properties of theBézier curves of quasi-cubic triangles
Definition 1. For a given control poink 0R?/R%i = 0123) , call

Qt:a.a,p) = i PT.(taa,p) (22)

i=0

the QCT-Bézier curve with three parametesss, wherea, 8 0[0,+0),ald[04],t 0[0,77/2] .

4.2.The nature of the curve
(1) Affine invariance, convex inclusion and variati@duction: From its basis function is
unit and nonnegative, then the quasi-cubic tria@geier curve has affine invariance,
convex contracting and variation reduction.
(2) Non-negative: The curve of control vertexr,r,, P, is the same curve as that after
the control point is reversed.
(3) Endpoint properties:

QO a,a,p) =R, Q(rlza,a,.8) =R

QOaap=@+a+a)R-R) QUr/2aaf)=@2+a+a)R-P) (23)
In addition, for the arbitrary (03], a, 80[0,+e] hold
QGaa,p) =R Q(r/2a,a,p) =R
Q@Gaa,p)=(a+a+2)(R-R).Q(m/2aa,p)=(f+a+2)(R-R),
Q' (:a,a,B) =(a* +2aa +4a +4a+2)(R, - R) + 2(R, - B),
(24)

Q'(mi2a,a,B) = (B +2aB+4B+4a+2)(P,—R,) +2(R - P,)
Q"(0a,a,p) =(a® +3aa” -6a* -12aa -5a-5a + 2)(P, - R)
Q"(m/2a,a,8) = (B +3a8° -65° -12a5-5a-58+2)(P, - R)
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The endpoint properties show that the proposedcdubingular Bézier curve interpolates
the first two control points and is tangent to ¢imel edge.

Since the curve in this paper has the same prepeas the cubic Bézier curve, this
curve is called the quasi-cubic triangular Béziawe.

4.3.Shape control of the quasi-cubic triangular Bzier curve
The quasi-cubic triangular Bézier curve of thisqrap rewritten as
Q(t:a,a,8) = Rcost+ Pysin’t +Ty(t;a,a, A)(R, - R) + Ty(ta,.a, A)(P, — B,) (25)

Here T,(t;a,a,8) represents the monotonically decrease of the spapmmetera ,
which means that the quasi-cubic triangular Bézigrve will move along the same
direction as the edge vectey-p as thea increases. Similarly, when thedecrease
occurs, the curve will move in a different direativom the edge vectae, -p,. ghas a
similar effect toa . Whena increases or decreases, the curve border vectarmoves
in the same direction or in a different directionlhen o increases or decreases
simultaneously withg, the curve border vectay, - R moves in the same direction or in a
different direction. Wheraincreases, the curve is more inclined to contrel gblygon,
otherwise, away; these indicate that the paranietsrtension on the curve. The figure
below shows the effect of the different parametars the curve, where
ald[01],a,B0[0+e], tO[0,77/2] .

Figure 2: The effect of the different parameters on the curve

4.4.Cut angle algorithm

The advantage of the angle cutting algorithm isblstaand efficient. For
t0[0,77/2],ad[01],a,80[0+x) , the whole procedure of the angle cutting alganitis
shown below,
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At f) = (L-sin’t 1—co§t)x[l‘3im sint 0 ]

0 cost 1-cost

(1- asint)e s 1+sint — (L- asint)e @™ 0 o
1+sint 1+sint
y 0 - sin*t)sint (1-cos't)cost
@-sin’t)sint + 1-cog't)cost  (L-sint)sint + (L- cos’t) cost
0 0 1+cost - (L- acost)e P (1-acogt)e #™
1+ cost 1+ cost

Q

Q
Q

-asint

P (1-asint)e
1+sint

1+sins—(1—asin fjo&
P 1+sins o P,:l .
1-sint

sin ¢
sinf+cost
cos
sinz+cost sint 2
24 — B E 1-sin’¢
1+cost—(l—acost)e ™™™
1+cost cost

