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 Abstract. In this paper, we have introduce a new class of closed sets in topological spaces 
called θ -generalized star closed set (briefly θg*-closed set) and study some of its 
properties. Further we introduce the the concept of θg*-continuous functions, 
θg*-irresolute functions and contra θg*-continuous functions and study the relationship 
between other existing functions in topological spaces. Also we investigate the 
composition of the functions between θg*-continuous functions and between continuous 
and contra θg*-continuous functions and between θg*-continuous functions and 

θg*-irresolute functions. Moreover, we introduce the application of *gθ -closed sets as 

three spaces namely,

)

1/2Tθ
*  spaces, * 1/2Tθ  spaces, 1/2Tθ

** spaces in topological spaces 

and are analyzed. 

Keywords: θg*-closed sets, θg*-continuous functions, θg*-irresolute functions, contra 

θg*-continuous functions, 1/2Tθ
* - space, * 1/2Tθ - space, 1/2Tθ

**  -space. 
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1. Introduction 
The first step of generalized closed sets introduced by Levine [16] in the year of 1970. 
Velicko [34] defined two subclasses of closed sets namely, δ - closed sets and θ - closed 
sets in 1968. Levine [16], Mashhour et.al. [21] and Njastad [23] introduced semi-open sets, 
pre-open sets, α -sets and β -sets respectively. Dontchev, Gnanambal [12] and 
Palaniappan and Rao [25] are introduced a sets namely gsp -closed sets, gpr -closed sets 
and rg -closed sets respectively. Veerakumar [33] introduced a new class of sets called 

*g -closed sets, which is properly placed in between the class of closed sets and the class of 

g -closed sets. Arya and Nour [1] are define a set namely, gs -closed sets in 1990. 
Dontchev and Ganster were introduced semi-generalized closed sets, generalized semi- 
closed sets, α -generalized closed sets, generalized α -closed sets and respectively. 

Dontchev and Maki [8] are introduced θ -generalized closed sets in topological 
spaces. Sarasak and Rajesh [26] introduced by π -generalized semi-pre closed sets. Park 
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[24] introduced gpπ -closed sets in topological spaces. Dontchev, Noiri [7], Quasi Normal 
spaces and gπ -closed sets are introduced. Aslin, Caksu Guler and Noiri [3] introduced 

gsπ -closed sets in topological spaces. 
Balachandran, Sundaram and Maki were introduced generalized continuous 

functions [4] in the year of 1991. Dontchev [9] introduce a contra continuous functions in 
1996. Dontchev and Maki are introduced gθ - continuous functions [8] in the year of 

1999. Fomin [11] introduced θ -continuous functions in 1943. Veerakumar [30] introduce 

a new class of sets called *g - continuous functions in topological spaces. 

In this paper, we introduce the new class of sets namely, *gθ -closed sets in 
topological spaces and study some basic properties. Also, we study the application of 

1/2Tθ
* -space, 1/2Tθ

** - space and 1/2
* Tθ  - space. Further, we introduce *gθ -continuous 

functions and *gθ -irresolute functions and study the relationships of existing functions. 

Moreover we introduce a new generalization of contra-continuity called contra *gθ
-continuous functions.  

 
2. Preliminaries 
We recall the following definitions, which are the useful in the sequel. 

 
Definition 2.1. A subset A  of a space ),( τX  is called   

    • a semi-closed set[16] if AAclint ⊆))(( .  

    • a pre-closed set[21] if AAintcl ⊆))(( .  

    • a α -closed set[18] if AAclintcl ⊆)))((( .  

    • a semi-pre closed[2] (β= -closed) if AAintclint ⊆)))((( .  

    • a r -closed set[27] if ))((= AintclA .  

    • a π -closed set[35] if A  is the union of regular closed sets.  
    • a θ -closed set[34] if )(= AclA θ ,  

where )(Aclθ  = UzxandUAUclintXx ∈∈≠∩∈ τφ ,))((: .  

