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Abstract. In this paper, we consider a class of variational-hemivariational inequality 
problems with constraints in a reflexive Banach space. This inequality problem involves 
two nonlinear operators and two nondifferentiable functionals. We introduce the penalty 
parameter and the penalty operator and change the initial problem into the penalty one, and 
then use the generalized penalty method to prove the existence result of the solution to the 
objective inequality. 
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1. Introduction 
It is very important for us to study contact problems which are always described by 
variational or hemivariational inequalities that are usually arisen in Mechanics, Physics and 
Engineering for contact processes are very common phenomenons both in life and industry. 
The theories of variational inequalities, which involve arguments of monotonicity and 
convexity that including properties of the subdifferential of a convex function, were firstly 
studied in the sixties and have been widely developed since then, cf. ([1]-[6]). The 
conception of hemivariational inequalities have been introduced in the early 1980s by 
Panagiotopoulos’ pioneering works. The studies of this class of inequalities are usually 
based on properties of the subdifferential in the sense of Clarke and defined for locally 
Lipschitz functions which may be nonconvex, cf. ([7]-[12]). 

Recently, variational-hemivariational inequalities have been studied by more and 
more researchers. This class of inequalities involves both convex and nonconvex functions, 
see ([13]-[19]). Our main in this paper is to present a generalized penalty method in the 
study of a class of variational-hemivariational inequality. The penalty method is effective 
in the numerical solution of constrained problems. It is a useful tool in proving the existence 
of the solution to constrained problems, see ([20]-[22]). And the generalized penalty 
method is the generalization of the penalty method, cf. ([23,24]). The penalty method has 
also been used to research the history-dependent variational or hemivariational 
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inequalities, in which convergence of the penalty method is shown as the penalty parameter 
goes to zero. 
The rest of the paper is organized as follows. In Section 2, we recall some basic notions 
and definitions. In Section 3, we introduce a class of variational-hemivariational inequality, 
and prove the existence result through the generalized penalty method. 
 
2. Preliminaries 
In this section, we recall some definitions and results we need in this paper. More details 
can be found in the references [25]. 

For a normed space �, we denote by �∗ its topological dual. We use the notations 
∥⋅∥� and ∥⋅∥�∗ for the norms of the spaces � and �∗, respectively. ⟨⋅,⋅⟩�∗×� represents the 
dual pairing between �∗ and �. Also, the symbols → and ⇀ stand for the strong and weak 
convergence in various spaces, respectively. 

We shall consider single-valued operator �: � → �∗ . The following definitions 
hold. 

 
Definition 1.  An operator �: � → �∗ is called pseudomonotone, if it is bounded and � →
  in �  together with limsup⟨��, � − ⟩ ≤ 0  imply ⟨�,  − �⟩ ≤ liminf�→� ⟨��, � −
�⟩ for all  ∈ �. 
 
Proposition 1.  For a reflexive Banach space �, the following statements hold. 
���  If the operator �: � → �∗  is bounded, demicontinous and monotone, then �  is 
pseudomonotone. 
���  If �, �: � → �∗  are pseudomonotone operators, then the sum � + �: � → �∗  is 
pseudomonotone. 
 
Definition 2. For a locally Lipschtz function �: � → ℝ , we denote by ���; ��  the 
generalized (Clarke) directioanal derivative of � at the point  ∈ � in the direction � ∈ � 
defined by 

!��; �� = limsup
#→, %↘�

!�# + '�� − !�#�
' . 

The generalized gradient or subdifferential of ! at , denoted by ∂!��, is a subset of the 
dual space �∗ given by ∂!�� = {* ∈ �∗|!��; �� ≥ ⟨*, �⟩�∗×�,  ∀� ∈ �}. 
 
Proposition 2. Let � be a real Banach Space, !: � → ℝ be a locally Lipschitz function. 
For all �, �� ∈ � × �, ��, ��� ∈ � × � such that ��, ��� → �, �� in � × �, we have 
limsup!���; ��� ≤ !��; ��. 
 