_ R )
P (1-acost)e 1_cost

1+cost B 1—cost P2 R
1

Figure 3: Angle cutting algorithm

4.5. Precise representation of the ellipse versus the f@dola
Taking the appropriate shape parameters and cqudnals, for the curves presented here
can accurately represent the ellipses and para@®lagll as partially beyond the curve e.
g. Whena=1a = =2, take the control point is
R =06+ m,Yo), R=0%+my,+n/2),
R =0*+m/2Yy,+n), R =(XY,+n),
At this point, the parametric equation of the cepanding quasi-cubic triangular Bézier
curve Q¢ 122 is

(26)

{X(t) =Xt meosy 1 o) 27)

y(t) =y, + nsint,
This indicates that the quasi-cubic triangular BEzurve is a quarter-elliptical arc.
Whenm=n, the quasi-triangular Bézier curget 1,22)is a quarter arc. In practical use,
when the restriction parameten[g,,6,] , any segment of the desired arc is obtained.
Whena=1a=p=2m-n>0, take the control point is
R =(nen’+en+g), R=(nen’+en+e), (28)
P, =((m+n)/2emn+c(m+n)/2+g), B =(mem’+em+g),
At this point, the parametric equation of the cepanding quasi-cubic triangular Bézier
curveQ¢:122)is
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X(t) = (n—-m)cost +m, R N
y(t) = e,[(n—m)cost + m]* +g[(n—m)cost + m]* +g,, [0,77/2] (29)

This indicates that the quasi-cubic triangular Bézurve is a parabolic arc.
The figure shows that the Bézier curve can acciyratpresent the circle and

P1

parabolic arc.
.
PO

N
~
- P2
P3

Figure 4. The circle and parabolic arc

4.6.The splicing of quasi cubic triangular Bézier curves
If the two trigonometric Bézier curves with thresrgmeters
(30)

Qtaa.f)= Y AT (a,a,4)

and
Q3,0 8,) = 2T (62,05, 5,) (31)

Respectively, for the two curve segments to reabtontinuous, the control point is
required to meek, =q,, then the two curves are first at nage u, <u,and expressed as

QG AL,
(32)

it 105, B5),ul[ Uy, Us],

T
Qz(Ex h2

G(u) =

whereh =u,, -u,i=12.
Theorem 3. For arbitrarya 0[01],a,,3 O[0,+](i =12) . The curveG(u) is continuous as

c'at nodeu,, if condition
(3 +a, +2ha, +(a + B +2)hP, (33)

P, = =
% (g, ra, v 2+ (@ + A2,
holds. Further, for arbitrary 0[01],a,,3 0[0+»](i =12). The curveG(u)is continuous as

c?at nodev,, if the conditional above and
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_ 1
2a,h?

9, {28, +a)hh, +hla,h, (28,6 + 45, + B + 48, +2) + fh (28,0, + 4a, + a,” + 4a, + 2)]}

K2 (34)
(%‘PzHF(Pl-Pz)JfPs
hold simultaneously.
Proof: For arbitrarya 0[01],a;,8 0[0,+](i =1,2) , Easy to verify

Qu;) =R,

Q(uz) = qp,

o 2
QW) :’_27(""“—51”(@- P,

Q) =5 D -a) (35)

Q)= (%)2[(23113’1 +4f,+ B +4a, +2)(R, - B) +2(R - R)],

Q)= (ﬁﬁ(zazaz +4a, +a,? +4a, +2)(0 — @) + 20, ~ )]

From this can geQ(u;)=Q(u;),Q ;) =Q'(u}),Q"(u;)=Q"(u;) . Therefore, the conclusion
can be proved.

Shown is the splicing of the curve, and for ttlesplicing condition, the shape
parameter isy, =0,a, =15 =0and a,=0,a,=143, =1.

P2

P2 Paldy) q,

P P3lag)

q, 5
o %

Figure 5: The splicing of the curv@ =0,0,=15=0anda, =0,a,=14, =1

5. Construction of the basis of the triangular domain
Definition 2. For anyam [004],a, 8,y 0[0,+e], D ={(u,v,wu+v+w=7/2,u> 0v= 0,w>0}.