 
Definition 2.2. A subset A  of a space ),( τX  is called 

• a generalized closed [17] (briefly g -closed) if UAcl ⊆)(  whenever UA ⊆  and 

U  is open in X .  
• a semi generalized closed [5] (briefly sg -closed) if UAscl ⊆)(  whenever UA ⊆  

and U  is semi open in X .  
• a generalized semi closed [33] (briefly gs -closed) if UAscl ⊆)(  whenever UA ⊆  

and U  is open in X .  
• a generalized α -closed [20] (briefly αg -closed) if UAcl ⊆)(α  whenever UA ⊆  

and U  is α - open in X .  
• a α  generalized closed [18] (briefly gα -closed) if UAcl ⊆)(α  whenever UA ⊆  

and U  is open in X .  
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• a regular generalized closed [25] (briefly rg -closed) if UAcl ⊆)(  whenever 

UA ⊆  and U  is regular open in X .  
• a generalized pre-closed [19] (briefly gp -closed) if UApcl ⊆)(  whenever UA ⊆  

and U  is open in X .  

• a generalized star closed [33] (briefly *g -closed) if UAcl ⊆)(  whenever UA ⊆  

and U  is g -open in X .  

• a generalized star semi closed [30] (briefly sg * -closed) if UAscl ⊆)(  whenever 

UA ⊆  and U  is g -open in X .  

• a generalized pre-regular closed [12] (briefly gpr -closed) if UApcl ⊆)(  whenever 

UA ⊆  and U  is regular open in X .  
• a weakly generalized closed [22] (briefly wg -closed) if UAintcl ⊆))((  whenever 

UA ⊆  and U  is open in X .  
• a regular weakly generalized closed [22] (briefly rwg -closed) if UAintcl ⊆))((  

whenever UA ⊆  and U  is regular open in X .  
• a π -generalized closed [7] (briefly gπ -closed) if UAcl ⊆)(  whenever UA ⊆  

and U  is π  open in X .  
• a π -generalized α  closed [15] (briefly απg -closed) if UAcl ⊆)(α  whenever 

UA ⊆  and U  is π  open in X .  
• a π -generalized β - closed [26] (briefly βπg -closed) if UAcl ⊆)(β  whenever 

UA ⊆  and U  is π  open in X .  
• a π -generalized pre-closed [24] (briefly gpπ -closed) if UApcl ⊆)(  whenever 

UA ⊆  and U  is π  open in X .  
• a π -generalized semi-closed [3] (briefly gsπ -closed) if UAscl ⊆)(  whenever 

UA ⊆  and U  is π  open in X .  

• a θ -generalized closed [8] (briefly gθ -closed) if UAcl ⊆)(θ  whenever UA ⊆  

and U  is open in X .  
• a weakly- closed [28] (briefly w -closed) if UAcl ⊆)(  whenever UA ⊆  and U  is 

semi-open in X .  
• a semi weakly generalized-closed[22] (briefly swg -closed) if UAintcl ⊆))((  

whenever UA ⊆  and U  is semi-open in X .  

• a sg #  - closed [31] (briefly sg # -closed) if UAscl ⊆)(  whenever UA ⊆  and 

U  is gα -open in X .  

• a ψ -closed [31] (briefly ψ -closed) if UAscl ⊆)(  whenever UA ⊆  and U  is 

sg -open in X .  
  

Definition 2.3. A function ),(),(: στ YXf →  from a topological space X  into a 

topological space Y  is called   
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• continuous[16] if )(1 Vf −  is a closed in X  for every closed set V  of Y .  

• r -continuous[27] if )(1 Vf −  is a r -closed in X  for every closed set V  of Y .  

• π -continuous[24] if )(1 Vf −  is a π -closed in X  for every closed set V  of Y .  

• grπ -continuous[14] if )(1 Vf −  is a grπ -closed in X for every closed set V of Y .  

• gπ -continuous[7] if )(1 Vf −  is a gπ -closed in X  for every closed set V  of Y .  

• βπg -continuous[19] if )(1 Vf −  is a βπg -closed in X for every closed set V of Y.  

• gp -continuous[17] if )(1 Vf −  is a gp -closed in X  for every closed set V  of Y .  

• gs -continuous[33] if )(1 Vf −  is a gs -closed in X  for every closed set V  of Y   

• gpr -continuous[12] if )(1 Vf −  is a gpr -closed in X for every closed set V of Y .  

• gsπ -continuous[3] if )(1 Vf −  is a gsπ -closed in X  for every closed set V  of Y .  
 

Definition 2.4. A function ),(),(: στ YXf →  from a topological space X  into a 

topological space Y is called *g -irresolute [4] if )(1 Vf −  is a *g -closed in X  for 

every *g -closed set V  of Y .  
 

