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Abstract. In this paper, we have introduce a new class &fetl®ets in topological spaces
called 6 -generalized star closed set (briefdg*-closed set) and study some of its
properties. Further we introduce the the concept 6gf-continuous functions,
Bg*-irresolute functions and contfg*-continuous functions and study the relationship
between other existing functions in topological cgga Also we investigate the
composition of the functions betwe8g*-continuous functions and between continuous
and contra 6g*-continuous functions and betweefig*-continuous functions and

Bg*-irresolute functions. Moreover, we introduce thgplication of & -closed sets as

three spaces namelyT,,” spaces, ,T,, spaces,T,, spaces in topological spaces
and are analyzed. )
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1. Introduction

The first step of generalized closed sets introdume Levine [16] in the year of 1970.
Velicko [34] defined two subclasses of closed satmely, O - closed sets and- closed
sets in 1968. Levine [16], Mashhour et.al. [21] &ljalstad [23] introduced semi-open sets,
pre-open sets,a -sets and [ -sets respectively. Dontchev, Gnanambal [12] and
Palaniappan and Rao [25] are introduced a setslpagsp -closed sets,gpr -closed sets
and rg-closed sets respectively. Veerakumar [33] intredua new class of sets called

g -closed sets, which is properly placed in betwéerctass of closed sets and the class of
g -closed sets. Arya and Nour [1] are define a sehehg gs-closed sets in 1990.
Dontchev and Ganster were introduced semi-genedalitosed sets, generalized semi-
closed setsg -generalized closed sets, generalizedclosed sets and respectively.
Dontchev and Maki [8] are introducefl-generalized closed sets in topological
spaces. Sarasak and Rajesh [26] introducedibyeneralized semi-pre closed sets. Park
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[24] introduced rgp -closed sets in topological spaces. Dontchev, NigiriQuasi Normal
spaces andg -closed sets are introduced. Aslin, Caksu Guler Idaidi [3] introduced
7gs -closed sets in topological spaces.

Balachandran, Sundaram and Maki were introducedergéped continuous
functions [4] in the year of 1991. Dontchev [9roduce a contra continuous functions in
1996. Dontchev and Maki are introducéd - continuous functions [8] in the year of

1999. Fomin [11] introduced?-continuous functions in 1943. Veerakumar [30]ddtice
a new class of sets calleg - continuous functions in topological spaces.

In this paper, we introduce the new class of semaly, & -closed sets in
topological spaces and study some basic propekiss, we study the application of
o1, -space,,T,, - space and,T,, - space. Further, we introdud®’ -continuous

functions and&y’" -irresolute functions and study the relationshipgxisting functions.

Moreover we introduce a new generalization of a@ewntinuity called contrady’
-continuous functions.

2. Preliminaries
We recall the following definitions, which are thgeful in the sequel.

Definition 2.1. Asubset A of aspace (X,7) iscalled
» a semi-closed set[16] ifit(cl (A)) U A.
« a pre-closed set[21] ifl (int(A)) O A.
* a a -closed set[18] ifcl (int(cl (A))) O A.
« a semi-pre closed[2H [ -closed) if int(cl (int(A))) O A.
» ar -closed set[27] if A= cl(int(A)).
* a 71-closed set[35] if A is the union of regular closed sets.
« a O-closed set[34] ifA=cl,(A),
where cl,(A) = xO X :int(cl(U)) n A% ¢,U Orand xOUz.

Definition 2.2. Asubset A of aspace (X,r) iscalled

» ageneralized closed [17] (brieflg -closed) if ¢l (A) U whenever ALJU and
U isopeninX.