The following ten trigonal polynomials are calleslzasis functions with four exponential
parameters,a, 8,y over the triangular domaio .
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Tsoo(Uv,wa,a, B,y) = (L-acosu)(1- cosu)’e ¥,
Tg,s,o(quvW: a,a,p,y) = (L-acosv)(1- cosv)?e ¥,
Toos(Uv,wa,a, B,y) = (L-acosw)(1- cosw)’e ™,
- _ —a cosu
T2, UV, W a,a, 3,y) = coswsinv(L- cosu) -COM == COMETT ), )
h cosu
T2, UV Wa,a,B,y) = cosvsinw(l - cosu) LT SO (L= COME T ), )
- cosu
-1 - —3cosv
T2, (VW aa, 3,y) = coswsinu(L- cosy) SOV T AZCOMETTT ), o) (36)
- cosv
-1 - - cosv
To21(U,v,\W 8,0, B,)) = cosusinw(lL- cosv) 1+cosv - (- cosve (1+a),
- cosv
—_ - — ) coswW
T2,,(U,v,\w,a,a, 8, ) = cosvsinu(L— cosw) 1+ cosw — (1—coswje (L+a),
- cosw
-1 - — ) COSW
Tor2(UV, W@, B,y) = cosusinv(lL- cosw) 1+ cosw - (1~ cosw)e (1+a),
Y cosw
Thavwa By =1- T3, uv.wa,By).
:E]Ju;gfs’
When a0 [001],a,8,y0[0,+»], we have
— _ —a cosu
lim 1+cosu - (1-cosu)e (+a) = (a +2)(a+D)
u-7ml2 cosu
-1 - — [ cosv
im Ltcosv-(1-cosve L+a)=(8+2)(a+1), (37)
u-7l2 cosv
—(1- —A cosv
im 1+ cosw— (1-cosw)e A+a) = (y+ 2@+ D).
u~ni2 cosw

This means that basis functions make sense omti@ndomains.
Lemma 1.For u+v+w=7/2, it havel-(sin*u +sinv +sin’w) = 2sinusinvsinw .

5.1.Properties of the basis of the triangular domain
Theorem 5. When the triangular fieldo[00.4] is taken for a fixed value, the base has

the following properties,
D) X hcuyvwa, B,y) =1
(2) Non-negative: when, j,kON,i+j+k=3, it haver’  (uv,wa,B,y) =0
(3) Symmetry:
Ti.sj,k(UvVvW?av,BvV) :Tjs,i.k(quvW;,Bvavy) =
Tjs.k.i(U:V:W:ﬁvV:a) :Ti.sk,j(uxvx"vxavyxﬁ) = (38)
Tawvwya,B) =T (uv,wy, B.a)
(4) Boundary property:
When the parameter,s,y, one of which is 0, the base function (36) wilbdeerate into
the corresponding base function (14) with thre@apeters.
(5) Linear independencé‘l’iilk(u,v,wa,ﬁ,y),i +j+k :3} linearly independent.
Proof: The following properties (3) and (22). The remainproperties are easy to prove.
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(2) For anyaO[001],a,8,y20i,j,kON,i+j+k=3andi k=1, it haveT?  (uv,wa,B.y) 20,
and it is given by the lemma 1.
(5) For anyad[001],a,8,y20,¢,;, OR.G,j,kON,i + j +k=3), Consider linear combinations

A uTcuvwa,By) =0 (39)

i+j+k=3
Whenw=0, we haveigﬁv(s_i).oTi (u;a,B) =0. Thus the basis function is linearly independent,
i=0

then &, ,, =00 = 01.23) . Similarly &, . =&, =0i= 0123, then¢,, =0. Therefore,

the conclusion can be proved.
The graph gives the graph of the base with the memital parameter values of
a=0a0=F=y=2.