Definition 2.5. A function ),(),(: στ YXf →  from a topological space X  into a 

topological space Y is called contra-continuous [9] if )(1 Vf −  is a closed in X  for 

every open set V  of Y , contra α  - continuous [13] if )(1 Vf −  is a α -closed in X  

for every open set V  of Y .  
 

Definition 2.6. A space ),( τX  is called a   

    1.  bT -space[6] if every gs -closed set in it is closed.  

    2.  1/2T -space[10] if every g -closed set in it is closed.  

    3.  dTα -space[18] if every gα -closed set in it is g -closed.  

    4.  dT -space[5] if every gs -closed set in it is g -closed.  

    5.  
*

1/2T -space[30] if every *g -closed set in it is closed.  

  
Lemma 2.7. If A  and B  are subsets of a topological space ),( τX , then 

)()(=)( BclAclBAcl θθθ ∪∪  and )()(=)( BclAclBAcl θθθ ∩∩ .  

 

3. ∗gθ -closed sets 

In this chapter, we introduce and study the notion of *gθ -closed sets in topological spaces 
and obtain some of its basic properties. 

 

Definition 3.1. A subset A  of a topological space ),( τX  is called *gθ - closed set if 
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UAcl ⊆)(θ , whenever UA ⊆  and U  is g -open in ),( τX .  

 

Theorem 3.2. Every r -closed set is *gθ -closed but not conversely. 

Proof: Suppose that A  be a r -closed set in X . Let U  be a g -open set such that 

UA ⊆ . Since A  is r -closed, then we have UAArcl ⊆=)( . But,  

UArclAcl ⊆⊆ )()(θ . Therefore UAcl ⊆)(θ . Hence A  is a *gθ -closed set.  

 
Example 3.3. Let },,{= cbaX , }},{},,{},{},{,,{= cbbabaX φτ , 

r -closed= }},{},,{,,{ cacbX φ  and *gθ -closed set= }},{},,{},{},{,,{ cbcacaX φ . 

Let }{= aA . Then the subset A  is *gθ -closed but not a r -closed set.  
 
Example 3.4. Let },,{= cbaX , }},{},{,,{= babX φτ , *gθ -closed= 

}},{},,{},{,,{ cacbcX φ , rg -closed, gπ -closed, απg -closed, gpπ -closed,  

gsπ -closed, βπg -closed, βrg -closed, gpr -closed, and grα   

closed set= }},{},,{},,{},{},{},{,,{ cacbbacbaXφ . Let }{= aA . Then the subset A  is 

rg -closed, gπ -closed, απg -closed, gpπ -closed, gsπ -closed, βπg -closed,  

βrg -closed, gpr -closed, grα -closed but not *gθ -closed.  
 
Example 3.5. Let },,{= cbaX , }}{,,{= aX φτ , *gθ -closed= }},{,,{ cbX φ , gp  

and gs -closed= }},{},,{},,{},{},{,,{ cacbbacbX φ . Let },{= baA . Then the subset 

A  is gp -closed and gs -closed but not *gθ -closed.  

 

Remark 3.6. The following diagram shows that the relationships of *gθ -closed sets with 
other known existing sets.  
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Figure 1: 

BA →  represents A  implies B  but not conversely. 
 
4. Properties of θ -generalized star closed sets 
In this section, we discuss the properties of θ -generalized star closed sets. 

 

Theorem 4.1. The union of two *gθ -closed subsets are *gθ -closed. 

Proof: Let A  and B  any two *gθ -closed sets in X . Such that UA ⊆  and UB ⊆  

where U  is g -open in X  and so UBA ⊆∪ . Since A  and B  are *gθ -closed. 

)(AclA θ⊆  and )(BclB θ⊆  and hence )()()( BAclBclAclBA ∪⊆∪⊆∪ θθθ . 

Thus BA ∪  is *gθ -closed set in ),( τX .  
 

Example 4.2. Let },,{= cbaX , }},{},{},{,,{= cbcbX φτ  and *gθ -closed = 

}},{},,{},{},{,,{ cabacaX φ . Let }{= aA  and }{= cB , then BA ∪  = },{ ca  is 

also *gθ -closed set.  

Theorem 4.3. The intersection of two *gθ -closed subset are *gθ -closed. 

Proof: Let A  and B  any two *gθ -closed sets in X . Such that UA ⊆  and UB ⊆  

where U  is g -open in X  and so UBA ⊆∩ . Since A  and B  are *gθ -closed. 

