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Abstract. This paper describes a GNSS simulator signal generation method based on 
GPU acceleration. Mathematical simulations of the satellite constellation and receiver 
carriers enable simulation control software (SCS) to periodically send the parameters of 
the visible satellites to users. Furthermore, the SCS calculates simulated digital IF signals 
by calling multiple parallel threads on the GPU. To improve the parallel computing 
speed, the data structure is designed to facilitate quick access to the pseudocode data. We 
propose an optimal CUDA implementation for calculating the sampling data according to 
the characteristics of the GNSS signals. Simulations demonstrate the effectiveness of the 
proposed method. 
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1. Introduction 
The global navigation satellite system (GNSS) simulator is a high precision signal source 
for satellite navigation [1-5]. It is an important instrument for testing and evaluating the 
performance of satellite navigation receivers, allowing laboratory simulations of satellite 
navigation signals in various hypothetical complex operating environments [6-10]. 

Traditional GNSS simulators consist of simulation control software (SCS) and 
signal generation hardware (SGH) [11-15]. The SCS sets the state and controls the 
generation process of the simulated GNSS signals, including the setting of parameters 
such as the carrier motion trajectory and simulation environment. The SGH generates the 
simulated GNSS signals according to the parameters set by the SCS. In the SGH, a digital 
signal processing (DSP) chip calculates the navigation message, state parameters, and 
control parameters. Following signal encoding and direct sequence spread spectrum 
modulation, which are realized by a field-programmable gate array (FPGA), a digital 
intermediate frequency (IF) signal is generated. Finally, the simulated GNSS signal is 
obtained by a digital-to-analog converter (DAC) and up-conversion of the digital IF 
signal [16-20]. 
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The channel number of traditional GNSS simulators is limited by the FPGA 
capacity. However, for some complex scenarios, multichannel satellite navigation signals 
must be simulated. In other cases, multiple signals from one satellite, such as the direct 
incident, reflection, and multipath signals, as well as a deceiving signal, need to be 
simulated. For these particular requirements, traditional GNSS simulators require urgent 
improvements. 

To solve the above problems, a GNSS simulator architecture based on software 
radio (SDR) has been adopted by many researchers. The SDR GNSS simulator uses 
simulation software to replace the DSP and FPGA in generating digital IF signals; the 
number of signal channels depends on the computing power of the processors, which 
removes the limitations of FPGA capacity on the channel number. However, for large 
numbers of signal channels, ordinary CPUs struggle to generate the simulated GNSS 
signals. Thus, GPU-accelerated computing is being used to satisfy the computing 
requirements of multichannel GNSS signal generation [21-24]. To the best of our 
knowledge, no clear structure or key design considerations of the GPU algorithm for 
computing GNSS digital IF signals have yet been published. 

In this paper, we propose an architecture for an SDR GNSS simulator. In this 
architecture, the SCS simulates the GNSS digital IF signal using high-performance GPU 
computing resources, and then transmits the signal to the front-end module through a 
high-speed interface in real time for digital-to-analog conversion and up-conversion. The 
resulting GNSS RF signal is then exported. As the simulation of multichannel GNSS 
signals is performed in the software, it has good scalability for various simulation tasks, 
and hardware-in-the-loop simulation systems can be constructed using a software-defined 
interface with inertial navigation system and flight control system simulators. 

2. SDR GNSS simulator architecture 
2.1. Simulator architecture 
The SDR GNSS simulator consists of a simulation computer and a front-end module, as 
shown in Fig. 1 [25-26]. The digital IF signal is simulated by the GPU computing 
resources of the SCS, which operates on the simulation computer [27-28]. The SCS 
calculates the parameters (e.g., the carrier pseudo range, code pseudo range, and signal 
power) of the visible satellites for the users in real time, and periodically calculates the 
simulated satellite navigation digital IF signal corresponding to a simulation cycle. This 
signal is then transferred to the front-end module through a high-speed data transmission 
interface in real time. The front-end module generates the simulated GNSS signal 
through the DAC and digital up-conversion of the digital IF signal. 

