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1. Introduction 
The ternary homogeneous quadratic Diophantine equation offers an unlimited field for 
research because of their variety [1-2]. For an extensive review of various problems, one 
may refer [3-5]. In this context one may also see [6-9] for integer solutions satisfying 
special three dimensional graphical representation. This communication concerns with 

yet another interesting ternary quadratic equation 222 1637 zyx =− representing a cone 
for determining its infinitely many non zero integer solutions. A few interesting 
properties among the solution and special numbers are presented. Also, given an integer 
solution, three different triples of integer generating infinitely many integer solutions are 

exhibited. 
 

2. Notations used 
• Polygonal number of rank n with size m 
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 • Pronic number of rank n 
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• Centered polygonal number of rank n with m 
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3. Method of analysis 
The ternary quadratic Diophantine equation to be solved for its non-zero distinct integral 
solution is 222 1637 zyx =−                                        (1) 
           To start with it is observed that (1) is satisfied by the following two non-zero 
integer triples: ( ) ( ).510,2936,1428,12,1224,816 −−−−−− kkkkkk However, we have 
the other choices of solutions which are illustrated below. 
 
3.1. PATTERN-1 
Introduce the linear transformations 

TXyTXx 7,3 +=+=                          (2) 
in (1) leads to,  
  ( )222 221 ZTX +=                           (3) 
which can be written as, 
  ( )( ) 22122 TZXZX =−+                          (4) 
The equation (4) is written as the system of two equations as follows 
     System              1              2              3 

ZX 2−  2T  27T  23T  
ZX 2−             21             3            7 

 
System-1:  
Consider,  

22 TZX =+  
  212 =− ZX  
Solving these two equations we get, 
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                                                                                 (5) 

Substituting (5) in (2), we get the corresponding non-zero distinct integer solutions to (1) 
as follows: 

  

5

4122

842

2
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2
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++=

kkz

kky

kkx

 

Properties: 

• 
( ) ( ) ( )4mod018 4,3 ≡+−+ tkykx

 

• ( )26 y∗  is a nasty number 

• ( ) ( ) ( )3mod0Pr3 ≡−+
k

kzkx  
System-2: 
 Consider,  

272 TZX =+  
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  32 =− ZX  
Solving these two equations we get, 
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                                                                               (6) 

Substituting (6) in (2), we get the corresponding non-zero distinct integer solutions to (1) 
as follows: 

  

177

214

2814

2

2

2
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ky
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Properties: 

• 
( ) ( ) ( )3mod033 ,4,12 ≡−−+ kk CtTkykx

 

• ( ) ( ) ( )3mod0Pr7 ≡−−
k

kzky  

• ( ) 01 6,2 =− CPx  
 
System-3: 
Consider,  

232 TZX =+  
  72 =− ZX  
Solving these two equations we get,  
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                                                                                  (7) 

Substituting (7) in (2), we get the corresponding non-zero distinct integer solutions to (1) 
as follows, 

  

133

286

26

2

2

2

−−=
−+=

+=

kkz

kky

kx

 

Properties: 

• ( ) ( ) ( )4mod04 ,8 ≡−+
k

Tkykx  

• ( ) ( ) ( )3mod0Pr3 ≡−− kkkzkx  

• ( )12y  is a nasty number. 

3.2. Pattern-2 
Rewrite (4) in the form of ratio as 

  0,
221

2 2

≠=
−

=+ β
β
α

ZX

TZX
                                     (8) 

which is equivalent to the following two equations 
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=−−
=−+

02

0212
2TZX

ZX

βαα
αββ

                          (9) 

Employing the method of cross multiplication we get, 
 ( )22 212 αβ +−=X  

 =Z 22 21αβ +  
 αβ4−=T  
Thus in view of (2), we get the non-zero distinct integral solution (1) are obtained by 
 βααβ 12422 22 −−−=x  

 βααβ 28422 22 −−−=y  
22 21αβ −=z  

Properties: 

• ( ) ( )2mod04221, ,4 ≡−−− αα Tx  

• ( ) ( )3mod0,1 ,4 ≡− ββ Tz  

• ( ) ( )( )αααα ,,6 yx −  is a nasty number. 