)(AclA θ⊆  and )(BclB θ⊆  and hence )()()( BAclBclAclBA ∩⊆∩⊆∩ θθθ . 

Thus BA ∩  is *gθ -closed set in ),( τX .  
 

Example 4.4. Let },,{= cbaX , }},{},,{},{},{,,{= bacbcbX φτ  and *gθ -closed= 



  On θg*-Closed Sets in Topological Spaces 

71 
 

},{},,{},{},{,,{ cabacaX φ . Let },{= baA  and },{= caB , then }{= aBA ∩  is also 
*gθ -closed set.  

 

Theorem 4.5. The intersection of a *gθ -closed set and a θ -closed set is always *gθ
-closed. 

Proof: Let A  be a *gθ -closed set and let F  be θ -closed. Let U  be an open set such 

that UFA ⊆∩ . Set FXG \= . Then GUA ∪⊆ . Since G  is θ -open, GU ∪  is 

open and since A  is *gθ -closed, GUAcl ∪⊆)(θ . Now by Lemma [2.4],  

)()()( FclAclFAcl θθθ ∩⊆∩  = FAcl ∩)(θ  
⊆  FGU ∩∪ )( = )()( FGFU ∩∪∩ = UFU ⊆∪∩ φ)( .  

Theorem 4.6. The intersection of a gθ -closed set and a *gθ -closed set is always gθ
-closed. 

Proof: Let A  be a θ  generalized-closed set and let F  be *gθ -closed. Let U  be an 

open set such that UFA ⊆∩ . Set FXG \= . Then GUA ∪⊆ . Since G  is *gθ
-open, GU ∪  is open and since A  is gθ -closed, GUAcl ∪⊆)(θ . Now by Lemma 

[2.4], )()()( FclAclFAcl θθθ ∩⊆∩  = FAcl ∩)(θ  
⊆  FGU ∩∪ )( = )()( FGFU ∩∪∩ = UFU ⊆∪∩ φ)( .  

Theorem 4.7. For any element Xx ∈ . The set X  is *gθ -closed set or g -open. 

Proof: Suppose }{\ xX  is not g -open, then X  is the only g -open set containing 

}{\ xX . This implies XxXcl ⊆}{\θ . Hence }{\ xX  is *gθ -closed or g -open in X .  

 

5. Separation axioms of *gθ -closed sets 

As applications of *gθ -closed sets, three spaces namely, 1/2Tθ
*  spaces, * 1/2Tθ  spaces, 

1/2Tθ
**  spaces are introduced and investigated. 

Definition 5.1. A space ),( τX  is called  

    • a 1/2Tθ
*  space if every *gθ -closed set of ),( τX  is a closed set.  

    • a * 1/2Tθ  space if every *gθ -closed set of ),( τX  is a *g -closed set.  

    • a 1/2Tθ
**  space if every *gθ -closed set of ),( τX  is g -closed.  

Theorem 5.2. Every bT  space is 1/2Tθ
*  space but not conversely. 

Proof: Let ),( τX  be a bT  space. Let A  be a *gθ -closed set of ),( τX . Then A  is 

also a gs -closed set. Since ),( τX  is a bT  space, then A  is a closed set of ),( τX . 

Therefore ),( τX  is a 1/2Tθ
*  space.  
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Example 5.3. Let },,{= cbaX  and }},{},{},{,,{= babaX φτ . Then the space 

),( τX  is not a bT  space. Since }{a  is a gs -closed set but not a closed set of ),( τX . 

However ),( τX  is a 1/2Tθ
*  space.  

Theorem 5.4. Every 1/2T  space is 1/2T *  space but not conversely. 

Proof: Let ),( τX  be a 1/2T  space. Let A  be a *g -closed set of ),( τX . Then A  is 

also a g -closed set. Since ),( τX  is a 1/2T  space, then A  is a closed set of ),( τX . 

Therefore ),( τX  is a 1/2T *  space.  

Example 5.5. Let },,{= cbaX  and }}{,,{= aX φτ . Then the space ),( τX  is not a 

1/2T  space. Since }{b  is a g -closed set but not a closed set of ),( τX . However ),( τX  

is not a 1/2T *  space.  

Theorem 5.6. Every 1/2T  space is *
1/2T  space but not conversely. 