 
Figure 1: SDR GNSS Simulator Architecture 
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2.2. GNSS signal simulation 
Generally, traditional GNSS simulators perform digital IF signal simulation with a fixed 
simulation step T . If the sampling rate is sF , then the number of GNSS signal sampling 

points generated in each simulation step is sN F T= � . For the signals to be generated in 
real time, the digital IF signal simulation of the SDR GNSS simulator must generate N  
sample data within time period T. 

The pseudo-code and carrier phase within a simulation step can be obtained by first-
order linear interpolation. The algorithm for generating sampling data is as follows: 

1) Suppose L  is the number of signal channels to be generated. Then, L  should not be 
greater than the maximum channel number that can be simulated; 

2) Suppose the pseudo code phase and carrier phase of the kth sampling point 
generated by the jth channel are [ ]jcp k  and [ ]jca k  respectively. Then, the sampling 
point data sequences of the two phases are given by: 

[ ] *

[ ] *

j j j

j j j

cp k cpI k cpS

ca k caI k caS

= +

= +
  (1) 

where jcpI  and jcaI  denote the initial pseudo code and the initial carrier phase, 

respectively. jcpS  and Sjca  denote the growth rate of the pseudo code phase and 
carrier phase, respectively. 
The phases and growth rates of the pseudo code and carrier have been normalized. 
The units of the carrier phase are radians; the units of the pseudo-code phase are 
chips, and the integer part of [ ]jCP k  can be used as an index for selecting the 
pseudo code data for modulation. 
In engineering calculations, (1) can be changed to the following recursive 
expression: 
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3) The signal from a single channel can be calculated according to the above sampling 
point data sequence of the code phase and carrier phase, and then modulated with 
the amplitude parameter of the response signal power and the pseudo code 
sequence. 
For GNSS signals modulated by binary phase-shift keying (BPSK), let the 
amplitude of the jth channel be jA  and the pseudo code sequence be [ ]jPN ⋅ . Then, 
the generated signal can be expressed as: 

[ ] * [ ( [ ])]*cos( [ ])

[ ] * [ ( [ ])]*sin( [ ])

I
j j j j j

Q
j j j j j

S k A PN floor cp k ca k

S k A PN floor cp k ca k

=

=
   (3) 

where ( )floor ⋅  denotes rounding down. The expressions for other modulated signals 
can be obtained similarly, and are not described in this paper. 
 

4) Summing the I and Q branches of the L channels gives: 
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where [ ]IS k  and [ ]QS k denote the I and Q branch signals, respectively. [ ]IS k  and 
[ ]QS k  are sent to the front-end module for up-conversion modulation through the 

high-speed data transfer interface, and the simulated GNSS digital IF signals are 
generated. 

 
3. GPU accelerated signal simulation 
3.1. Signal generation in a simulation step 
In a simulation step of length T , the SCS calculates the simulated GNSS digital IF signal 
in real time by calling GPU computing resources. To make full use of the GPU single-
instruction, multi-thread parallel computing capacity, we divide a simulation step into 
several continuous intervals, and call the GPU to execute multiple parallel threads. 
Finally, we generate the simulated satellite navigation digital IF signal in a simulation 
step by calculating the simulation data in each interval [29].  

An Nvidia GPU is selected to realize high-efficiency simulations of the GNSS 
digital IF signals. The development platform is C programming under the Compute 
Unified Device Architecture (CUDA) [30]. In this environment, the thread allocation unit 
of the GPU divides computing tasks into multiple threads that are executed concurrently. 
Each thread is assigned to a streaming multiprocessor (SM) for execution. Each SM can 
run multiple threads, and all threads running on the same SM share multiple scalar 
processors (SPs), a small number of special function units and double precision units 
(DPU), as well as on-chip shared memory and register files. The hardware resources are 
shared by multiple threads running on the same SM. 