3. The main result 
Let / be an open bounded subset of ℝ0 with boundary ∂/ which is Lipschitz continuous. 
1  be a measurable subset of ∂/ . We denote by 2 a generic point in 1  and 3�1� the 
�4 − 1� dimensional measure of 1. Given an integer 6 > 0. We use notation � for a closed 
subset of 89�/; :;� , where 8 = <=�/; ℝ;� . We denote >: � → <=�1; ℝ;�  the trace 
operator, ∥ > ∥ the norm in the space ?@, <=�1; ℝ;�A. ��, 8, �∗� forms evolution triple of 
spaces and the embedding � ⊂ 8 is compact, and C is a subset of �. Given operators 
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�: � → �∗, functions D, �: 1 × ℝ; and a functional !: � → ℝ, we consider the following 
problem. 
Problem�E�. Find an element  ∈ C such that 

⟨�, � − ⟩ + FD
G

�>�� − D�>�41 + F��
G

�>; >� − >�41 ≥ ⟨!, � − ⟩ ∀� ∈ C. 
We introduce the following hypotheses. 
H�C�: C is a nonempty, closed and convex subset of �. 
H���: �: � → �∗ is 
��� pseudomonotone and there exists I > 0 such that ⟨��, �⟩�∗×� ≥ I ∥ � ∥�∗  ∀� ∈ �; 
��� strongly monotone, i.e., there exists 3J > 0 such that 

⟨��9 − ��=, �9 − �=⟩�∗×� ≥ 3J ∥ �9 − �= ∥�∗  ∀�9, �= ∈ �. 
H�D�: D: 1 × ℝ; → ℝ is such that 
��� D�⋅, *� is measurable on 1  for all * ∈ ℝ;  and there exists K ∈ <=�1; ℝ;� such that 
D?⋅, K�⋅�A ∈ <=�1�; 
��� D�2,⋅� is convex for a.e. 2 ∈ 1; 
�L� there exists <M > 0 such that for all *9, *= ∈ :;, 

| D�O, *9� − D�O, *=�| ≤ <MP|*9 − *=|PℝQ a.e. O ∈ Γ. 

H���: �: 1 × : is such that 
(a) ��⋅, *�  is measurable on 1  for all * ∈ ℝ;  and there exists K ∈ <=�1; ℝ;�  such that 

�?⋅, K�⋅�A ∈ <=�1�; 
(b) ��2,⋅� is locally Lipschitz on ℝ; for 2 ∈ 1; 
(c) ∥ ∂��2, *� ∥ℝQ≤ L� + L9 ∥ * ∥ℝQ for a.e. 2 ∈ 1, for all * ∈ 1 with L�, L9 ≥ 0; 
(d) ���2, *9; *= − *9� + ���2, *=; *9 − *=� ≤ S ∥ *9 − *= ∥ℝQ=  for a.e. 2 ∈ 1 , all *9, *= ∈

ℝ; with S ≥ 0; 
(e) ���2, *; −*� ≤ 4�1+∥ * ∥ℝQ� for all * ∈ ℝ; a.e. 2 ∈ 1 with 4 ≥ 0. 

H�!�: ! ∈ �∗. 
H�6�: S ∥ > ∥=< 3J. 

 
Note that Problem�E� is governed by a set of constraints C. Therefore, it is useful 

to approximate it by a penalty method. Here we introduce the following generalized penalty 
problem. 

Problem�E��. Find an element U ∈ � such that 

⟨�U, � − U⟩ + 1
'�

⟨E��, � − �⟩ + FD
G

�>�� − D�>U�41
+ F��

G
�>�; >� − >��41 ≥ ⟨!, � − �⟩ ∀� ∈ �.

 

(3.1) 
For the study, we introduce the following assumptions. 
H�'��: 
��� '� > 0 for all V ∈ ℕ; 
��� '� → 0 as V → ∞. 
H�E��: E�: � → �∗ is bounded, demicontinuous, monotone and coercive for all V ∈ ℕ. 
�H9�: For each � ∈ C, there exists a sequence {��} ⊂ � such that E��� = 0�∗ for each V ∈
ℕ and �� → � ∈ � as V → ∞. 
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�H=�: There exists an operator E: � → �∗ such that 
��� for any sequence {�} satisfying � ⇀  ∈ � and limsup⟨E��, � − ⟩ we have 

liminf�→� ⟨E��, � − �⟩ ≥ ⟨E,  − �⟩ for all � ∈ �. 
��� E = 0�∗ if and only if  ∈ C. 
�HY�: For each sequences {�}, {��} satisfying � ⇀ Z ∈ �, �� → � ∈ �, then 
��� limsup�→�?D�>��� − D�>��A ≤ D�>�� − D�>�; 
��� limsup�→����>�; >�� − >�� ≤ ���>; >� − >�. 
 