Figure 6: The splicing of the graph of the base with the evgutial parameter values of
a=0a=p=y=2. Followed byr,,,, 7o, To1z Tias

5.2.A curved piece on a triangle
Definition 3. For any real numbes, 8,y0[0,+x],D ={(uv,wlu+v+w=7/2uz0vz 0w= 0},

for a fixed valuead[001], given a control verter ;, OR%(i,j,kON,i+j+k=3)is called a
surface on a triangular domantu,v,.w) = > T3, (uv.w,a,8,)R ;. (u,v,w) OD.

i+j+k=3

From the properties of the properties of the c@wading surfaces:
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(1) Affine invariance and convex inclusion:
It can be derived from the basis function as beimigary and non-negative.
(2) Interpolation of angular point properties:
By calculating the available(z /1200) = P, ,, R(0,77/20) = Py50,R(00,77/2) = Py
(3) Angle-point tangent-plane properties:
Whenw=r/2-u-v, we have
AR(u,v,w)
a
AR(u,v,w)
o
AR(u,v,w)
a
AR(u,v,w)
o
AR(u,v,w)
a
W| ©or2y= @+ y+a)(Py1o = Poga)
This indicates that the tangent plane of the serfat the three angular points
(71 1200), (0,77/20), (00,77/2) is generated by the control point

|(n/2,0,0) =@+a+a)(Pyo0 = Pyo1)
|(n/2,0,0) =@2+a +a) (P, = Pygy)

|(o,n/2,0) =2+ B+a)(Pyz —Poai)
(40)
|(o,n/2,0) =2+ B+a)(Pyz0 —Po21)

| o012 =2+ y+a)(Py, —Poga)

Pa00s P210 P20 Pozos Praor Po2as Pooss Prozs Poaz -
(4) Boundary property:
Whenw=0and ais a fixed value R(u,v,w) degenerates to the curve

R(u,v,0) ziﬁ,i—aoA (a,p) (41)

with parametersr, sas defined in the following equation. Similarigu,0o,w) is the
curve ofa,y, ROv,w) is the curve ofg,y. Therefore, the boundary curve of QCT-
Bernstein-Bézier surface with parameters can atalyraepresent a parabolic arc and
elliptical arc.
(5) Shape adjustment properties:
Since the fixed parametefad[o1]) of QCT-Bernstein-Bézier surface contains three
exponential parameter,s,y, the shape of the surface can be adjusted by titatige
value ofa,,y, when the control grid is fixed. When the value afs,y is increased, the
surface will approach the control grid, 83,y has a tension effect. In addition, it is easy
to know from the boundary properties of the surfabat each boundary curve
R(0,v,w),R(u,0,w) and R(u,v,0) are only related to two of the parameters, independf the
other parameter. This indicates that a change efpamameter can only affect the shape
of two of the boundary curves. Figure 7 shows tfiece of the different exponential
parameters on the QCT-Bernstein-Bézier surfaces.
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a=0,a=0,3=0,v=0 a=0,a=1,8=1,y=1

Y X
Figure 7: The effect of the different exponential parametershe QCT-Bernstein-
Bézier surfaces

5.3.The De Casteljau-type algorithm on the triangular dmain
Below we present a De Casteljau-type algorithm dfiicient and stable generating