« asemi generalized closed [5] (briefg -closed) if scl (A) DU whenever ALJU

and U is semi openinX .
» ageneralized semi closed [33] (brieftye -closed) if scl(A) 0 U whenever ALJU

andU isopeninX.
« ageneralizeda -closed [20] (briefly ga -closed) if acl (A) DU whenever AU

andU is a-openin X.
* a a generalized closed [18] (briefl@g -closed) if acl (A) U whenever AJU

andU isopeninX.
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a regular generalized closed [25] (briefitg -closed) if cl (A) O U whenever

AOU andU isregular open inX .

a generalized pre-closed [19] (brieflyp -closed) if pcl(A) DU whenever AJU
andU isopeninX.

a generalized star closed [33] (briefty -closed) if ¢l (A) U whenever AU
andU is g-openin X .

a generalized star semi closed [30] (brieflys-closed) if scl (A) DU whenever
AU andU is g-openin X.

a generalized pre-regular closed [12] (briefipr -closed) if pcl(A) DU whenever

AUOU andU isregular open inX .
a weakly generalized closed [22] (brieflyg -closed) if cl (int(A)) DU whenever

AOU andU isopeninX.

a regular weakly generalized closed [22] (brieflyg -closed) if ¢l (int(A)) DU
whenever ALJU and U is regular open inX .

a 71-generalized closed [7] (brieflygy -closed) if cl (A) JU whenever AU
andU is 71 openin X .

a 7l-generalized? closed [15] (briefly 7ga -closed) if acl (A) U whenever
AOU andVY is 7T openin X.

a 7-generalized3 - closed [26] (briefly /g3 -closed) if Scl(A) DU whenever
AUOU andU is 71 openin X .

a 7-generalized pre-closed [24] (brieflggp -closed) if pcl (A) DU whenever

AOU andU is 71 openin X .

a 71-generalized semi-closed [3] (brieflsgs -closed) if scl (A) DU whenever
AUOU andU is 71 openin X .

a B-generalized closed [8] (brieflgy -closed) if cl ,(A) DU whenever ACJU
andU isopeninX.

a weakly- closed [28] (brieflyw -closed) if cl (A) DU wheneverACJU andU is
semi-openinX .

a semi weakly generalized-closed[22] (brieflwg -closed) if cl (int(A)) O U

whenever AJU and U is semi-open inX .

a g”s - closed [31] (briefly g*s-closed) if scl (A) DU whenever ADU and
U is ag-openin X .

a Y -closed [31] (briefly -closed) if scl (A) DU whenever ADU and U is
sg -openin X.

Definition 2.3. Afunction f :(X,7) - (Y,0) fromatopological space X intoa
topological space Y iscalled
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« continuous[16] if f *(V) is a closed inX for every closed se¥ of Y .

« r-continuous[27] if f (V) isar -closed in X for every closed se¥ of Y.

« 7-continuous[24] if f (V) is a 71-closed in X for every closed se¥ of Y .

« 7o -continuous[14] if f (V) is a 7gr -closed in X for every closed seV of Y .
«  7g-continuous[7] if f (V) is a /g-closed in X for every closed se¥ of Y.
«  gp -continuous[19] if f (V) is a 795 -closed in X for every closed seV of Y.
« gp-continuous[17]if f *(V) isa gp-closed in X for every closed se¥ of Y.
«  gs-continuous[33] if f (V) is a gs-closed in X for every closed se¥ of Y

«  gpr -continuous[12] if f (V) is a gpr -closed in X for every closed seV of Y .
«  7mgs-continuous[3] if f (V) isa /mgs-closedin X for every closed se¥ of Y .

Definition 2.4. A function f :(X,7) - (Y,0) from a topological space X into a
topological space Y is called g -irresolute [4] if f (V) isa g -closed in X for
every g -closedset V of Y.

Definition 2.5. A function f :(X,7) - (Y,o0) from a topological space X into a
topological space Y is called contra-continuous [9] if f (V) is a closed in X for

every open set V of Y, contra @ - continuous [13] if f (V) isa a-closed in X
for everyopenset V of Y.

Definition 2.6. Aspace (X,7) iscalleda

T, -space[6] if everygs-closed set in it is closed.
T,,,-space[10] if everyg -closed set in it is closed.