Theorem 1. Assume H���, H�D�, H���, H�!�, H�6�, H�'����� and H�E��. Then Problem 
�E�� has a unique solution  ∈ �. 
Proof:. Let V ∈ ℕ . Assumptions H�'��, H�E��  and Proposition 1���  imply that the 

operator 
9

%[
E�: � → �∗  is pseudomonotone. Assumption H���  on the operator �  and 

Proposition 1���  shows that the operator ��: � → �∗  defined by �� = � + 9
%[

E�  is 

pseudomonotone, too. From that E� is monotone and '� > 0, using assumption H��� we 
deduce that �� is strongly monotone with constant 3J. We can conclude from above that 
the operator �� satisfies condition H���, too. Similar to the, we can prove that Problem 
�E�� has a unique solution Z�. ◻ 
 
Theorem 2.  Assume H���, H�D�, H���, H�!�, H�6�, H�'��, H�E��, �H9�, �H=� and �HY�. 
Then Problem�E� has a solution. 
Proof. We prove this theorem in the following several steps. 
Step1. The sequence {�}  is bounded. Let � ∈ C . Assume that V ∈ ℕ  is fixed, then 
assumptions H����L�, H����4�, �H9� and Proposition 2 guarantee that 

F��
G

�>�; >�� − >��41
≤ F?���>�; >�� − >�� + ���>��; >� − >���A

G
41 − F��

G
�>��; >� − >���41

≤ S F ∥
G

>� − >�� ∥ℝQ= 41 + F|max⟨]�; >� − >��⟩|
G

41,
 

where ]� ∈ ∂��>���. Therefore, 
^ ��

G �>�; >�� − >��41 ≤ S ∥ > ∥=∥ � − �� ∥�=+ �L�3�1� + L9 ∥ > ∥� ∥ > ∥∥ � −
�� ∥�.                (3.2) 
On the other hand, we use H�!���� and H�D���� to see that 
^ DG �>��� − D�>��41 ≤ <M ∥ > ∥∥ � − �� ∥�.          (3.3) 
Next, we test with � = � ∈ � in (3.1.) and take into account the fact that E��� = 0�∗ and 
hypotheses H���, �H9� and H�E�� to see that 

3J ∥ � − �� ∥�=≤ ⟨���, �� − �⟩ + 1
'�

⟨E�� − E���, �� − �⟩ 
         + ^ DG �>��� − D�>��41 + ^ ��

G �>�; >�� − >��41 + ⟨!, � − ��⟩ 
         ≤ ⟨! − ���, � − ��⟩ + ^ DG �>��� − D�>��41 + ^ ��

G �>�; >�� − >��41. 
By virtue of (3.2) and (3.3), we find that 
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3J ∥ � − �� ∥�= ≤∥ ��� − ! ∥�∗∥ � − �� ∥�+ <M ∥ > ∥∥ � − �� ∥�
 +S ∥ > ∥=∥ � − �� ∥�=+ �L�3�1� + L9 ∥ > ∥� ∥ > ∥∥ � − �� ∥�. 

Therefore, 
�3J − S ∥ > ∥=� ∥ � − �� ∥�≤∥ ��� − ! ∥�∗+ <M ∥ > ∥ +�L�3�1� + L9 ∥ > ∥� ∥ > ∥. 

We use �H9� to see that {��} is bounded. Combine H������, H�!� and H�6�, we know 
that there exists a positive constant _ such that∥ � − �� ∥< _, i.e., {�} is bounded in �. 
Since �  is reflexive Banach space, then there exists an element ̀ ∈ �  such that, the 
subsequence of {�}, we also presented by {�}, converges weakly to ̀. i.e., 

� ⇀ ̀ ∈ �.                                                           (3.4) 
Step 2. ̀ ∈ C. We use (3.1) to see that 1

'�
⟨E��, � − �⟩ ≤ ⟨�� − ��, � − �⟩ + ⟨�� − !, � − �⟩

 + FD
G

�>�� − D�>��41 + F��
G

�>�; >� − >��41.
 

