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Abstract. The homogeneous cubic Diophantine equation with four unknowns represented
by 3(x® + y*) =8zp® is analyzed for finding its non-zero distinct integral solutions.
Different patterns of solutions of the equation under consideration are obtained the
relations between the integer solutions and special numbers namely polygona number
and pyramidal number are exhibited.
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1. Introduction

Integral solutions for the homogeneous Diophantine cubic equation is an interesting
concept as it can be seen from [1-3]. In [4-8], a few special cases of cubic Diophantine
equations with three and four unknowns are studied. In this communication, we present
the integra solutions of an interesting cubic equation with four unknowns

3(x® + y®) =8zp®. A few remarkable relations between the sol utions are presented.

2. Notations

=

n(n+

Lt =

N

=Triangular number of rank n

N

2. t,, =n?*=Square number of rank n
3. CPR,, =n’= Centered hexagonal pyramidal number of rank n.

3. Method of analysis
The homogeneous cubic equation with four unknowns to be solved is

3(x* +y’) =82zp° (1)
Introducing the linear transformations

x:u+v,y:u—v,z:&J,(u¢v¢0) )
In (1) leadsto
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2 2 2
u +3v- =4p ?)

We present below different methods of solving (3) and thus, in view of (2), different
patterns of solutionsto (1) are obtained.

3.1. Pattern-1
Consider
p=Xz3T,v=X14T 4

Using (4) in (3)

X2 =u?+12T? (5)
This satisfied by

X =12R?* + S°

T=2RS (6)
u=12R* - &?

In view of (2), the corresponding non zero distinct integer solutionsto (1) are given by
X = 24R* + 8RS

y=-25° +8RS

z=36R*-3%°

p=12R* + S* +6RS

Properties:
1. x(RY)+y(R1)+24t,,-2t,, =0
2. x(RR)-32t,,=0
3. z(R1)+p(RY)-25t,, +2t,, +4=03.2.

3.2. Pattern -2

Let v=2ab,u=3a*-b*2p=3a’+b’ @)
Case l:

Assume a=2a+lb=2b+1 (8)

Substituting (8) and in (7)
u=12a2 - 4b? +12a—4b+2}

_ )
v=4a+4b+8ab +2

In view of (2) we have
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x=12a? —-4b? +16a+8ab+ 4
y=12a* —4b* -8a+8b—-8ab

(10)
z=36a° -12b* +36a-12b+ 6
p=3a’+2b*+2b+6a+2
Thus (10) represent non-zero distinct integral solutionsto (1).
Properties:
1. x(ab)-y(ab)-80t,, +40t,, +4=0
2. z(a,b)- p(a,b)+28t,, —60t,, -4=0
3. x(a1)-72t,,-36t,, =0
Case2:
Assume a=2a,b=2b (11
Using (11) in(7)
u=12a —4b2} 12
v =8ab
Inview of (2), we have
X = (12a” — 4b* +8ab)
y = (12a* - 4b* —8ab) 13)
z=(36a” -12b%)
p =6a’ + 2b
Thus (13) represent non-zero distinct integral solutionsto (1).
Properties:
1.x(a1)-16t,, -4t,, +4=0
2x(al) +y(al)+z(al-50,, -20=0.
3.x(a2)+ y(a1)+ z{a1)-4lt,, +t,.)=8
3.3. Pattern-3
Let
p=a’+’ (14)
Write 4 as
4= (1L+iV3)(1-iv/3) (15)
Substituting (14) and (15) in (3) and applying the method of factorization we define
(u+iv3v) = (L +iV3)(a+iby3)? (16)

Equating the real and imaginary part
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u=a’-3b*-6ab
v=2ab+a’ -3
17
Using (2) in (17), the corresponding non-zero distinct integral solutionsto (1) are
obtained as
x=2a’ - 6b’ - 4ab
y=-2b* -8ab
— 2_on2 _

z=3a°-9b° —18ab (18)
Thus (14) and (18) represent non zero distinct integral solutionsto (1).

Properties:
1. x(@1)-y(al)-8t,,+6=0
2. z(Lb)+ p(Lb)+6t,, +14=0
3. x(a1)+p(ay)+4t,, -2t,, -t,, +3=0

8,a

3.4. Pattern-4
Write 4 as

_(2+i8V3)(2-i8V3)
4= 49
Substituting (14) and (19) in (3) and applying the method of factorization we define

(19)

(u+i\/§v):@(a+ib\/§)2 (20)
Equating the real and imaginary part
7u =2a® - 7b* - 48ab
7v = 4ab +8a’ — 24b?

Asour interest isto get the integral solutions. So we replace a by 7a and bby 7b we
get

u =14a® - 42b* - 336ab
v = 28ab + 56a* —168b?

(21)

(22)

Using (2) in (22), the corresponding non-zero distinct integral solutionsto (1) are

obtained as
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x = 70a® - 210b* — 308ab
y = —42a’ +126b* — 364ab
z = 42a°-126b* —1008a
p = 49a’ +147b?

