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Abstract. In this paper, considering of the fuzziness and uncertainty of the objective things 
and the connection of the weight vector, the OWA operators for fuzzy number based on a 
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calculation methods are present and an illustrative example is designed.  
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1. Introduction 
Since Yager [13] proposed Ordered Weighted Averaging operators in 1988, the OWA 
operators has been widely used in many fields [2,14]. In 2005, Yager proposed the 
recursive forms of OWA operators [11], and after that, Jin investigated the discrete and 
continuous recursive forms of OWA operator [7], However, the recursive forms of OWA 
operators based on the classical probability measure and Lebesgue integral integration 
operator. We must note that when using the existing aggregation results, an indisputable 
fact is that the attribute index is mostly related with each other, and not mutually 
independent. In other words, the weight vector is not able to be measured independently, 
and it may also not satisfy countable additivity of the classical probability measure. In 
1974, Sugeon [9] proposed the concept of fuzzy measure, which can be used to study the 
correlation problem of attribute index [3, 5, 6, 12, 15]. On the other hand, due to the 
fuzziness and uncertainty of the objective things, the evaluation values involved in the 
decision problems are not always expressed as crisp numbers, and some of them are more 
suitable to be denoted by fuzzy number. So, the fuzzy sets theory introduced by Zadeh was 
a very good tool to deal with vagueness and uncertainty in real decision problems[15]. The 
fuzzy number, as a special fuzzy sets, has been applied to many aspects [1, 10]. Based on 
the above consideration, in this article, the OWA operators for fuzzy number based on a 
non-additive measure with λσ −  rules and its recursive aggregation theory are proposed 
and investigated. In addition, the calculation methods are put forward and an illustrative 
example is given. 

2. Preliminaries 
Definition 1. [5, 6, 12, 15] Let X  be a nonempty set and A  a −σ algebra on the X . 
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A set function µ  is called a regular fuzzy measure if 

(1) 0;=)(∅µ  

(2) 1;=)(Xµ  

(3) for every A  and A∈B  such that BA ⊆ ,  ).()( BA µµ ≤  

A regular fuzzy measure µ  is called Sugeno measure if µ  satisfies λσ −  

rules, briefly denoted as λg . The fuzzy measure shown in this paper is Sugeno measure.  

  
Definition 2. [5, 6, 12, 15] λg  is called a fuzzy measure based on λσ −  rules if  
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 If X  is a finite set, then the parameter λ  of a regular Sugeno measure based on λσ −  
rules is determined by the equation  
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Definition 3. [12] Fuzzy set EA
~~ ∈  is called a fuzzy number if A

~
 is a normal, convex 
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then ),,(=~
,2,1 iiiiii aaaa δδ +−  is said to be triangle fuzzy number. 

For any two triangle fuzzy numbers ia~  and ja~ , ji ≠ , then  

 ),,(=~~
,1,1,1,1 jjiijijjiiji aaaaaaaa δδδδ ++++−+−+  

                            ).,,(=~
,2,1 iiiiii kkakakkaak δδ +−⋅  

 [8] Let Evu
~~ ,~ ∈ , the partial order vu ~~�  means that it satisfy the conditions 

rr vu ]~[]~[ ≤ , [0,1]∈r , i.e. −− ≤ rr vu ~~ , ++ ≤ rr uu ~~ , [0,1]∈r .  

Denoting },,,{= 21 ii xxxA ⋯ , ni ,1,2,= ⋯ , let ii gxg =})({λ , then 

.=})({=)( 111 gxgAg λλ  

 
Definition 4. Let λg  be fuzzy measure satisfying λσ −  rules. Denote

},,,{= 21 ii xxxA ⋯ , ni ,1,2,= ⋯ . An OWA operator of dimension n for fuzzy number 

based on a non-additive measure with λσ −  rules is a mapping 
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where ib
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Corollary 1. When 0=λ  and ib
~

 is a crisp number, then the definition 4 degenerates to 

the classic OWA operator.  
  

Definition 5. The measure of orness (andness) associated with an OWA operator nF
~

 of 

dimension n  for fuzzy number based on a non-additive measure with λσ −  rules is 
defined as  
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3. Recursive forms of the OWA operator for fuzzy number based on a non-additive 
measure with λσ −  rules 
Theorem 1. Let λg  be fuzzy measure satisfying λδ −  rules. Denote ⋯,,{= 21 xxAi , 

}ix , ni ,1,2,= ⋯ . ))()(( 1
)()(

−− i
n

i
n AgAg λλ  is the i-th element for the weighting vector of 

dimension n . )(n
LP  denotes correlation coefficient. Left Recursive form (LRF) of the 

OWA operator for fuzzy number based on a non-additive measure with λσ −  rules can 
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be written as  
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For a fixed level of orness α , we get  
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Proof: The simplest aggregation is for two elements, as  
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Let us now consider the aggregation 3
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F . In this case  
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This leads to the system of independent equations  
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 More generally, in the case of n  arguments, we can get theorem 1. 
  

Corollary 2. It is interesting to notice that )(n
LP  depends on n  and α , as  
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Proof: The simplest aggregation is between two elements  
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Corollary 3. It is interesting to notice that )(n
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Proof: According to the given conditions, we have the linear equation system  
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The solution is theorem 3. 
 

Corollary 4. For a more general recursive form of the OWA operator for fuzzy number 
based on a non-additive measure with λσ −  rules. When 

(1) nk = , we get the LRF of the OWA operator for fuzzy number based on a 
non-additive measure with λσ −  rules. 

(2) 1=k , we get the RRF of the OWA operator for fuzzy number based on a 
non-additive measure with λσ −  rules.  

  
4. Illustrative example 
A management selects 4 experts to evaluate for a scheme. Information evaluation values as 
shown in table 1, where expert is ix , evaluation value is denoted as  

),,(=~
,2,1 iiiiii aaaa δδ +−  which is a triangle fuzzy number.  

 
 Table 1:  

   expert   evaluation   λg   

1x   ,0.40)(0.20,0.30   0.1524   

2x   ,1.00)(0.80,0.90  0.1586   

3x   ,0.70)(0.50,0.60   0.2428   

4x   ,0.30)(0.10,0.20   0.4292   
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Step 2: According to definition 4, we can know the comprehensive evaluation 4

~
F  of 4 

experts.  
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Step 3: When a new expert 5x  gives a value for this scheme which is ,0.50)(0.30,0.40 . 

According to Definition 4 and Theorem 1, we know that  
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Step 4: When a new expert 6x  gives a value for this scheme which is ,0.60)(0.40,0.50 , 

we can know the comprehensive evaluation 6
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F  of 4 experts.  
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