To improve the efficiency of GPU resource utilization, we optimized our CUDA 
program by dividing the computing tasks and using the architecture features of the GPU. 
The generation process of the simulated digital IF signal in each simulation step is shown 
in Fig. 2. 
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Figure 2: GPU accelerated signal simulation 

To overcome the bottleneck of memory access in the GPU acceleration of digital IF 
signal simulation, three pieces of memory are allocated in the simulation computer: the 
pseudo code data buffer (M_pn), the parameter buffer (M_dp), and the sampling data 
buffer (M_sig). 
The processing steps of the simulation are as follows: 
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1) The SCS reads the pseudo code data of each satellite from the pre-stored pseudo 
code data file, writes it in the pseudo code data buffer, and maps this cache (M_pn) 
to the GPU’s texture memory space; 

2) The SCS calculates the dynamic parameters and message parameters, which are 
used to generate the simulated satellite navigation digital IF signal within a 
simulation step, and writes them into the parameter buffer; 

3) A simulation step is divided into multiple continuity intervals, and then the SCS 
calls the GPU to perform multiple parallel threads, reads the required data from the 
parameter buffer and pseudo code buffer, calculates the simulation data in each 
interval, and writes the results to the sample data cache. This completes the 
generation of a digital IF signal in a simulation step. 

 
3.2. Pseudo-range data structure 
In the process of digital IF signal simulation, the pseudo code data in the buffer are 
frequently accessed. To improve the memory access efficiency, the GPU’s texture 
memory controller is used to access the pseudo-code data cache area. To promote the 
efficient reading of pseudo-code data, the data structure is designed as follow: 

1) For compatibility with existing GNSS signals, the pseudo-code is stored after an 
interpolation process according to the code rate 10.23cF MHz= , whereby a 1-ms 
signal corresponds to a code block of length 10,230. For low code rate signals, a 
code block with a length of 10,230 is constructed by a copying chip. For example, a 
code block may consist of five continuous chips with the same value for a signal 
with a code rate of 2.046 MHz. 

2) To achieve compact storage of pseudo-code data, 640 contiguous memory unites of 
16-bit unsigned integer type (U16) are assigned for each code block. In a code 
block, the lowest (0th) and highest significant bits (LSB/MSB) of the U16 store the 
0th and 15th chips, respectively; the next lowest and highest bits of the U16 store 
the 16th and 31st chips, respectively; and so on, until the 639th LSB of the U16 
stores the 10,224th chip. The 5th lowest and highest bits of the U16 store the last 1-
bit pseudo code. 

3) If the pseudo code period of the satellite navigation signal is 1ms, then the last 10 
bits of the 639th U16 data will be repeatedly stored in the first 10 bits of this code 
block; if the pseudo code period is greater than 1 ms, then the first 10 bits of the 
next code block will be repeatedly stored. 
Through this compact storage of the pseudo code data, each GPU thread requires 

only two U16 data type global memory access operations for the calculation of one 
channel of the IF signal. By using the texture memory controller, the memory access 
speed can be accelerated, which effectively reduces the memory access overhead in the 
algorithm. 
 
3.3. Dynamic parameters and message parameters 
The SCS calculates the dynamic parameters and message parameters of the simulated 
GNSS digital IF signal in a simulation step. These parameters are written in the 
parameter buffer. The GPU accesses the above parameters frequently in the calculation 
process, resulting in a large number of out-of-order memory access operations. To 
improve memory access efficiency, when each SM of the GPU executes multiple threads, 
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the parameters of M_pn are moved to the on-chip shared memory of each SM, and then 
each thread executes the computation task. During the computation, the parameters 
needed for signal generation can be accessed efficiently from the on-chip shared memory. 
 
3.4. Sample data decomposition 
The N  sample data generated in each step are divided into sN  continuous data fragment 

according to their temporal order, and the length of the data segments is bN (i.e., 
*s bN N N= ). The computing task is divided into sN  parallel threads in the GPU, each 

responsible for generating a segment of data. Suppose the sequence number of the sN  

threads is: 1,2, sTxId N= L . Then, the sampling data with the sequence numbers from 
( 1)* bTxId N−  to * 1bTxId N −（ ） will be generated by the TxId th  thread. 

To comply with the pseudo-code data structure and support efficient storage of the 
digital IF signals in the sampling data buffer, bN  should be an integer multiple of 4, and  

the length of time corresponding to bN  should be approximately equal to the length of 8 

×10.23MHz chips (i.e., bN should be an integer close to
8*Fs

cF
). 