» 14 -Space[18] if everyag -closed set in it isg -closed.
T, -space[5] if everygs-closed set in it isg -closed.

o M wDh e

Tl,z* -space[30] if everyg* -closed set in it is closed.

Lemma2.7.1f A and B aresubsets of atopological space (X,7), then
c,(AOB)=cl,(A)Ocl,(B) and cl,(An B)=cl,(A)ncl,(B).

3. &y"-closed sets

In this chapter, we introduce and study the notibrfy” -closed sets in topological spaces

and obtain some of its basic properties.

Definition 3.1. A subset A of a topological space (X,7) iscalled & - closed set if
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cl,(A)JU ,whenever ACJU and U is g-openin (X,7).

Theorem 3.2. Every r -closed setis &) -closed but not conversely.
Proof: Suppose thatA be ar -closed set inX . Let U be a g-open set such that
AU . Since A is r -closed, then we havecl (A) = AOU . But,

cl,(A) Orcl(A) OU . Thereforecl ,(A) OU . Hence A is a & -closed set.

Example3.3.Let X ={a,b,c}, 7 ={X,¢{a},{b},{a,b},{b,c}} ,
r -closed= {X,¢{b,c},{a,c}} and & -closed set= {X,¢{a},{c},{a,c},{b,c}} .
Let A={a}.Thenthesubset A is &) -closed but nota r -closed set.

Example3.4. Let X ={a,b,c}, 71 ={X,¢{b},{a,b}} , & -closed=
{X,¢{c},{b,c},{a,c}} , rg-closed, /g-closed, ga -closed, 7gp -closed,
7gs-closed, 7gf -closed, rgpf -closed, gpr -closed, and agr

closed set={¢, X,{a}, {b},{c}, {a,b}, {b,c},{a,c}} .Let A={a}.Thenthesubset A is
rg-closed, 7g-closed, 7ga -closed, 7/gp-closed, 7ms-closed, 7L -closed,

rgf -closed, gpr -closed, agr -closed but not &y -closed.

Example 35. Let X ={a,b,¢}, 7={X,¢{a}, & -cosed= {X,¢{b,c}} , gp
and gs-closed= {X,¢{b},{c},{a,b},{b,c},{a,c}} . Let A={a,b}. Then the subset
A is gp-closedand gs-closed but not &y -closed.

Remark 3.6. The following diagram shows that the relationships of &) -closed setswith
other known existing sets.
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8 - Closed r-Clo sed_} 7 - Closed rg - Closed

Ad gpr - Closed
Closed X % / T
Bz™ Closed / 5 I
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\ > op - Closed
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mg - Close )
agr - Closed raf - Closed
mga - Closed
Semi - Closed s Closed c e
l *
Semi-preclosed «—————— Pre -Closed g p- Closed

¥ - Closed
Figure 1.

A - B representsA implies B but not conversely.

4. Propertiesof &-generalized star closed sets
In this section, we discuss the propertiesfofieneralized star closed sets.

Theorem 4.1. The union of two &) -closed subsetsare &y -closed.

Proof: Let A and B any two &) -closed sets inX . Such thatAQJU and BOU
where U is g-open in X and so AOBOU . Since A and B are & -closed.
Alcl,(A) and BOcl,(B) and hence ADBOcl,(A)Ocl,(B)Ocl,(AOB) .
Thus AOB is & -closed set in(X,7).

Example4.2. Let X ={a,b,¢}, 7 ={X,¢{b},{c},{b,c}} and & -closed=
{X,¢{a},{c},{a,b},{a,c}} .Le¢ A={a} and B={c},then AOB = {a,c} is
also &y -closed set.

Theorem 4.3. Theintersection of two &y -closed subset are &) -closed.
Proof: Let A and B any two &) -closed sets inX . Such thatACJU and BOU

where U is g-open in X and so An BOU . Since A and B are & -closed.
Alcl,(A) and BOcl,(B) and henceAnBOcl, (A ncl,(B)Ocl,(AnB).

