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Abstract. The sequences of integral solutions to the cubic equation with four variables  
3322 wzyx −=+   are obtained. A few properties among the solutions are presented. 
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1. Introduction 
The Diophantine equation offers an unlimited field for research due to their variety [1-4]. 
In particular, one may refer [5-13] for cubic equation with three unknowns. In [14,15] 
cubic equations with four unknowns are studied for its non-trivial integral solutions and 
in [16,17] cubic equations with five unknowns and one may refer [18,19] for cubic 
equation with six unknowns are analyzed for its distinct integer solutions. 

This communication concerns with the problem of obtaining infinitely many non-
zero distinct integral solutions of cubic equation with four variables  given by  

3322 wzyx −=+ . A few interesting properties among the solutions are presented. 
 

2. Method of analysis 
The cubic Diophantine equation with four unknowns to be solved  

for getting non-zero integral solution is 
3322 wzyx −=+                                                          (1) 

To start with, it is observed by trial and error that the following quadruples  
( )wzyx ,,, : ( )1,3,1,5 , ( )3,4,1,6 , ( )4,5,6,5 , ( )2,5,9,6 , ( )6,8,14,10 , 

( ))1(,0,)1(,)1( 222 +−++− αααα  satisfy (1). 
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To obtain an infinite set of non-zero distinct integer solutions to (1), we proceed 
as follows: 
On substituting the linear transformations 

0,, ≠≠+=+= khkxwhxz                                    (2) 
in (1) it leads to 

( ) ( ) khkhxkhxkhyx ≠−+−+−=+ ,3333 3322222               (3) 
To Solve (3), we have to go in for particular values for h and k. for simplicity and 
brevity, we present below a few illustrations when h and k take special values. 
 
2.1. Illustration 1 
Choose 1+= kh  in the above equation We have 

 ( ) ( )1331232 222 +++++= kkkxxy             (4) 

for which the solutions are presented below when 2,1=k  

 
Case (1): 
By taking 1=k in (4), we obtain 

 792 22 ++= xxy  
Performing some algebraic simplifications, the above equation is written as 

 258 22 += yX                (5) 

where 94 += xX                 (6) 
The smallest positive integer solution of  (5) is 
 5,15 00 == yX                (7) 

To obtain the other solutions of (5), consider the pell equation  

 18 22 += yX                 (8) 
whose general solution is given by 
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Applying Brahmagupta lemma between ),( 00 yX  and  )~,
~

( nn yX  , the other integer 

solutions of (5) are given by 
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By using (9) in (6) and  using (2), we obtain the non-zero distinct integral solutions to (1) 
are given by 
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The recurrence relations satisfied by zyx ,,  and w  are given by 
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A few numerical examples are given below in Table 1: 
 

Table 1 : Numerical examples 
n 1+nx  1+ny  1+nz  1+nw  

0 19 30 21 20 
2 719 1020 721 720 
4 24499 34650 24501 24500 
6 832319 1177080 832321 832320 
8 28274419 39986070 28274421 28274420 

 
From the above table , we observe some interesting relations among the solutions which 
are presented below: 

1. 1+nx  and 1+nz  are always odd 

2. 1+ny  and 1+nw  are always even 

3. Relations among the solutions: 

� 7234 135 +−= +++ nnn xxx  

� 361712 131 −−= +++ nnn xxy  

� 361712 133 +−= +++ nnn xxy  

� 12601757712 135 +−= +++ nnn xxy  
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� 12605771712 351 −−= +++ nnn xxy  

� 290804439199133166360 533 +−= +++ nnn xxy  

� 361712 355 +−= +++ nnn xxy  

� 541724577 153 ++= +++ nnn yxy  

� 1836816577 155 ++= +++ nnn yxy  

� 531 34 +++ −= nnn yyy  

� Each of the following expressions represents a nasty number: 

� { }168270
5

4
4222 +− ++ nn xx  

� { }5208702378
5

4
6242 +− ++ nn xx  

� { }2912951212
2885

12
2262 +− ++ nn yx  

� { }30336399
5

2
4262 +− ++ nn yy  

� Each of the following expressions in Table 2 represents a hyperbola: 

Table 2: Hyperbola 

  
� Each of the following expressions in Table 3 represents a parabola: 

 

 

 

Hyperbola ( )nn qp ,  

45092 22 =− nn qp  ( )7233,153270 3131 +−+− ++++ nnnn xxxx  

4502 22 =− nn qp  ( )7344993363,5193702378 5353 +−+− ++++ nnnn xxxx  

83232258 22 =− nn qp  ( )933634,27951212 1515 +−+− ++++ nnnn yxyx  

9002 22 =− nn qp  ( )5353 702378,993363 ++++ −− nnnn yyyy  
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Table 3: Parabola 

 
Case (2): 
By taking 2=k  in (4), we obtain 
 19152 22 ++= xxy  
Performing some algebraic simplifications, the above equation is written as 

 738 22 += yα              (10) 

where 154 += xα               (11) 
The smallest positive integer solution of (10) is 
 1,9 00 == yα               (12) 

To obtain the other solutions of (10), consider the pell equation  

 18 22 += yα               (13) 
whose general solution is given by 
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Applying Brahmagupta lemma between ),( 00 yX  and  )~,
~