surfaces. For any,v,w)0D,

When
L Uvm) = . .sinuc_zosw(sirfu +sir12v+sinf w) . __
cosw(sinu + sinv)(sin® u + sin?v + sin® w) + sinw(sin® u + sin?v)
(v = _ .sinvc.zosw(sir_]zu +sir12v+sin2_ W) . __
cosw(sinu + sinv)(sin® u + sin?v + sin® w) + sinw(sin? u + sinv)
(v = . _ _ finw(s.,ir;2 u+ gir;2 V) . ____ (42)
cosw(sinu +sinv)(sin”u + sin“v +sin” w) + sinw(sin“u + sin“v)
g,(u,v, W) := (L— cosu)(sin® u +sin® v + sin” w),
g,(u,v,w) = sinvcosw(sin? u + sin v + sin® w) + sinusinvsinw,
g5(u,v,w) := cosvsinw(sin®u + sin® v + sin” w) + sinusinvsinw,
and
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. _ (@-acosu)e e [1+ cosu — (1—acosu)e™?**]sinvcosw
PZOO = 30,0 + 210
- 1+cosu " (L+ cosu)cosu ’
[1+ cosu - (1—acosu)e ****]cosvsinw
+ FEOl’
(L+cosu)cosu ~
. [1+cosv- (1-acosv)e #“¥]sinucosw (1- acosv)e Fes
Pozo = Poo t+ Poao
- (L+ cosv)cosv - 1+cosv - (43)
. [1+ cosv - (L- acosv)e ] cosusinw
(L+ cosv) cosv 024
. _ [1+cosw- (L-acosw)e"“**"]sinucosv [L+cosw— (L- acosw)e™”***"]cosusinv
POOZ = I:)1,02 + PO].,Z
~ (L+ cosw)cosw ’ (L+cosw)cosw ’
(L-acosw)e™ "
t— 0,037
1+cosw -
The expression for the rewritable surface is
1-cogu
R(u,v,w) = S u +sin2v+sin2w[gl(u'v' w) P;,o.o +0,(u,v,w) Pflo +gs(u,v, W) Pfo,l] +
1-cogv " | |
S U+ SImy+sin? W[gl(V: U, W) Py + G, (V,U, W) Py + G5 (V, U, W) Py, + (44)
1-cogw
SINZu+ SN2V + S w (9 (w,v,u) Pé,o.z +g,(W,v,u) Pé,u +g3(w,v,u) Pll,o,l]-
These can be written as
F)1,20,0 =gy (u,v, W) F);,o,o +0,(u,v, W) Pflo +g5(u,v,w) Pfo,l
Poz,l.o =0,(v,u,w) Pflo +g,(v,u,w) Pé,z,o +gs(V, U, W) Pé,ll (45)

F)02,0,1 = ga(w,v,u) Pio,l +0,(W,v,u) Pé,n +0g,(W,v,u) Pé,o,z

Then, the expression of QCT-Bernsteitizi2r surface with parameters can be further
rewritten as

1-cosu ) 1-cosv ) 1-cosw 2 ._p3
sinfu+sin”?v+sinfw 0 sinfu+sin?v+sin?w % sinfu+sin®v+sinw 00t 0007

(46)

For arbitraryu+v+w=7/2, it is easily verifiesf,(u,v,w)+ f,(u,v,w) + f,(u,v,w) =1 and

9: (U, v, W) + g, (u, v, W) + gy (u,v,w) =1

R(u,v,w) =

5.4.Blending surfaces
Where a0[001] there is a fixed value , we can define two QCTrB&in-Bézier

surfaces as

R (u,v,w) = legjk (uv,way, B,Y)R (U v,W) O D (47)
i+j+k=3
and
R,(u,v,w) = zTi,Sj,k(u'v’W;azv:Bvy)qi,j,kv(urvvw) uDb. (48)
i+j+k=3
When the control point satisfies
Poix =Cojxs I-KON,j+k=3, (49)

the two surfaces have common boundary, tha(isv,w) = R,(u,v,w),v+w=7/2. At this
point, the surface is formed by the splicing of tsusfaces and is®continuous.
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When we take the derivative &f(0,v,77/2-v) common boundary curve, with respect

tov, we get
dR (O,v,77/2-V) _

& [-e7*¥(cosv -~ sinv(2+a+ B - (3a+ (a+1)B)cosv+aBcos V)](Pyso — Posi)

+2siNVCosV(P,,, = Pyy,) +[-€7*™ (sinv-1)cosv(2+a+ y - (3a+(a+Dy)sinv (50)
+aysin® V)(Py., = Poga)-
When we take the derivative of both surface piecess, v,7/2-u-v) and
R,(u,,v,77/2-u-v) with respect tau, we can obtain