Thus An B is &) -closed set in(X,7).

Example4.4. Let X ={a,b,c}, 7 ={X,¢{b},{c},{b,c},{a,b}} and & -closed=
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{X,¢{a},{c},{a,b},{a,c}.Let A={a,b} and B={a,c},then An B={a} isalso
6y’ -closed set.

Theorem 4.5. The intersection of a &) -closed set and a &-closed set is always &)
-closed.

Proof: Let A be a &) -closed set and leF be &-closed. LetU be an open set such
that AnF OU . SetG=X\F. Then AOU OG. SinceG is G-open,U G is
open and sinceA is & -closed, cl,(A) OU O0G. Now by Lemma [2.4],
cd,(AnF)Ocl,(A)ncl,(F) =cl,(ANnF

O UOGNF=UnF)OGnF)=UnF)O¢OU.

Theorem 4.6. The intersection of a @y -closed set and a &3 -closed set is always &9

-closed.
Proof: Let A be ad generalized-closed set and [Et be & -closed. LetU be an

open set such thaAn F OU . SetG=X\F. Then AOU OG. SinceG is &’
-open,U G is open and sincéA is & -closed, cl,(A) JU OG. Now by Lemma
[2.4], c,(AnF)Ocl,(Ancly,(F) =c,(AnF

O UOGNF=UnF)OGnNF)=UnF)O¢OU.

Theorem 4.7. For any element X[ X . Theset X is &) -closed set or g -open.

Proof: SupposeX\{x} is not g-open, thenX is the only g -open set containing
X\ {x} . This implies cl, X\ {x} O X . HenceX\ {x} is & -closed org-openin X .

5. Separation axioms of &y -closed sets
As applications oféy -closed sets, three spaces nameff,,  spaces, ,T,, spaces,
sT»  spaces are introduced and investigated.
Definition 5.1. Aspace (X,7) iscalled
«a,T,, space if everydy -closed set of(X,7) is a closed set.
«a’ ,T,, space if everydy -closed set of(X,7) is a g -closed set.

«a,T,, space if everydy -closed set of(X,7) is g-closed.

Theorem 5.2. Every T, spaceis ,T,, Space but not conversely.
Proof: Let (X,7) be aT, space. LetA be a&y -closed set of(X,7). Then A is
also a gs-closed set. Sinc€X,7) is a T, space, thenA is a closed set ofX,7).

Therefore (X,7) isa ,T,, space.
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Example 53. Let X ={a,b,c} and 7={X,¢{a},{b},{a,b}} . Then the space
(X,7) isnota T, space. Since {a} isa gs-closed set but not a closed set of (X,7).

However (X,7) isa ,T,, space.

Theorem 5.4. Every T,, spaceis T,,,  space but not conversely.

Proof: Let (X,7) be aT,, space. LetA be ag -closed set of(X,7). Then A is
also a g-closed set. SincéX,7) is a T, space, thenA is a closed set ofX,7).
Therefore (X,7) isaT,, space.

Example 55. Let X ={a,b,c} and 7 ={X,¢{a}} . Then the space (X,7) isnot a
T,,, space. Snce {b} isa g-closed set but not a closed set of (X,7).However (X,7)

isnota T, space

Theorem 5.6. Every T,,, spaceis T, space but not conversely.

Proof: Let (X,7) be aT,, space. LetA be ag-closed set of(X,r). Then A is
also a g -closed set. Sinc¢X,r) isaT,, space, thenA isa g -closed setof(X,7)
Therefore (X,7) isa’ T, space.

Example5.7. Let X ={a,b,c¢} and 7 ={X,¢{a,c}} . Thenthespace (X,r) isnota
T, space. Since {a,b} isa g-closed set but not a closed set of (X,7). However
(X,7) isnota " T, space.

Remark 5.8. The diagram of Figure 2 shows that the relationship of ,T,,, " -space,

" T,,-space, and T, -spacewith other known existing sets.