Proof: Let ),( τX  be a 1/2T  space. Let A  be a g -closed set of ),( τX . Then A  is 

also a g -closed set. Since ),( τX  is a 1/2T  space, then A  is a *g -closed set of ),( τX  

Therefore ),( τX  is a *
1/2T  space.  

Example 5.7. Let },,{= cbaX  and }},{,,{= caX φτ . Then the space ),( τX  is not a 

1/2T  space. Since },{ ba  is a g -closed set but not a closed set of ),( τX . However 

),( τX  is not a *
1/2T  space.  

Remark 5.8. The diagram of Figure 2 shows that the relationship of 1/2Tθ
* -space,  

*
1/2Tθ -space, and 1/2Tθ

** -space with other known existing sets.  

 

 
Figure 2:  
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BA →  represents A  implies B  but not conversely. 
 

Example 5.9. Let },,{= cbaX  and }},{},{},{,,{= cbcbX φτ . Then the space ),( τX  

is not a *
1/2Tθ  space. Since }{c  is a *gθ -closed set but not a closed set of ),( τX . 

However ),( τX  is a 1/2T  space and *
1/2T  space.  

 
Example 5.10. Let },,{= cbaX  and }},{},{},{,,{= cbcbX φτ . Then the space 

),( τX  is not a *
1/2Tθ  space. Since }{c  is a *gθ -closed set but not a *g -closed set of 

),( τX . However ),( τX  is a cTα  space.  

 
Example 5.11.  Let },,{= cbaX  and }},{},{},{,,{= cbcbX φτ . Then the space 

),( τX  is not a 1/2Tθ
**  space. Since }{c  is a *gθ -closed set but not a g -closed set of 

),( τX . However ),( τX  is a dTα  space.  

 

Theorem 5.12. A space ),( τX  is a 1/2T  space if and only if it is *
1/2T  and 1/2T * . 

Proof: Necessity: Follows from the Theorems [5.4] and [5.5]. 

Sufficiency: Suppose ),( τX  is both 1/2T  *  and *
1/2T . Let A  be a g -closed set of 

),( τX . Since ),( τX  is *
1/2T  space, then A  is *g -closed. Since ),( τX  is a 1/2T *  

space, then A  is a closed set of ),( τX . Thus ),( τX  is a 1/2T  space. 

 

6. *gθ -continuous functions and *gθ -irresolute functions 

This section is devoted to introduce *gθ -continuous functions and *gθ -irresolute 
functions and discussed the relationships between the other known existing functions.  
 
Definition 6.1. A function ),(),(: στ YXf →  is called *gθ -continuous if )(1 Vf −  is a 

*gθ -closed set of ),( τX  for every closed set V  of ),( σY .  
 

Theorem 6.2. For a function ),(),(: στ YXf → , every continuous function is *gθ
-continuous but not coversely. 
Proof: Let f  be a continuous function and let V  be a closed set in ),( σY , then 

)(1 Vf −  is closed set in ),( τX . Since every closed set is *gθ -closed set, )(1 Vf −  is 
*gθ - closed set in ),( τX . Therefore f  is *gθ -continuous.  

 
Example 6.3. Let },,{== cbaYX  with }},,{},{,{= Xcaaφτ  and }},{,{= Ycφσ . 

Let the function ),(),(: στ YXf →  be defined by ccfabfbaf =)(,=)(,=)( . Then 

f  is *gθ -continuous but not continuous. Since for the closed set },{ ba  in Y , 
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},{=}),({1 babaf −  is *gθ -closed but not closed set in ),( τX .  
 

Theorem 6.4. For a function ),(),(: στ YXf → , the following hold. 

Every *gθ -continuous function is rg -continuous, gpr -continuous, gs -continuous, 

gp -continuous, gπ -continuous, gsπ -continuous, βπg -continuous. 

Proof: Let f  be a *gθ -continuous function and let V  be a closed set in ),( σY , then 

)(1 Vf −  is *gθ -closed set in ),( τX . Since every *gθ - closed set is rg -closed set (gpr

-closed, gs -closed, gp -closed, gπ -closed, gsπ -closed, βπg -closed), )(1 Vf −  is 

rg -closed (gpr -closed, gs -closed, gp -closed, gπ -closed, gsπ -closed, βπg
-closed) set in ),( τX . Therefore f  is rg -continuous (gpr -continuous, gs
-continuous, gp -continuous, gπ -continuous, gsπ -continuous, βπg -continuous). 