R (u,v, 7/2-v-u)|
a

=[-eF*¥(cosv-1)sinv(2+a+ S - (3a+ (a+1)B)cosv+aBcos V)](Pyso = Posi)

u=0
+2siNvVCosv(P,,, = Pyy,) +[-€7™ (sinv-1)cosv(2+a+ y - (3a+(a+1)y)sinv

+aysin? VI(Poy2 = Pooga)-

(51)

R(uv,7m/2-v-u)| [-e 7% (cosv-T)sinv(2+a+ - (3a+(a+1)B) cosv + aBcogV)](Pyso — Pos)

a

|u=0
+2sinveosv(P,,, = Pyy,) +[-€7™ (sinv-1)cosv(2+ a+y - (3a+(a+1)y)sinv

+ aysinzv)](Po,lz = Poo3)-

(52)
If two surfaces, pieceg,(u,v,w)and R,(u,v,w) are continuous te*, the two vectors given
in the preceding two equations are collinear to\arablev, and can be expressed as
d?z(u,v,lgz—u -v) |u:0 - dRi(O,vc,jclz—v) + ﬂde(u,VJ;/JZ—u -v) |u:0 (53)
Where A, uis an arbitrary constant. The following conditiare obtained
G120 ~Yo21 = A(Pogo = Poza) + H(Pyo0 = Pooa):
Q111 = Uo21 = A(Pos = Pogo) + 4(Pray = Poso), (54)
Q02 = %03 = /](Po,Lz - Po,o,3) + IU(PJ.,O,Z - Po,o,s)-
To sum up, the following theorem can be obtained.

Theorem 6. For any a,8,y0[0,+x],i=12 , surfacesr (uv,w) and R,(u,v,w) are G'
continuous if (49) and (54) are satisfied for tbatcol vertices.
Figure 8 shows the splicing of two surfaces wifffiedent shape parameters.

6. Conclusion

In this paper, we prove that a new QCT basis wited shape parameters exists in the
framework of quasi-extended Chebyshev space. Tas$sbfunction not only has the
excellent properties of Bézier basis, but also fcaaly adjust the parameters to achieve
the desired shape of curves and surfaces as follélipse, parabola, circle and other
beyond the curve, but also with full positive andriation reduction, such good
properties. Secondly, the Angle cutting algoritlmapplied to make the curve
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a:oy(y“ =oyaz=3ﬂ=ﬁr=3 a=0, oy =3,rvz=0,;3='1=3

X Y
Figure 8: The splicing of two surfaces with different shggaeameters

construction more stable and efficient. At the sdime, the curve formed by this basis
has the condition that®continuous and:*continuous. After that, the QCT basis applies
to the triangular domain, and a new triangular $4dsi obtained, which has many
excellent properties, which are listed in the pap&en the Angle cutting algorithm on
the triangular domain is obtained, which makesaiigerithm more excellent. The surface
formed by the base of the triangle has the advantdgs' continuity in splicing. In
addition, this base also has sharp points, inflecpoints, etc., which can be further
studied. This article is not repeated, and theltesiill be described in another article.

Acknowledgements. This work is supported by the National Natural Scee Foundation
of China (No. 61861040), Applied Research and Dmwekent of Gansu Academy of
Sciences (No. 2018JK-02), Key RESEARCH and DevelpmProgram of Gansu
Province (No. 20YF8GA125), Open Fund of Gansu Kabdratory of Sensor and Sensor
Technology (No. KF-6), Lanzhou Science and Techmpl®rogram (No. 2018-435).
Authors are also thankful to the reviewers for ttiogitical review for the paper.

Conflict of interest. The authors declare that they have no conflichigirest.
Authors’ Contributions. All the authors contributed equally to this work.

46



10.

11.

12.

13.

14.

15.

16.

17.

18.

Bézier Curves and Surfaces with three Parameter&atensions
in the Triangular Domain

REFERENCES

X.Q.Qin, A novel extension to the polynomial bagisictions describing Bzier
curves and surfaces of degree with multiple shape parametergipplied
Mathematics and Computation, 223 (2013) 1-16.