T > T3 > T
9T1;2 Ty T4

.

b \ pls ———— Ty
*
dlc € 9T1;2 -« Tc

Figure2:
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A - B representsA implies B but not conversely.

Example5.9. Let X ={a,b,c} and 7 ={X,¢{b},{c}, {b,c}} . Thenthespace (X,7)
isnota ,T,, space. Snce {c} isa &y -closed set but not a closed set of (X,7).
However (X,7) isa T, spaceand T,, space.

Example5.10. Let X ={a,b,c¢} and 7 ={X,¢{b},{c},{b,c}} . Then the space
(X,7) isnota ~ ,T,, space Snce {c} isa & -closed set but nota g’ -closed set of
(X,7).However (X,7) isa ,T, space.

Example5.11. Let X ={a,b,c} and 7 ={X,¢{b},{c},{b,c}} . Then the space
(X,r) isnota ,T,,” space. Snce {c} isa &) -closed set but nota g -closed set of
(X,7).However (X,7) isa ,T, space.

Theorem 5.12. Aspace (X,r) isa T,, spaceifandonlyifitis " T, and T,,, .
Proof: Necessity: Follows from the Theorems [5.4] and [5.5].
Sufficiency: Suppose(X,7) is bothT,, ~ and” T,,. Let A be ag-closed set of

(X,7). Since (X,7) is " T, space, thenA is g -closed. Since(X,7) isaT,,’
space, thenA is a closed set of X, 7). Thus (X,7) isaT,, space.

6. & -continuous functionsand &) -irresolute functions

This section is devoted to introduc8y” -continuous functions anddy” -irresolute
functions and discussed the relationships betweenther known existing functions.

Definition 6.1. Afunction f :(X,7) - (Y,0) iscalled & -continuousif f (V) isa
6y -closed set of (X,7) for everyclosedset V of (Y,0).

Theorem 6.2. For a function f :(X,7) — (Y,0), every continuous function is &y’
-continuous but not coversely.
Proof: Let f be a continuous function and I8t be a closed set ifY,o), then

f (V) is closed set in(X,r). Since every closed set &) -closed set,f (V) is
Ay’ - closed setin(X, 7). Therefore f is & -continuous.

Example 6.3. Let X =Y ={a,b,c} with 7={¢{a},{a,c}, X} and o ={¢{c}, Y}.
Let the function f :(X,7) - (Y,0) bedefinedby f(a)=Db, f(b)=a, f(c)=c.Then
f is & -continuous but not continuous. Since for the closed set {a,b} in Y,
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f *({a,b}) ={a,b} is & -closed but not closed set in (X, 7).

Theorem 6.4. For afunction f :(X,7) - (Y,0), thefollowing hold.

Every &3 -continuous function is rg -continuous, gpr -continuous, gs -continuous,
gp -continuous, 7 -continuous, 7QS -continuous, 7 -continuous.

Proof: Let f be a &y -continuous function and Ié¢ be a closed set iY, o), then
f (V) is & -closed setin(X,7). Since everydy’ - closed set isrg -closed set ¢pr

-closed, gs -closed, gp -closed, 7y -closed, 7gs -closed, 793 -closed), f (V) is
rg -closed (gpr -closed, gs -closed, gp -closed, /g -closed, 7gs -closed, /gf
-closed) set in(X,r) . Therefore f is rg -continuous (gpr -continuous, gs
-continuous, gp -continuous, 7g -continuous, 7ggs -continuous, 79 -continuous).

Example 6.5.

1. Let X =Y ={a,b,c¢} with 7={¢ {a},{b},{a,b}, X} and g ={¢{c}, Y}. Let
the function f : (X,7) - (Y,0) be defined byf(a)=b, f(b)=a, f(c)=c.Then
f is rg-continuous but notdy” -continuous. Since for the closed det,b} in Y,
f *({a,b}) ={a,b} is rg-closed but notdy -closed set in(X,7).