 
Example 6.5.  
1.  Let },,{== cbaYX  with }},,{},{},{,{= Xbabaφτ  and }},{,{= Ycφσ . Let 

the function ),(),(: στ YXf →  be defined by baf =)( , abf =)( , ccf =)( . Then 

f  is rg -continuous but not *gθ -continuous. Since for the closed set },{ ba  in Y , 

},{=}),({1 babaf −  is rg -closed but not *gθ -closed set in ),( τX . 

2.  Let },,{== cbaYX  with }},,{},{},{,{= Xcacaφτ  and }},{,{= Ybφσ . Let 

the function ),(),(: στ YXf →  be defined by caf =)( , bbf =)( , acf =)( . Then 

f  is gpr -continuous but not *gθ -continuous. Since for the closed set },{ ca  in Y , 

},{=}),({1 cacaf −  is gpr -closed but not *gθ -closed set in ),( τX . 

3.  Let },,{== cbaYX  with }},,{},{,{= Xcaaφτ  and }},{},{,,{= babYφσ . Let 

the function ),(),(: στ YXf →  be an identity function, then f  is gs -continuous but 

not *gθ -continuous. Since for the closed sets },{ ca  and }{c  in Y, },{=}),({1 cacaf −  

and }{=})({1 ccf −  is gs -closed but not *gθ -closed set in ),( τX . 

4.  Let },,{== cbaYX  with }},,{},{,{= Xbaaφτ  and }},{,,{= caYφσ . Let the 

function ),(),(: στ YXf →  be an identity function, then f  is gp -continuous but not 
*gθ -continuous. Since for the closed set }{b  in Y , }{=})({1 bbf −  is gp -closed but 

not *gθ -closed set in ),( τX . 

5.  Let },,{== cbaYX  with }},,{},,{},{},{,{= Xcababaφτ  and 

{=σ }},,{},,{},{},{, Ycacbcb . Let the function ),(),(: στ YXf →  be an identity 

function, then f  is gπ -continuous but not *gθ -continuous. Since for the closed set 

}}{},{},,{},,{{ bacaba  in Y , },{=}),({1 babaf − , },{=},({1 cacaf − , 

}{=})({1 aaf −  and }{=})({1 bbf −  is gπ -closed but not *gθ -closed set in ),( τX . 
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6.  Let },,{== cbaYX  with {=τ }},,{},,{},{},{, Xcbbacb  and  

{=σ }},,{},,{},{, Ycbcac . Let the function ),(),(: στ YXf →  be defined by f(a)= c, 

f(b)= b, f(c)= a. Then f is π gs- continuous but not *gθ - continuous. Since for the closed 

set {a,b}, {b}, {a} in Y, f 1− ({a,b}) = {b,c}, f 1− ({b}) = {b} and f 1− ({a}) = {c}, which is 

π gs- closed but not *gθ - closed set in (X, τ ). 

7.  Let X=Y= {a,b,c} with τ = { φ ,{a},{a,b},X} and σ = { },{, aφ  Ycb },,{ }. Let the 

function f:(X, τ ) →  ),( σY  be defined by f(a)= b, f(b)= c, f(c)= a. Then f is π gβ - 

continuous but not *gθ - continuous. Since for the closed set {a} and {b,c} in Y, f 1− ({a}) 

= {c} and f 1− ({b,c}) = {a,b} which is π g β - closed but not *gθ - closed set in (X, τ ).  
 

Remark 6.6. The following diagram shows the relationship of *gθ - continuous with other 
known exixting sets.  

 
Figure 3: 

 
BA →  represents A  implies B  but not conversely. 

 

Definition 6.7. A function f: ),( τX  →  ),( σY  is called *gθ - irresolute if f 1− (V) is a 
*gθ -closed set of (X, τ ) for every *gθ -closed set of ),( σY .  

 

Theorem 6.8. For a function ),(),(: στ YXf → , every *gθ - irresolute function is *gθ
- continuous but not conversely. 

Proof: Let V be a closed set in ),( σY . Since every closed set is *gθ -closed set. 

Therefore V is *gθ -closed set of Y. Since f is *gθ - irresolute, then f1− (V) is *gθ  -closed 

set in X. Thus f is *gθ -continuous.  
 