G.T.Wang and G.Z.Wang, Bézier curves with shapamater,Journal of Zhejiang
University Science A, 6(6) (2005) 497-501.

X.Q.Qin, X.L.Han and S.M.Luo, Two Different Exteanss of Quartic Bzier curves,
Journal of Engineering Graphics, 5 (2006) 59-64.

L.L.Yan, Bernstein-Bzier surfaces with shape Parameté&smputer Engineering
and Science, 36(02) (2014) 317-324.

H.Y.Liu, L.LI, D.M.Zhang and et al, Construction &mooth Fusion of Rational
triangular B:zier curves and Surfacedpurnal of Journal of Zhejiang University
(Natural Science), 43(5) (2016) 554-559.

H.Y.Liu, X.P.Xie, L.Li and et al, Construction ofrdoth Fusion of triangular &ier
curves and Surfacespurnal of Applied Science, 34(2) (2016) 154-162.

X.Q.Wu, X.L.Han and S.M.Lualournal of Engineering Graphics, 1 (2008) 82-87.
X.Y.Xie, X.D.Liu, L.L.Hu and W.Li, Computer and digl engineering, 39 (5) (2011)
132-134.

B.Y.Su and Y.D.Huang, Construction and Applicatioh triangular polynomial
curves in CAGD,Journal of Hefei University of Technology (Natural Science), 1
(2005) 105-108.

J.X.Zhang and J.Q.Tan, Extension of algebraic Hygar Bézier curvesJournal of
Engineering Graphics, 32(1) (2011) 31-38.

X.L.Han and Y.P.Zhu and M.Nicola, Total positivitf the cubic trigonometric
Bézier basisJournal of Applied Mathematics, 3 (2014) 1-5.

X.L.Han and Y.P.Zhu, Curve construction based om firigonometric blending
functions,BIT Numerical Mathematics, 52(4) (2012) 953-979.

Triangular domain extension of linear Bernsteireltkigonometric polynomial basis,
Journal of Zhgjiang University-Science C(Computer & Electronics), 11(5) 2010
356-364.

L.L.Yan and J.F.Liang, An extension of the Béziaydel, Applied Mathematics and
Computation, 218(6) (2011) 2863-2879.

J.X.Zhang and J.Q.Tan, Extensions of hyperbolic i@ézurves, Journal of
Engineering Graphics, 32(1) (2011) 31-38

H.Y.Wu and H.Zuo, Quadratic non-uniform hyperbdispline curves with multiple
shape parameterdournal of Computer Aided Design & Computer Graphics, 19(7)
(2007) 876-883

K.Wang, G.C.Zhang and M.X.Tuo, A new triangular ibasvith exponential
parametersjournal of Image and Graphics, 24(4) (2019) 615-629.

H.Y.Wu and C.L.Xia, Extensions oféRier curves and surfaces with multiple shape
parameters,Journal of Computer-Aided Design & Computer Graphics, 12 (2005)
2607-2612.

47



Wang Lu and Zhang Guicang

19.J.Cao and G.Z.Wang, Extension of cubic Bernsteini® parametric Surfaces in
triangular domainJournal of Computer-Aided Design & Computer Graphics, 9
(2006) 1403-1407.

20. P.P.Ji, G.C.Zhang and K.Wang, Double cubic singblend Bézier,Journal of
Mathematics and Informatics, 17 (2019) 31-54

21. S.Han and J.Joint, Up-sampling high dynamic ranggges with a guidance image,
Journal of Mathematics and Informatics, 15 (2019) 59-71.

22.L.L.Wang, G.C.Zhang and W.X.Jia, Adaptive imageidosmethod based on non-
subsampled contour let Wavelet transfodayrnal of Mathematics and Informatics,
12 (2018) 1-10.

23.Y.P.Zhu, Research on Geometric Moddling Theory and Method with Shape
Parametersin Basis Function, Central South University, 2014.

48