(23)

Properties:
1. x(a1)+616t,, -378t,, +210=0
2. y(aa)+zaa)-1372t,, =0
3. y(a1)+z(a1)+ p(a1)-7(203t,, -392t,, +21)=0

3.5. Pattern-5

Write (3) inform of ratio

M:M:g’ﬁio (24)
p-v. u-p B

Thisis equivaent to the system of double equations
Bu+av+p(B-a)=0 )
ou-3vB-p(3B+a)=0

Solving (25) by applying the cross multiplication and using (2), the corresponding non-
zero digtinct integer solutions to (1) are obtained as

X=6p8°-2a? -4ap

y=-8ap

2=9-3a% -18af

p:_gﬁz_az (26)

Properties:
1 xa,p)+yla,p)-18,, +24,, =0
2. x(a,a)-8t,, =0
3. Xay)+play)-12t,,+5=0

Note that (5) is represented as the system of double equations as shown in the tablel
below

Tablel:
System 1 2 3 4 5
X +u T2 6T? 3r? 21* 12T
X-u 12 2 4 6 T
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Solving each of the above system in turn the corresponding non-zero values of X,u,T are

obtained. In view of (2), the corresponding integer solutions to (1) are exhibited in Table
2 below.

Table 2
System | X y 2 p
1 4k? -8k 8k -12 6k? -18 2k? -6k +6
2 24k? - 8k 8k—-4 36k? -3 12k? -6k +1
3 12k? -8k 8k -4 18k? -6 6k? + 6k +6
4 8k? -8k 8k -6 12k* -9 4k? -6k +3
5 2k 0 3k Kk

In addition to the above set of solution we have some more set of different solution
satisfying (1) and they illustrated.

3.6. Pattern -6
Consider
u=X+3T,v=XZzFT (27)

Substituting (27) in (3) we have
X?+372=p? (28)

Introducing the linear transformation
T=2r5,X=3r*-5*,p=3r°+5° (29)
Substituting (29) in (27), we get

— 2 _ a2
u=3r-—-s°+6rs (30)
v=3r?—s?-2rs
In view of (2), we get

X=6r2-s?+4rs

y = +8rs

z=9r?-3s%+18rs

p=3r?+s?
Thus (31) represent non-zero distinct integral solutionsto (1)

(31)

Properties:
1. x(ra)+y(ra)-202t,, +3t,.)+1=0
2. 2(r2)+p(r1)-36t, +6t, +2=0
3. x(r1)-y(r1)+8t,, -10t,, +1=0

4,r

Note that (28) is represented as the system of double equations as shown in the tablel
below.
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System 1 2 3

p+ X T2 3T 3T2

p-X 3 T 1
Table 3:

Solving each of the above system in turn the corresponding non-zero values of X, u, T
are obtained. In view of (2), the corresponding integer solutionsto (1) are exhibited in

Table4 below.
Syst | X y 2 p
em
1 (ak? +8Kk,4k? - 4) (4s+2-45+2) | 6Kk? + 21k + 6.6k> | 2k? +k +1
-15k -11
2 | (4k,0) (4k,~4K) (12,-6k) 2k
3 (12Kk? +16k +4,12k? +8k| (8k +4,-8k —4) | (18k2 + 36k +12,) | 6k® +6k +2
18k* -6
Table 4:

In addition to the above set of solution we have some more set of different solution

satisfying (1) and they illustrated.

3.6. Pattern -6
Write (28) as
X 2 + 31-2 - p2 * 1

Substituting (14) in (28) and applying the method of factorization we define

(x +iv3T)=(a+ivab)

Equating the real and imaginary part

X =a*®-3p?
T =2ab

Using (3) in (27), we get
u=a’-3b* +6ab
v=a?-3b®Fx2ab

In view of (2), we get
Xx=2a’ - 6b* + 4ab
y =+8ab
z=3a*-9b” +18ab
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Thus (36) and (32) represent non-zero distinct integral solutionsto (1).

Properties.
1 x(a a)+ y(a a) 8t,,
2. Zaa)-plaa)-8,,
3. Zaa)-12t,,=0
4. Conclusion

This paper, we have many non-zero distinct integral solutions to the homogeneous cubic
equation given by 3(x* + y*) =8zp”°. As Diophantine equations are rich in variety. One
may search for integer solution to other choices of homogeneous cubic equation and
determine their corresponding properties.

REFERENCES

1. L.E.Dickson, History of Theory of Numbers, Vol 2, Chelsea publishing company,

New York, (1952).

L.J.Mordell, Diophantine Equations, Academic press, London, (1969).

R.D.Carmichagl, The theory of numbers and Diophantine anaysis, New York,

Dover, (1959).

4. M.A.Gopalan and S.Premalatha, Integral solutions of
(x+y)(xy +w?)=2(k? +1)z* . Bulletin of Pure and Applied Sciences, 28E (2)
(2009) 197-202.

5. M.A.Gopalan and V.Pandichelvi, Remarkable solutions on the cubic equation with
four unknownsx® +y*® +2z° =28(x+y+2zw® Antarctica J. of Maths, 4(4)
(2010) 393-401.

6. M.A.Gopalan and B.Sivagami, Integral solutions of homogeneous cubic equation
with four unknowns x° +y® +z° = 3xyz+ 2(x + y)w®, Impact. J. Sci. Tec, 4(3)
(2010) 53-60.

7. M.A.Gopalan and S.Premalatha, On the cubic Diophantic equations with four
unknowns (x - y)(xy - WZ): 2(n2 + 2n)z3, International Journal of Mathematical
Sciences, 9(1-2) ((2010) 171-175.

8. M.A.Gopalan and JKaligaRani, Integral solutions of
x® +y® +(x+ y)xy = z° + w® + (z+w)zw, Bulletin of Pure and Applied Sciences,
29E (1) (2010) 169-173.

9. M.A.Gopaana, S.Vidhyalakshmi and A.Kavitha, On cubic Diophantine equation
with four unknowns 4(x®+y?)= z(4w2 +4p? —4pw+(x+ y)z), Archimedes J.
Math., 4(1) (2014) 19-25.

wnN

156