2. Let X =Y ={a,b,¢t with 7={¢{a},{c},{a,c}, X} and o ={¢{b}, Y} . Let
the function f : (X,7) - (Y,0) be defined byf(a)=c, f(b)=b, f(c)=a. Then
f is gpr -continuous but no#y” -continuous. Since for the closed et c} in Y,
f *({a,c}) ={a,¢} is gpr -closed but notdy” -closed set in(X,7).

3. Let X =Y ={a,b,c} with 7 ={¢,{a},{a,c}, X} and g ={¢,Y,{b},{a,b}} . Let
the function f : (X,7) - (Y,o) be an identity function, therf is gs-continuous but
not & -continuous. Since for the closed s¢tsc} and{c} inY, f*({ac) ={a,c}
and f({c}) ={c} is gs-closed but notdy"-closed set in(X,7).

4. Let X =Y ={a,b,c} with 7 ={¢{a},{a,b}, X} and o ={¢,Y,{a,c}} . Let the
function f :(X,7) - (Y,o0) be an identity function, therf is gp -continuous but not
&y -continuous. Since for the closed §& in Y, f™({b}) ={b} is gp-closed but
not &’ -closed set in(X, 7).

5. Let X =Y ={a,b,c} with 7 ={¢{a},{b},{a,b},{a,c}, X} and

o ={,{b},{c},{b,c},{a,c}, Y} . Let the function f :(X,7) - (Y,0) be an identity
function, then f is 71y -continuous but noty” -continuous. Since for the closed set
{{abh{ac.{a.{b} inY, f7{abh) ={ab}, {7 {ad={ad,

f *{a}) ={a} and f*({b}) ={b} is 7g-closed but not&y” -closed set in(X,7).
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6. Let X =Y ={a,b,c} with 7 ={,{b},{c},{a,b},{b,c}, X} and
o ={,{c},{a,c},{b,c}, Y}. Letthe functionf : (X,7) - (Y,o0) be defined by f(a)=c,
f(b)= b, f(c)= a. Then fis7gs- continuous but nofYy” - continuous. Since for the closed
set {a,b}, {b}, {a}in Y, f *({a,b}) = {b,c}, f *({b}) = {b} and f * ({a}) = {c}, which is
71gs- closed but noBy’ - closed set in (X,7).
7. Let X=Y={a,b,c} with 7= {¢ {a},{a,b},X} and o= {¢{a}, {b,c}, Y} Letthe
function f:(X, 7) - (Y,o0) be defined by f(a)= b, f(b)= c, f(c)= a. Then fisg 3 -
continuous but no#y” - continuous. Since for the closed set {a} and JlincY, f ™ ({a})
={c} and f * ({b,c}) = {a,b} which is 719 B- closed but not&y’ - closed set in (X,T).

Remark 6.6. The following diagram shows the relationship of &) - continuous with other
known exixting sets.

rg - Continuous gpr - Confinucus
Continuous
/ gs eones
r- Continuous —————————3 64 - Continuous = gp - Continuous

sy

ngs - Continuous

g - Continuous
- Continuous

73 [ - Continuous
Figure3:

A - B representsA implies B but not conversely.

Definition 6.7. Afunctionf: (X,7) — (Y,0) iscalled & -irresoluteif f (V) isa
6y -closed set of (X, T) for every &y -closed set of (Y,0).

Theorem 6.8. For afunction f :(X,7) - (Y,0),every & -irresolutefunctionis &y’
- continuous but not conversely.
Proof: Let V be a closed set iffY,o) . Since every closed set &) -closed set.

Therefore V is&y -closed set of Y. Since fig)y" - irresolute, thenT (V) is & -closed
setin X. Thus fis&)" -continuous.

Example 6.9. Let X=Y= {a,b,c} with 7= {¢ {c}.X}, & = {¢ {ab} X},
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o={¢{a}{bc} X} and & = {¢ {a}.{b,c},Y}. Definea function f(a)= a, f(b)= b, and
f(c)= cthenf ™ ({a})= {a}, f *({b,c})= {b,c} whichisnot &) -irresolute. Snceitis &
- closed set of Y but theinverseisnot a & - closed set of X. Butitis &) - continuous.

