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Abstract. In this paper, we introduce the Revan-Sombor index of a graph, which is a 
combination of the earlier considered Revan- and Sombor-type vertex-degree-based 
molecular structure descriptors. Some properties of this newly defined topological index 
are established. 
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1. Introduction 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The 
degree ( )Gd u of a vertex u is the number of vertices adjacent to u. Let � and � denote, 
respectively, the maximum and minimum degree among the vertices of the graph G. The 
edge connecting the vertices u and v will be denoted by uv. 
 One of the main directions of recent research in chemical graph theory is the study 
and application of graph-based molecular structural descriptors, usually referred to as 
“topological indices” [1]. An important group of such descriptors are the vertex-degree-
based (VDB) topological indices, whose general form is 

( )

( ) ( ( ), ( ))G G
uv E G

TI TI G d u d v
∈

= = Φ  

where ( , )x yΦ  is a pertinently chosen function satisfying the condition ( , ) (y,x)x yΦ = Φ . 
Some of the simplest, oldest, and most detailed studied VDB indices are the first and 
second Zagreb index 
 
 [ ]1 1

( )

( ) ( ) ( )G G
uv E G

M M G d u d v
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( )
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uv E G
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∈
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and the so-called “forgotten” topological index 
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2 2

( )

( ) ( ) ( )G G
uv E G

F F G d u d v
∈

 = = +  . 

Another, recently introduced group of VDB indices [2] are the Sombor and reduced 
Sombor indices 

2 2

( )

( ) ( ) ( )G G
uv E G

SO SO G d u d v
∈

= = +
 

and     [ ] [ ]2 2

( )

( ) ( ) 1 ( ) 1red red G G
uv E G

SO SO G d u d v
∈

= = − + −  

as well as the reverse Sombor index [3]. 

 [ ] [ ]2 2

( )

( ) ( ) 1 ( ) 1rev rev G G
uv E G

SO SO G d u d v
∈

= = ∆ − + + ∆ − + .   (1) 

 Denote by ( )Gr u  the Revan vertex degree of a vertex u in G, defined as 

( ) ( )G Gr u d uδ= ∆ + − .  In 2017 [4], one of the present authors conceived a class of Revan-
type indices, defined in analogy to the Zagreb and forgotten indices as   
 

( ) ( ) ( )
( )

1 G G
uv E G

R G r u r v
∈

= +    ,  ( ) ( ) ( )
( )

2 G G
uv E G

R G r u r v
∈

=   

and 

 ( ) ( )
( )

2 2
( ) G G

uv E G

FR G r u r v
∈

 = +
  .     (2) 

These indices found numerous applications; for details see the [4,5] and the references cited 
therein. Directly from their definitions, the following relations with the classical VDB 
indices can be recognized: 
 

 

( )1 1

2
2 1 2

2
1

2( ) ( )

R ( ) ( ) ( ) ( ) ( )

( ) ( ) 2( ) ( ) 2( ) .

R G m M G

G m M G M G

FR G F G M G m

δ

δ δ

δ δ

= ∆ + −

= ∆ + − ∆ + +

= − ∆ + + ∆ +
 

            Motivated by the definitions of the Revan and Somber indices, we now introduce 
the Revan-Sombor index of a graph and defined it as, 

( ) ( )
( )

[ ] [ ]
( )

2 2 2 2
( ) ( ) (v)G G G G

uv E G uv E G

RSO G r u r v d u dδ δ
∈ ∈

= + = ∆ + − + ∆ + − 
 

and establish some of its main properties. It should be noted that if δ = 1, then the Revan-
Sombor index coincides with the reverse Sombor index, Eq. (1). 
            Recently, some topological indices were studied in [6,7,8]. 
 
2. Mathematical properties of the Revan-Sombor index 
Proposition 1. If G is an r-regular graph with n vertices and r ≥ 1, then  

( )
2

.
2

nr
RSO G =  

Proof: An r-regular graph with n vertices has / 2m nr= edges. In addition, 
( ) ( ) r r r rG Gr u d uδ= ∆ + − = + − =  



Revan Sombor Index 

3 
 

and therefore 

( )
2

2 2( ) 2 .
2 2

nr nr
RSO G m r r r= + = ⋅ =     ■ 

 
Corollary 1.1.  Let Cn   be the cycle with   n≥ 3 vertices. Then ( ) 2 2 .nRS CO n=  

 
Corollary 1.2.  Let Kn  be the complete graph on n ≥ 1 vertices. Then       

( ) 2( 1) / 2.nRSO n nK = −  

 It is immediately evident that in the case of regular graphs, the Revan-Sombor and 
the ordinary Sombor indices coincide. It is worth noting that there are several other graphs 
for which the equality  

 ( ) ( )RSO G SO G=        (3) 

holds. First of all, Eq (3) is obeyed by complete bipartite graphs ,a bK  on a+b vertices, 

1a b≥ ≥ . Namely, for such graphs ,a bδ∆ = = , and therefore for any edge uv, either  

( ) ( ) , ( ) ( )G G G Gr u a d u r v b d v= = = =  or  ( ) ( ) , ( ) ( )G G G Gr u b d u r v a d v= = = = . Then  

( ) ( )a,b a,b 
2 2RSO SO aK K b a b= = + . 

