Journal of Mathematics and Informatics Vol. 10, 2017, 135-140 ISSN: 2349-0632 (P), 2349-0640 (online) Published 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/jmi.v10a18

Observation on the Non-Homogeneous Ternary Quadratic Equation x^2 -xy+ y^2 +2(x+y)+4= $12z^2$

N. Bharathi¹ and S. Vidhyalakshmi²

Department of Mathematics, Shrimathi Indira Gandhi College Trichy-2, Tamil Nadu, India. ¹E-mail:<u>bharathiakilla95@gmail.com;</u>²E-mail: <u>vidhyasigc@gmail.com</u>

Received 1 November 2017; accepted 7 December 2017

Abstract. A search is made for obtaining infinitely many non-zero distinct integer solutions to the non-homogeneous quadratic equation given by $x^2 - xy + y^2 + 2(x+y) + 4 = 12z^2$. Different choices of integer solution to the above equation are obtained. A few interesting relations between the solutions and special polygonal numbers are obtained.

Keywords: Non-homogeneous quadratic, ternary quadratic integer solution

AMS Mathematics Subject Classification (2010): 11D09

1. Introduction

The Diophantine equations offer on unlimited field for research due to their variety [1-3]. In particular, one may refer [4-8] for quadratic equations with three unknowns. This communication concerns with yet another interesting equation $x^2 - xy + y^2 + 2(x+y) + 4 = 12z^2$ representing non-homogeneous quadratic equation with three unknowns for determining its infinitely many non-zero integral points. Also, few interesting relations among the solutions are presented.

2. Notation

1. Polygonal number of rank n with sides m

$$t_{m,n} = n \left[1 + \frac{(n-1)(m-2)}{2} \right]$$

- 2. Pronic number of rank n pRn = n(n+1)
- 3. Centered hexagonal pyramidal number of rank n $cP_{n,6} = n^3$
- 4. Square number of rank n

$$t_{4n} = n^2$$

N.Bharathi and S. Vidhyalakshmi

3. Method of analysis

The ternary quadratic Diophantine equation to be solved for its non-zero solution is $x^2 - xy + y^2 + 2(x + y) + 4 = 12z^2$ (1) We present below different patterns of integer solutions to (1) Introducing the linear transformation $(u \neq v \neq 0)$ x = u + v, y = u - v (2) in(1), it leads to $U^2 + 3v^2 = 12z^2$ (3) where U = u + 2 (4) The above equation (3) is solved through different approaches and then, in view of 2

3.1. Pattern-1

Write 12 as

$$12 = (3 + i\sqrt{3})(3 - i\sqrt{3})(5)$$

Assume $z = a^2 + 3b^2$ (6)
where $a, b > 0$
Using (5) and (6) in (3)
 $U + 3v^2 = (3 + i\sqrt{3})(3 - i\sqrt{3})(a^2 + 3b^2)^2$ and
employing the method of factorization define
 $(u + iv\sqrt{3})(u + iv\sqrt{3}) = (3 + i\sqrt{3})(3 - i\sqrt{3})(a + i\sqrt{3}b)^2(a - i\sqrt{3}b)^2$
Equating the real and imaginary parts, we get
 $U = U(a,b) = 3a^2 - 9b^2 - 6ab + 2$
 $v = v(a,b) = 6ab + a^2 - 3b^2$
In view of (2) we get
 $x = x(a,b) = 4a^2 - 12b^2 - 2$ (7)
 $y = y(a,b) = 2a^2 - 6b^2 - 12ab - 2$ (8)
Thus (6),(7),(8) represents non-zero distinct integral solution of (1) in two parameters

we obtain different patterns of integer solutions to (1)

Properties:

- 1. $x(a, a+1) 2y(a, a+1) 2 = 24 pR_a$
- 2. $x(a,-1) z(a,-1) 2t_{3,a} \equiv 0 \pmod{11}$
- 3. $x(a,b) 2y(a,b) 24cP_{n,6} = 0$

3.2. Pattern-2

Write (3) in form of ratio as

 $\frac{U+3z}{z+v} = \frac{(z-v)}{U-3z} = \frac{\alpha}{\beta}, \ \beta \neq 0 \ (9)$ which is equivalent to the following two equations $\beta U - \alpha v + z(3\beta - \alpha) = 0 \ (10)$ Observation on the Non-Homogeneous Ternary Quadratic Equation x^2 $xy+y^2+2(x+y)+4=12z^2$

 $-\alpha U - 3\nu\beta + 3z(\beta + \alpha) = 0 (11)$ Solving (10) and (11) by the method of cross-multiplication, we have $U = U(\alpha, \beta) = 9\beta^2 - 3\alpha^2 - 6\alpha\beta (12)$ $v = v(\alpha, \beta) = \alpha^2 - 3\beta^2 + 3\beta - 3\alpha\beta (13)$ $z = z(\alpha, \beta) = -3\beta^2 - \alpha^2 (14)$ Substituting U and v values in (4) and (2), we get $x = x(\alpha, \beta) = 6\beta^2 - 2\alpha^2 - 3\beta - 9\alpha\beta - 2 (15)$ $y = y(\alpha, \beta) = 12\beta^2 - 4\alpha^2 + 3\beta - 3\alpha\beta - 2 (16)$

Thus (14),(15),(16) represents non-zero distinct integral solution of (1) in two parameters.