Example 6.9. Let X=Y= {a,b,c} with τ = {φ ,{c},X}, *gθ = {φ ,{a,b},X},  
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σ = {φ ,{a},{b,c},X} and *gθ = {φ ,{a},{b,c},Y}. Define a function f(a)= a, f(b)= b, and 

f(c)= c then f 1− ({a})= {a}, f 1− ({b,c})= {b,c} which is not *gθ - irresolute. Since it is *gθ
- closed set of Y but the inverse is not a *gθ - closed set of X. But it is *gθ - continuous.  

 

Theorem 6.10. Let a function ),(),(: στ YXf →  be a *gθ - continuous function. If (X, 

τ ) is θ T1/2
* - space, then f is continuous function.  

Proof: Let V be a closed set in ),( σY . Since f is *gθ -continuous, f1− (V) is *gθ - closed 

in (X, τ ). Since (X, τ ) is θ T1/2
* , f 1− (V) is closed in (X, τ ). Therefore f is continuous.  

 

Remark 6.11. The composition of two *gθ - continuous functions need not be *gθ - 
continuous as shown in the following example.  

 
Example 6.12. Let X=Y=Z= {a,b,c} with τ = {φ ,{a},{a,b},X}, σ = {φ ,{b},{b,c},Y} and 

η = {φ ,{c},{a,b},Z}. Define ),(),(: στ YXf →  by f(a)= a, f(b)= b, f(c)= c. Define 

g:(Y, σ ) →  (Z, η ) by g(a)=b, g(b)= a, g(c)= c.  

Then *gθ C(X, τ )= {φ ,X,{c},{b,c},{a,c}} and *gθ C(Y, σ )={φ ,Y,{a},{a,b},{a,c}}. 

Here {a,b} is a closed set in (Z, η ). But (g o f) 1− ({a,b})= {a,b} is not a *gθ - closed set in 

(X, τ ). Therefore g o f is not *gθ - continuous.  
 

7. Contra *gθ -continuous functions 

In this section, we introduce a new class of continuous function called contra *gθ
-continuous functions and studied the composition between *gθ -continuous functions and 

*gθ -irresolute functions.  
 
Definition 7.1. A function ),(),(: στ YXf →  is said to be contra *gθ - continuous if f

1− (V) is *gθ - closed set in X for every open set V in Y.  
 

Theorem 7.2. For the function ),(),(: στ YXf → , the following hold. 

 [a] Every contra r-continuous function is contra *gθ -continuous. 

 [b] Every contra *gθ -continuous function is contra rg-continuous (contra 
gpr-continuous, contra gs-continuous, contra gp-continuous, contra π g-continuous, 
contra π gs-continuous, contra π gβ -continuous).  

Proof: [a] Suppose we take V be an open set in Y. Since f is contra r-continuous, then f1−

(V) is r-closed in X. Since every r- closed set is *gθ - closed, f 1− (V) is *gθ - closed in X. 

Thus we have f is contra *gθ - continuous.  
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 [b] Suppose we take V be an open set in Y. Since f is contra *gθ - continuous, 

then f 1− (V) is *gθ - closed in X. Since every *gθ - closed set is rg- closed (gpr-closed,gs- 

closed,gp-closed,π g-closed, π gs-closed, π g β -closed), f 1− (V) is rg-closed 

(gpr-closed,gs- closed,gp-closed,π g-closed, π gs-closed, π g β -closed) in X. Thus we 
have f is contra rg-continuous (contra gpr-continuous, contra gs-continuous, contra 
gp-continuous, contra π g-continuous, contra π gs-continuous, contra  
π gβ-continuous).  

 
Example 7.3.  
[a] Let X= {a,b,c} =Y with τ = {X, φ ,{a},{b},{a,b}} and σ = {Y, φ ,{b},{c},{b,c}}. Let 

the function ),(),(: στ YXf →  be the identity function. Then f is contra *gθ - 

continuous but not in contra r-continuous. Since for the open set {c} in Y, f1− ({c})={c} is 
*gθ - closed but not a r- closed set in (X, τ ). 

 
[b] Let X= {a,b,c} =Y with τ = {X, φ ,{c},{b,c}} and σ = {Y, φ ,{b,c}}. Let the function 

),(),(: στ YXf →  be the identity function. Then f is contra rg- continuous but not in 

contra *gθ -continuous. Since for the open set {b,c} in Y, f1− ({b,c})={b,c} is rg- closed 

but not *gθ - closed set in (X, τ ). 
 