( nn yX  , the other integer 

solutions of (10) are given by 
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By using (14) in (11) and  using (2), we obtain the non-zero distinct integral solutions to 
(1) are given by 

Parabola ( )nn qp ,  

15053 2 −= nn pq  ( )7233,168270 314222 +−+− ++++ nnnn xxxx  

450152 −= nn pq  
( 993363,5208702378 536242 +−+− ++++ nnnn xxxx
 

16646450288516 2 −= nn pq  
( 933634,2912951212 152262 +−+− ++++ nnnn yxyx
 

900152 2 −= nn pq  ( )534262 702378,30336399 ++++ −+− nnnn yyyy  
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The recurrence relations satisfied by zyx ,,  and w  are given by 
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A few numerical examples are given below in Table 4: 

 
Table 4: Numerical examples 

n 1+nx  1+ny  1+nz  1+nw  

0 5 12 8 7 
2 289 414 292 291 
4 9941 14064 9944 9943 
6 337825 477762 337828 337827 
8 11476229 16229844 11476232 11476231 

From the above table, we observe some interesting relations among the solutions which 
are presented below: 

1. 1+nx  and 1+nz  are always odd 

2. 1+ny  and 1+nw  are always even 

3. Relations among the solutions: 
� 12034 135 +−= +++ nnn xxx  

� 601712 131 −−= +++ nnn xxy  

� 601712 133 +−= +++ nnn xxy  

� 3066002482842421752 135 +−= +++ nnn xxy  
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� 3066008424224821752 351 −−= +++ nnn xxy  

� 601712 353 −−= +++ nnn xxy  

� 601712 355 +−= +++ nnn xxy  

� 65701241175242121 153 ++= +++ nnn yxy  

� 3060816577 155 ++= +++ nnn yxy  

� 531 34 +++ −= nnn yyy  

� Each of the following expressions represents a nasty number: 

� { }29768568
73

1
4222 +− ++ nn xx  

� { }177841424826
73

4
6242 +− ++ nn xx  

� { }422561930436
42121

2
2262 +− ++ nn yx  

� { }4382019
73

2
2242 +− ++ nn yy  

Each of the following expressions in Table 5 represents a hyperbola: 

Table 5: Hyperbola 

  
� Each of the following expressions in Table 6 represents a parabola: 
 
 
 
 

Hyperbola ( )nn qp ,  

7673768 22 =− nn qp  ( )7209201,21008568 3131 +−+− ++++ nnnn xxxx  

959222 22 =− nn qp  
( 248402016825,175651424826 5353 +−+− ++++ nnnn xxxx
 

18 22 =− nn qp  ( )1568254,151930436 1515 +−+− ++++ nnnn yxyx  

1918448 22 =− nn qp  ( )3131 71,9201 ++++ −− nnnn yyyy  
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Table 6: Parabola 

 
2.2. Illustration 2 
By taking 1,0 == hk  in (4), we obtain 

 132 22 ++= xxy  
Performing some algebraic simplifications, the above equation is written as 

 18 22 += yβ               (15) 

where 34 += xβ               (16) 
The smallest positive integer solution of the above equation is 
 1,3 00 == yβ               (17) 

and the general solution of equation (15) is given by 
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By using (18) in (16) and  using (2), we obtain the non-zero distinct integral solutions to 
(1) are given by 
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Parabola ( )nn qp ,  

3836882194 2 −= nn pq  
( )7209201,29768568 314222 +−+− ++++ nnnn xxxx
 

3836888764 2 −= nn pq  
( 2016825,177841424826 36242 −+− +++ nnnn xxxx
 

35483572824212116 2 −= nn pq
 

( 68254,422561930436 152262 −+− ++++ nnnn yxyx
 

1918442198 2 −= nn pq  ( )312242 71,4382019 ++++ −+− nnnn yyyy  
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2.3. Illustration 3 
Choosing hk −= in (3), we obtain 

 3222 26 hhxyx +=+              (19) 
To solve (19), we have to take particular values of h. 
For illustrations, taking h=4, in (19), we have 

 12823 22 += xy  

By taking Yy 2= and Xx 2= , we get                        (20) 

 3223 22 += XY              (21) 
The smallest positive integer solution of  (21) is 
 20,4 00 == YX              (22) 

To obtain the other solutions of (21), consider the pell equation  

 123 22 += XY              (23) 
whose general solution is given by 
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Applying Brahmagupta lemma between ),( 00 YX  and  )
~

,
~

( nn YX  , the other integer 

solutions of (21) are given by 
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By applying (23) in (20) ,we obtain the non-zero distinct integral solutions to (1) are 
given by 
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Following the analysis presented in Illustration 1, one may obtain relations among the 
solutions for Illustrations 2 and 3. 
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4. Conclusion 
In this paper, we have presented sets of infinitely many non-zero distinct integer solutions 

to the cubic equation with four unknowns given by 3322 wzyx −=+ . In other words, 
we have obtained quadruples such that, in each quadruple, the sum of the squares of any 
two members equals the difference of cubes of its other two members. As Diophantine 
equations are rich in variety due to their definition, one may attempt to find integer 
solutions to higher degree Diophantine equations with multiple variables along with their 
suitable properties. 
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