Properties:

- 1. $y(1,\beta) 2x(1,\beta) t_{44,\beta} \equiv 21 \pmod{29}$
- 2. $z(\alpha, \alpha) + 2t_{4,\alpha} = 0$
- 3. $x(\alpha, \alpha+1) + y(\alpha, \alpha+1) \equiv 14 \pmod{24}$

3.3. Pattern-3

Consider z = X + 3T (17) v = X + 12T (18) U = 3w(19)Substituting (17),(18),(19) in (3), we get $X^2 = 36T^2 + w^2 (20)$ which is in the form of Pythagorean equation and is satisfied by $X = 9R^2 + S^2$ T = RS $w = 9R^2 - S^2$ In view of (2), the integer solutions are given by $x = 36R^2 - 2S^2 + 12RS - 2$ $y = 18R^2 - 4S^2 - 12RS - 2$ $z = 9R^2 + S^2 + 3RS$

Properties:

- 1. $x(R,R) + y(R,R) 48t_{4,R} \equiv 0 \pmod{2}$
- 2. $z(R,1) t_{20,R} 1 \equiv 0 \pmod{11}$
- 3. $x(1, S) y(1, S) 2t_{4,S} \equiv 18 \pmod{24}$

Also, note that (20) is satisfied by

N.Bharathi and S. Vidhyalakshmi

$$X = 36(R^2 + S^2)$$
$$T = 6(R^2 - S^2)$$

w = 72RS

in this case the corresponding solutions to (1) are given by

$$x = 216RS - 2 + 108R^{2} - 36S^{2}$$
$$y = 126R - 2 - 108R^{2} + 36S^{2}$$
$$z = 54R^{2} + 18S^{2}$$

Properties:

1. $z(R,R) - 72t_{4,R} = 0$

2.
$$x(S,S) - 2z(S,S) - 144t_{4S} + 2 = 0$$

2. $x(5, 5) - 2z(5, 5) - 144t_{4,5} + 2 = 0$ 3. $y(1, 5) + y(1, 5) - t_{38,5} \equiv 69 \pmod{233}$

3.4. Pattern- 4

Note that (20) is expressed as the system of double equations as follows:

	System1	System2	System3
X + w	T^2	$6T^2$	12 <i>T</i>
X - w	36	6	3T

Solving each of the above systems, the corresponding solutions to (1) are given below:

Solution for system 1:

Solving the double equations, we have

$$X = 2k^{2} + 18$$
$$w = 2k^{2} - 18$$
$$T = 2k$$

In view of (2), the integer solutions are given by

$$x = 8k^{2} + 24k - 38$$
$$y = 4k^{2} - 24k - 74$$
$$z = 2k^{2} + 6k + 18$$

Properties:

- 1. $x(k) + y(k) 12t_{4,k} + 112 = 0$
- $2. \quad z(k) t_{6,k} \equiv 4 \pmod{7}$
- 3. $x(k) 2z(k) t_{10,k} \equiv 14 \pmod{15}$

Solution for system 2:

Solving the double equations, we have

Observation on the Non-Homogeneous Ternary Quadratic Equation x^2 - $xy+y^2+2(x+y)+4=12z^2$

 $X = 3T^{2} + 3$ $w = 3T^2 - 3$ $U = 9T^2 - 9$ In view of (2), the integer solutions are given by $x = 12T^2 + 12k - 8$ $v = 6T^2 - 24T - 14$ $z = 3T^2 + 3T + 3$

Properties:

1.
$$z(T) - 6t_{3,T} \equiv 0 \pmod{3}$$

2.
$$x(T) + y(T) - 17t_{4,T} \equiv 0 \pmod{7}$$

3. $x(T) - 2z(T) - t_{12T} \equiv 6 \pmod{10}$

Solution for system 3:

Solving the double equations, we have

X = 15kw = 9kT = 2kIn view of (2), the integer solutions are given by x = 66k - 2y = -12k - 2z = 21k

4. Conclusion

In this paper, we have made an attempt of find all integer solutions to the ternary quadratic equation given by $x^2 - xy + y^2 + 2(x + y) + 4 = 12z^2$. As quadratic equations in three unknowns are rich in variety, one way attempt to find integer solutions to other choices of ternary quadratic equations along with suitable properties.

REFERENCES

- 1. L.E.Dickson, History of Theory of Numbers, Vol 2, Chelsea publishing company, New York, (1952).
- 2. L.J.Mordell, Diophantine Equations, Academic press, London, (1969).
- 3. R.D.Carmichael, The theory of numbers and Diophantine analysis, New York, Dover, (1959).
- 4. M.A.Gopalan and S.Premalatha, Integral solutions of $(x+y)(xy+w^2) = 2(k^2+1)z^3$. Bulletin of Pure and Applied Sciences, 28E (2) (2009) 197-202.

N.Bharathi and S. Vidhyalakshmi

- 5. M.A.Gopalan and V.Pandichelvi, Remarkable solutions on the cubic equation with four unknowns $x^3 + y^3 + z^3 = 28(x + y + z)w^2$ Antarctica J. of Maths., 4(4) (2010) 393-401.
- 6. M.A.Gopalan and B.Sivagami, Integral solutions of homogeneous cubic equation with four unknowns $x^3 + y^3 + z^3 = 3xyz + 2(x + y)w^3$, *Impact. J. Sci. Tec*, 4(3) (2010) 53-60.
- 7. M.A.Gopalan and S.Premalatha, On the cubic Diophantic equations with four unknowns $(x y)(xy w^2) = 2(n^2 + 2n)z^3$, International Journal of Mathematical Sciences, 9(1-2) ((2010) 171-175.
- 8. M.A.Gopalan and J.Kaliga Rani, Integral solutions of $x^3 + y^3 + (x + y)xy = z^3 + w^3 + (z + w)zw$, Bulletin of Pure and Applied Sciences, 29E (1) (2010) 169-173.