[c] Let X= {a,b,c} =Y with τ = {X, φ ,{a},{a,b}} and σ = {Y, },{, bφ  }},{ ba . Let the 

function ),(),(: στ YXf → . Define a set f(a)=b, f(b)=a, f(c)=c. Then f })({1 b− ={a} and 

f 1− ({a,b})={a,b} which is contra gpr - continuous but not in contra *gθ -continuous. 
However f is contra gpr- continuous.  
 
[d] Let X= {a,b,c} =Y with τ = {X, φ ,{a}} and σ = {Y, φ ,{a}, {a,b}}. Let the function 

),(),(: στ YXf → . Defined by the set f(a)=b, f(b)=a, f(c)=c. Then f1− ({a})={b}, f 1−

({a,b})={a,b}, which is contra gs - continuous but not in contra *gθ -continuous. However 
f is contra gs- continuous. 
 
[e] Let X= {a,b,c} =Y with τ = {X, φ ,{c},{b,c}} and σ = {Y, φ ,{b}}. Let the function 

),(),(: στ YXf →  be the identity function. Then f is contra gp - continuous but not in 

contra *gθ  - continuous. Since for the open set {b} in Y, f1− ({b})={b} is gp - closed but 

not *gθ - closed set in (X, τ ). 
 
[f] Let X= {a,b,c} =Y with τ = {X, φ ,{c},{b,c}} and σ = {Y, },{, bφ  }}.,{ cb  Let the 

function ),(),(: στ YXf →  be the identity function. Then f is contra π g - continuous 

but not in contra *gθ -continuous. Since for the open sets {b} and {b,c} in Y, f 1−
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({b})={b} and f 1− ({b,c})={b,c} which is π g- closed but not *gθ - closed set in (X,τ). 

 
[g] Let X= {a,b,c} =Y with τ = {X, φ ,{b},{c},{b,c}} and σ = {Y, φ ,{b}}. Let the 

function ),(),(: στ YXf →  be the identity function. Then f is contra π gs - continuous 

but not in contra *gθ -continuous. Since for the open set {b} in Y, f1− ({b})={b} is π gs- 

closed but not *gθ - closed set in (X, τ ). 
 
[h] Let X= {a,b,c} =Y with τ = {X, φ ,{a},{b},{a,b},{a,c}} and σ = {Y, φ ,{a}}. Let the 

function ),(),(: στ YXf →  be the identity function. Then f is contra π g β - 

continuous but not in contra *gθ -continuous. Since for the open sets {a} in Y, f1−

({a})={a} is π g β  - closed but not *gθ - closed set in (X, τ ). 
 

Theorem 7.4. Let ),(),(: στ YXf →  be a contra *gθ - continuous function and g:(Y, 

σ ) →  (Z, η ) be a continuous function then gof: (X, τ ) →  (Z, η ) is contra *gθ  - 
continuous. 

Proof: Let V be any open set in Z. Since g:(Y, σ ) →  (Z, η ) be a continuous, g1− (V) is 

open in Y. Since ),(),(: στ YXf →  be a contra *gθ - continuous, f1− (g 1− (V)) is a 
*gθ - closed set in X. Hence (gof)1− (V)=f 1− (g 1− (V)) is a *gθ - closed set in X. Therefore 

gof: (X, τ ) →  (Z, η ) is contra *gθ - continuous.  
 

Theorem 7.5. Let ),(),(: στ YXf →  be a *gθ  -irresolute and g:(Y, σ ) →  (Z, η ) 

be a contra *gθ - continuous function then gof: (X, τ ) →  (Z, η ) is contra *gθ - 
continuous. 

Proof: Now we take V be any open set in Z. Since g:(Y, σ ) →  (Z, η ) be a contra *gθ
-continuous, g 1− (V) is *gθ - closed in Y. Since ),(),(: στ YXf →  be a *gθ
-irresolute, f 1− (g 1− (V)) is a *gθ - open set in X. Therefore gof: (X, τ ) →  (Z, η ) is 

contra *gθ - continuous.   
 

8. Conclusion 
In this paper, a new class of sets called *gθ - closed sets has been introduced and some of 

its properties has been studied. Based on this sets, some of the functions called *gθ - 

continuous functions, *gθ - irresolute functions and contra *gθ -continuous functions are 
also introduced in the topological spaces and some of its properties has been studied. 

Further, the application of *gθ -closed sets has been introduced interms of spaces namely, 

1/2Tθ
* - spaces and investigated its properties. 
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