Theorem 6.10. Let afunction f :(X,7) - (Y,0) bea & - continuous function. If (X,
T)is ,T,, - space, thenfiscontinuous function.

Proof: Let V be a closed set ifY, o) . Since fis & -continuous, (V) is &) - closed
in (X, 7).Since (X, T)is ,T,, ,f *(V)isclosedin (X, 7). Therefore fis continuous.

Remark 6.11. The composition of two & - continuous functions need not be &) -
continuous as shown in the following example.

Example 6.12. Let X=Y=Z= {a,b,c} with 7= { ¢ {a},{a,b}, X}, o= {¢ .{b}.{b,c},Y} and
n=1{¢ {c}{ab},Z}. Define f:(X,7r) - (Y,0) byf(a)= a, f(b)= b, f(c)= c. Define
g:(Y, 0) - (Z n7)byg@=b, gb)= a, g(c)= c.

Then & C(X, 7)={¢ X{c}.{bc}{ac}} and & C(Y, 0)={¢,Y{a}{ab}{ac}}.
Here{ab} isaclosedsetin (Z, 7). But (gof) " ({a,b})= {a,b} isnota & - closed setin
(X, T). Thereforegofisnot & - continuous.

7. Contra &y -continuous functions

In this section, we introduce a new class of camtirs function called contraéy’
-continuous functions and studied the compositietwben &) -continuous functions and
&y’ -irresolute functions.

Definition 7.1. Afunction f :(X,7) — (Y,0) issaidtobecontra & - continuous if f
(V) is & - closed setin X for every openset Vin'Y.

Theorem 7.2. For the function f :(X,7) - (Y,0), thefollowing hold.
[a] Every contra r-continuous function is contfy” -continuous.

[b] Every contra & -continuous function is contra rg-continuous (cantr

gpr-continuous, contra gs-continuous, contra gphooous, contra7i g-continuous,
contra 71 gs-continuous, contrai g 3 -continuous).

Proof: [a] Suppose we take V be an open set in Y. Sincedrigra r-continuous, then'f
(V) is r-closed in X. Since every r- closed setdy - closed, f*(V) is &) - closed in X.

Thus we have f is contréy” - continuous.
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[b] Suppose we take V be an open set in Y. Sincedrigra & - continuous,
then f* (V) is & - closed in X. Since ever@y’ - closed set is rg- closed (gpr-closed,gs-

closed,gp-closednz g-closed, 71 gs-closed, 71 g B -closed), f™ (V) is rg-closed
(gpr-closed,gs- closed,gp-closey-closed, 71gs-closed,71g S -closed) in X. Thus we

have f is contra rg-continuous (contra gpr-contugjocontra gs-continuous, contra
gp-continuous, contrai g-continuous, contrall gs-continuous, contra
71gB-continuous).

Example 7.3.
[a] Let X={a,b,c} =Y with 7 ={X, ¢ ,{a}.{b}.{a,b}} and o ={Y, ¢ {b},{c}.{b,c}}. Let

the function f :(X,7) - (Y,0) be the identity function. Then f is contr&y" -

continuous but not in contra r-continuous. Sinaetie open set {c} in Y, T ({c})={c} is
&y’ - closed but not a r- closed set in (X).

[b] Let X= {a,b,c} =Y with 7 ={X, ¢ {c},{b,c}} and o ={Y, ¢ {b,c}}. Let the function
f:(X,1) - (Y,o0) be the identity function. Then f is contra rg- ionous but not in

contra &) -continuous. Since for the open set {b,c} in Y* {b,c})={b,c} is rg- closed
but not & - closed set in (X,T).