Suppose the sampling frequency is 50sF MHz= , the simulation step size is 1T ms= , 
and five SMs in the GPU are occupied by a single signal source. In this situation, we 
choose =40bN , and assign 250 threads on each SM. At this point, each SM can generate 
10,000 sample points, i.e., 0.2ms data, and the data for each simulation step can be 
generated using five SMs. 
 
3.5. Sample data calculation in a thread 
The specific calculation steps within each thread are as follows: 

1) The generated parameters are copied in parallel from M_dp to the current SM’s 
shared memory using multiple threads on the SM: the 0th thread copies the 
parameter data from the 0th Byte to the 31st Byte, the 1st thread copies the 
parameter data from the 32nd Byte to the 63rd Byte, and so on. 

2) Initialize bN  sample point data to 0, and calculate the signals [ ]I
jS k and [ ]Q

jS k  for 

each channel in a loop by executing steps 3-5, where 1,2,j L= L . 
3) The pseudo-code phase and carrier phase of the first sampling point of this thread 

are calculated according to (2), where )=( 1 * bTxIdk N− . Double-precision floating-
point accuracy is maintained in the calculation process, and the phase results are 
converted to F32 type. The phase of the pseudo code obtained thereby is denoted as 
cp  and the carrier phase is denoted as ca  

4) The texture memory controller reads the pseudo code data that might be used in the 
thread and stores them as a 32-bit unsigned integer. The specific processes are as 
follows: 
cp is rounded down to its integer part, cp_int. cp_int is moved four bits to the right 
to get addr, the offset of the first chip stored in the code block. The lowest four bits 
of Bias are the first bit in the U16 data read from addr. Because the maximum 
number of chips available in a thread is 10, read one U16 from addr+1 and piece the 
two numbers together into the integer Code of U32. The pseudo-code data required 
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to generate the signal is contained in Code (data at addr are the low 16 bits, data at 
addr+1 are high 16 bits). The 0th bit corresponds to the Biasth bit of Code; the 10th 
bit corresponds to the (Bias+9)th bit of Code. The low four bits of cp_int are 
recorded as Bias, then the 10bit data starting from the Biasth bit of Code are the 
pseudo-code data required by the current thread. The 10 pseudo-code data are 
denoted as { }[0], [1] [9]C C CL， , , i.e., { }[0], [1] [9]C C CL， ,  is the fragment (XOR 
processing has been performed with message modulation symbols) of length 10 of 
the pseudo code [ ]jPN ⋅ . This fragment covers the pseudo-code phase interval of the 
current thread, and the pseudo-code data corresponding to the first sampling point is 

[0]C . 
The above operation uses the characteristic that the aforementioned code block 
structure can store pseudo code data compactly, so the pseudocodes needed to 
generate the bN  sampling data can be obtained at one time through two global U16 

data access operations. However, traditional methods require bN  global memory 
accesses of U8 type data. The proposed method speeds up memory access using the 
texture memory controller. Therefore, this method effectively overcomes the 
bottleneck of memory access that limits the efficiency of GPU generation of 
navigation signals, and effectively reduces the overhead of memory access in the 
algorithm. 

5) According to the pseudo code data, the carrier phase and the modulation system of 
the first sampling point, the first sampling data for the thread corresponding to the 
jth channel are calculated. The channel accumulation is then completed according to 
(1). 
For the subsequent 1bN −  sampling points of this thread, the calculation method for 

each channel signal is as follows: 
1) We retain the decimal part of cp, i.e., (cp)cp cp floor= − . 