From H���, we know that � is monotone, then 1
'�

⟨E��, � − �⟩ ≤∥ �� − ! ∥�∗∥ � − � ∥�+ <M ∥ > ∥∥ � − � ∥�
 +�L�3�1� + L9 ∥ > ∥� ∥ > ∥∥ � − � ∥�.

 

We now use the boundedness of {�} to see that, there exists a positive constant _9��� 
depend on � such that 1

'�
⟨E��, � − �⟩ ≤ _9���. 

We use H�'�� to see that 
limsup

�→�
⟨E��, � − �⟩ ≤ 0.                                                 (3.5) 

Let � = ̀ ∈ � in (3.5), we get 
limsup

�→�
⟨E��, � − ̀⟩ ≤ 0.                                                 (3.6) 

 
Then, using (3.4), (3.6) and �H=����, we have 

liminf�→� ⟨E��, � − �⟩ ≥ ⟨È, ̀ − �⟩ for all � ∈ �.                                         (3.7) 

The inequalities (3.5) and (3.7) together imply that ⟨È, ̀ − �⟩ ≤ 0 ∀� ∈ �. Let � =
̀ − a, ∀a ∈ �, we have ⟨È, a⟩ = 0, a ∈ �. Thus, È = 0, and by �H=����, ̀ ∈ C. 
Step3. ̀ ∈ C is a solution to Problem�E�. Let � be a given element in �. From �H9�, we 
have that for each � ∈ C, there exists a sequence {��} ⊂ � such that E��� = 0�∗ for each 
V ∈ ℕ. Then, let � = �� in (3.1), we have 

⟨��, � − ��⟩ ≤ 1
'�

⟨E�� − E���, �� − �⟩ + FD
G

�>��� − D�>��41
 + F��

G
�>�; >�� − >��41 + ⟨!, � − ��⟩.

 

Using H�E��, we infer that 
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⟨��, � − ��⟩ ≤ ⟨!, � − ��⟩ + FD
G

�>��� − D�>��41
 + F��

G
�>�; >�� − >��41.

 

(3.8) 
Then, using (34) and assumptions �H=����, �HY� we find that 

limsup
�→�

FD
G

�>��� − D�>��41 ≤ F limsup
�→�G

?D�>��� − D�>��A41
≤ FD

G
�>�� − D�>̀�41.

 

(3.9) 

limsup
�→�

F��
G

�>�; >�� − >��41 ≤ F limsup
�→�G

���>�; >�� − >��41
≤ F��

G
�>̀; >� − >̀�41.

 

(3.10) 
Moreover, 

limsup
�→�

⟨!, � − ��⟩ = ⟨!, ̀ − �⟩.                                     (3.11) 

 
From (3.8)-(3.11), we have that 

limsup
�→�

⟨��, � − ��⟩ ≤ FD
G

�>�� − D�>̀�41 + F��
G

�>̀; >� − >̀�41 + ⟨!, ̀ − �⟩. 
(3.12) 

Next, H���, �H9�,(3.4)and  imply that ⟨��, � − �⟩ → 0, as V → ∞. Hence, writing 
⟨��, � − ��⟩ = ⟨��, � − �⟩ + ⟨��, � − �⟩. 

We deduce that 
limsup

�→�
⟨��, � − ��⟩ = limsup

�→�
⟨��, � − �⟩. 

This inequality combine with inequality (3.12) yields 

limsup
�→�

⟨��, � − �⟩ ≤ FD
G

�>�� − D�>̀�41 + F��
G

�>̀; >� − >̀�41 + ⟨!, ̀ − �⟩. 
(3.13) 

for all � ∈ C. Now, choosing � = ̀ ∈ C in (3.13) and using Proposition 2 we obtain that 
limsup

�→�
⟨��, � − ̀⟩ ≤ 0. 

This inequality together with (3.4) and Definition 1 lead 
liminf�→� ⟨��, � − �⟩ ≥ ⟨�̀, ̀ − �⟩.    (3.14) 

for all � ∈ �. We use (3.13) and (3.14) to see that 

⟨�̀, ̀ − �⟩ ≤ FD
G

�>�� − D�>̀�41 + F��
G

�>̀; >� − >̀�41 + ⟨!, ̀ − �⟩. 
for all � ∈ C. This means ̀ is a solution to Problem�E�, i.e., ̀ = . ◻ 
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