 Let G be an r-regular graph on n vertices and m edges. Let ( )S G  be its subdivision 
graph, on n+m vertices and 2m edges, obtained by inserting a new vertex on any edge of 
G. Then any edge of ( )S G connects a vertex of degree r with a vertex of degree 2. Thus, 

( ) ( ) 2 2( ) ( ) 2 2RSO S G SO S G m r= = + . 

 There are graphs different from ,a bK and ( )S G , for which Eq. (3) holds. Two such 

examples are depicted in Figure 1. Note that (2,3)G is bipartite whereas (3,5)G is non-
bipartite. 
 

 
Figure 1. Graphs whose Sombor and Revan-Sombor indices coincide. 

 
 We can summarize the above observations in the following: 
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Proposition 2. Let δ ≤ ∆  be the minimum and maximum vertex degree of the graph G, 
and let m be the number of its edges. If all vertices of G are either of degree δ  or of degree 
∆ , and if all edges of G connect a vertex of degreeδ  with a vertex of degree ∆ , then 

2 2( ) ( )RSO G SO G m δ= = + ∆ . 

Proof:  If ( )Gd u δ= , then ( ) ( )G Gr u d uδ δ δ= ∆ + − = ∆ + − = ∆ . If ( )Gd v = ∆ , then  

( ) ( )G Gr v d vδ δ δ= ∆ + − = ∆ + − ∆ = . Therefore, for any edge uv,  

 2 2 2 2 2 2( ) ( ) ( ) ( )G G G Gr u r v d u d v δ+ = + = + ∆ .   ■ 

 
Theorem 1. Let G be a connected graph with m edges. Then 

( ) ( )RSO G m FR G≤  

where ( )FR G is the Revan-forgotten index, Eq. (2). 
Proof: Using the Cauchy-Schwarz inequality, we obtain  
 

 ( ) ( )
( ) ( )

( ) ( )
( )

2
2 2 2 2

1 ( )G G G G
uv E G uv E G uv E G

r u r v r u r v m FR G
∈ ∈ ∈

   + + =   


≤


    ■ 

 
Theorem 2. Let G be a connected graph with m edges. Then 

( ) ( ) ( )2
12( ) ( )  2R GSO G m m F M Gδδ ∆ + + − +∆≤   

where ( )1M G and ( )F G  are the first Zagreb and forgotten topological index. 

 Proof: Consider 

( ) ( )
( )

( )( ) ( )( )
( )

( ) ( ) ( )

2 22 2

2
1

  –   –( )

2 ( ) 2 .    

G G
uv E G uv E G

G GFR G r u d u d

G G

r v v

m F M

δ δ

δ δ
∈ ∈

  = + = ∆ + ∆
   

+ +

+ ∆ +



= ∆ + −

 

From the above equation and using Theorem 1, we get the desired result.      ■
 

 By means of proof techniques analogous to what earlier was used to the   Sombor 

index [9,10], we obtain Theorem 3 and Theorem 4: 
 
Theorem 3. Let G be a connected graph. Then 

( ) 1
1

( )
2

RSO G R G≥ . 

Equality holds if and only if G is regular. 
 
Corollary 3.1.  Let G be a connected graph. Then 

( ) [ ]1
1

2( ) ( ) .
2

RSO G m M Gδ∆ + −≥  

Equality holds if and only if G is regular. 
 
Theorem 4. Let G be a connected graph. Then 
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( ) [ ]1 22 ( ) ( ) .RSO G R G R G−≤  
 
Corollary 4.1.  Let G be a connected graph. Then 

( ) 2
1 22 2( ) ( ) ( 1) ( ) ( ) .RSO G m m M G M Gδ δ δ ∆ +≤ − ∆ + + ∆ + − − 

 

Equality holds if and only if G is regular. 
 
3. Conclusion 
In this study, we have introduced the Revan Sombor index of a graph. Some properties of 
this newly defined topological index are established. 
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