2) The growth rate parameters ( jcpS  and Sjca ) of the pseudo code phase and carrier 
phase in double-precision floating-point type are converted to F32 type, denoted as 

flcpS  and flcaS , respectively. 
3) The pseudo-code phase and carrier phase are calculated iteratively in single 

precision floating-point type in the accumulative manner according to (2). 
Specifically, 1i i flcp cp cpS−= + and 1i i flca ca caS−= +  is performed 1bN − times. The 

new cp  is used to determine the pseudo code data [ ] ( )C x x floor cp=， corresponding 
to the current sampling point after each phase accumulation update. The sampling 
data for a single channel are then calculated according to the modulation mode. For 
example, (3) can be used to calculate the sampling data when the signal modulation 
mode is BPSK. 
In the calculation process, only the phase of the first sampling point is calculated 

with double floating-point precision; all other calculations use single floating-point 
precision. The effect of the accumulated error on the ranging accuracy can be ignored as 
there are relatively few iterations. The cos and sin calculations are performed by a special 
function processing unit on the GPU, which does not use the traditional lookup table 
method, so the carrier waveform has a high level of precision. The proposed design 
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makes full use of the characteristics of the GPU with more single precision floating point 
computing resources. 

4. Implementation of SDR GNSS simulator 
In this study, we developed the BeiDou Satellite Navigation System (BDS) simulator 
based on the SDR GNSS simulator architecture and signal generation method. The 
software interface is shown in Fig. 3. 

 
Figure 3: The software interface of the simulator 

4.1. Simulator configuration 
The simulation computer is an HP Z840 desktop server, equipped with a Quaro M5000 
GPU. This GPU is designed to generate the simulated satellite navigation digital IF 
signals using CUDA. There are 16 SMs in the GPU. SMs 1-5 are used to generate B1I 
signals, and SMs 6-10 are used to generate B3I signals. The sampling rate of the 
simulator is 50MHz, and the simulation step size is 1ms.  
 
4.2. Simulation result 
An unmanned aerial vehicle (UAV) navigation scenario was used to verify the simulated 
BDS signal. This simulation scenario considered 18 visible BeiDou satellites. The B1I 
and B3I signals of the BeiDou satellites were simulated. Five-thousand B1I and B3I 
sampling points for simulated digital IF signals were generated in 1ms by the GPU. The 
memory size was 400,000 bytes (each sampling point was divided into real and 
imaginary parts, and each part was represented by a 16-bit signed number occupying two 
bytes). The data were transmitted to the RF front end in real time by an optical fiber. 
After the modulation chip has been processed, continuous RF signal output was 
produced. 
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Figure 4: Spectrum of the simulated B1I signal 



Satellite Navigation Simulation Signal Generation Method Based on the GPU Acceleration 

47 
 

 
Figure 5: Spectrum of the simulated B3I signal 

Frequency domain analysis of individual 1ms B1I and B3I digital IF signals 
intercepted at the RF front-end was performed. 

The spectrum diagrams as shown in Figs 4 and 5 show that the simulated spectral 
characteristics and bandwidth of B1I and B3I correspond with those of real signals. The 
center frequency of the B1I signal is -20.9020MHz, and that of the B3I signal is --
3.48MHz., The B1I signal generation for all 18 satellites used no more than 1,004,633 
GPU clock cycles; that for B3I used no more than 1,524,685 GPU clock cycles according 
to the hardware timing counter in the GPU. The timing counter in the Quaro M5000 has a 
frequency of 3,305MHz. It takes no more than 304 μs to generate a 1-ms B1I digital IF 
signal, and no more than 461 μs to generate a 1-ms B3I digital IF signal. Therefore, the 
Quaro M5000 has the capacity to simulate more satellite signals or spoofing signals 
received by analog receivers. In addition, the number of channels can be increased by 
expanding the GPU resources, so as to simulate GNSS signals in more complex 
scenarios. 
 
5. Conclusion 
A GNSS simulator signal generation method was proposed based on GPU acceleration. 
Through mathematical simulations of the satellite constellation and receiver carriers, the 
SCS periodically calculates the parameters for the visible satellite to users. Furthermore, 
the SCS calculates the simulated digital IF signals by calling multiple parallel threads on 
the GPU in real time. To improve the parallel computing speed of GPU, a data structure 
was designed to facilitate rapid access to the pseudo-code data. We also proposed an 
optimal CUDA implementation for calculating the sampling data according to the 
characteristics of GNSS signals. Simulation results demonstrate the effectiveness of the 
proposed method. 
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