[c] Let X={a,b,c} =Y with 7= {X, ¢ {a}{a,b}} and o={Y, ¢ {b}, {a,b}} . Let the
function f :(X,7) - (Y,0). Define a set f(a)=b, f(b)=a, f(c)=c. Thert¢{b}) ={a} and

f ™ ({a,b})={a,b} which is contra gpr - continuous buibt in contra@y -continuous.
However f is contra gpr- continuous.

[d] Let X={a,b,c} =Y with 7={X, ¢ ,{a}} and g ={Y, ¢,{a}, {a,b}}. Let the function
f:(X,7) - (Y,0). Defined by the set f(a)=b, f(b)=a, f(c)=c. Then({a})={b}, f ~*

({a,b})={a,b}, which is contra gs - continuous buot in contra&y” -continuous. However
fis contra gs- continuous.

[€] Let X= {a,b,c} =Y with 7= {X, ¢ ,{c},{b,c}} and o= {Y, ¢ {b}}. Let the function

f:(X,1) - (Y,0) be the identity function. Then f is contra gp ntiouous but not in
contra & - continuous. Since for the open set {b} in Y} {b})={b} is gp - closed but
not & - closed set in (X,7).

[f] Let X= {a,b,c} =Y with 7= {X, ¢ {c}{b,c}} and o= {Y, ¢{b}, {b,c}}. Letthe
function f :(X,7) - (Y,0) be the identity function. Then f is contrag - continuous
but not in contrady -continuous. Since for the open sets {b} and {bia}Y, f*
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({b})={b} and f ™ ({b,c})={b,c} which is 71g- closed but no#y" - closed set in (%)-

[g] Let X= {a,b,c} =Y with 7= {X, ¢ ,{b}{c},{b,c}} and 0O = {Y, ¢ {b}}. Let the
function f :(X,7) - (Y,0) be the identity function. Then fis contrags - continuous
but not in contrady” -continuous. Since for the open set {b} in Y, {{b})={b} is 71 gs-
closed but notdy’ - closed set in (X,T).

[h] Let X={a,b,c} =Y with 7 ={X, ¢, {a},{b}.{a,b},{a,c}} and O ={Y, ¢, {a}}. Let the
function f :(X,7) - (Y,0) be the identity function. Then f is contra g S -
continuous but not in contr&y” -continuous. Since for the open sets {a} in Y, f
({ah)={a}is ngp -closed but notdy - closed set in (X,r).

Theorem 7.4. Let f :(X,r) - (Y,0) beacontra & - continuous function and g:(Y,

0) - (Z n)beacontinuous functionthengof: (X, 7) — (Z, n)iscontra & -
continuous.
Proof: Let V be any open set in Z. Since g:(¥,) — (Z, 77) be a continuous, (V) is

open in Y. Sincef : (X,7) - (Y,0) be a contrady - continuous, ' (g™ (V)) is a
&y - closed set in X. Hence (gof)(V)=f (g™ (V)) is a & - closed set in X. Therefore
gof: (X, T) — (Z, n7)is contra@y - continuous.

Theorem 7.5. Let f:(X,7) - (Y,0) bea & -irresoluteand g:(Y, 0) — (Z, 1)

bea contra & - continuous function then gof: (X, 7) — (Z, 77)iscontra &y -
continuous.
Proof: Now we take V be any open setin Z. Since g:(¥) — (Z, 17) be a contrady’

-continuous, g* (V) is & - closed in Y. Sincef :(X,7) - (Y,0) be a &
-irresolute, (g™ (V)) is a & - open set in X. Therefore gof: ¢) - (Z, n) is
contra & - continuous.

8. Conclusion
In this paper, a new class of sets call@yl - closed sets has been introduced and some of

its properties has been studied. Based on this sese of the functions calle@y’ -

continuous functions@y” - irresolute functions and contr&y” -continuous functions are
also introduced in the topological spaces and sofmés properties has been studied.
Further, the application ofYy” -closed sets has been introduced interms of sperasly,

s T, - spaces and investigated its properties.
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