Pattern 2(a) 
In addition to (4) is expressed in the form of ratio as  

 0,
2

7

3

2 2

≠=
−

=+ β
β
α

ZX

TZX
                                    (10) 

Following the procedure as above the corresponding solutions of (1) are presented by 
 βααβ 12614 22 −−−=x  

 βααβ 28614 22 −−−=y  

 22 37 αβ −=z  
Properties: 

• ( ) ( )( )ααα ,3

22 241,1,26 Tyz −−−∗  is a nasty number. 

• ( ) ( ) ( )2mod012Pr28,1,1 ≡−−−− βββ yx  

• ( ) ( )2mod171, ,10 ≡−−+ ααα Tz  

Pattern 2(b) 
In addition to equation (4) is expressed in the form of ratio as  

 0,
2

3

7

2 2

≠=
−

=+ β
β
α

ZX

TZX
                                    (11) 

Following the procedure as above the corresponding solutions are 
 βααβ 12146 22 −−−=x  

 βααβ 28146 22 −−−=y  

 22 73 αβ −=z  
 
Properties: 

• ( ) ( ) ( )6mod073,1,1 ,8 ≡−−− βββ Txz  
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• 
( ) ( )2mod01211282, ,3 ≡−+−+− ααα ty

 

• 
( ) ( ) 09131,1, ,4,3 =++++− nTStzx ααα

 

3.3. Pattern-3 
Equation (3) is also satisfied by 
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=
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2

nmX

nmZ

mnT

                                                (12) 

as our interest centres an integer solutions,we choose NnMm 2,2 ==  
in (12), we get  

 
22

22
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8
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MNT

+=
−=

=
 

Thus in view of (2), corresponding the non- zero distinct integer solutions of equation (1) 
are presented by  

 
22

22

22

242

56484

24484

NMz

MNNMy

MNNMx

−=
++=
++=

 

 
Properties: 

• ( )MMz ,60  is a nasty number. 

• ( )[ ] ( )[ ]
M

TMMyMMx ,41408,12,24 =−  

• ( ) ( ) ( ) ( )4mod02896,,12,28 ,3 ≡−+−
M

TMMzMMyMMx  
 

3.4. Remarkable obsevations-4 
I. If the non-zero integer triple ( )000 ,, zyx  is any solutions of (1) then each of the 

following of non-zero distinct integer solution on also satisfies (1) 
 
Triple 1: ( )

0,, ZYX nn  

Let 000 ,, zyx  be the initial solution of (1) 
     Let  
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01

01

01

3
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hxx

                                                                                       (13) 

be the second solution of (1), where h is a non-zero integer  to be determined. 
Then, from(1), we get  
                     h=18 00 28xy −  

001 3655 yxx +−=∴  

001 5584 yxy −−=  
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  Hence the matrix representation of above solution is, 
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           where A= 
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   Repeating the above process the general value for x  and y are given by  
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   Thus the thn  solution as                 

( )( ) ( )( )
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Triple 2: ( )

nn ZYX ,, 0  
Let 
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                                                                           (14) 

be the second solution of (1). 
 
Following the procedure as above, the corresponding integer solutions to (1) is given by 

( )( ) ( )( )

( )( ) ( )( )
0
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Triple 3: ( )

nn ZYX ,,0  
Let 
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                                                                                                          (15) 

     In this case the following procedure as above the corresponding integer solutions to 
(1) is given by, 
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II. Employing the solutions ( )zyx ,,  of (1) each of following expressions among the 
special polygonal, pyramidal, central polygonal and pronic numbers is a perfect square 
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6. Conclusion 
In this paper, we have obtained infinitely many non-zero distinct integer solutions to the 
ternary quadratic Diophantine equation represented by 222 1637 zyx =− . As quadratic 
equations are rich in variety, one may search for their choices of quadratic equation with 
variables greater than or equal to 3 and determine their properties through special 
numbers. 
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