Journal of Mathematics and Informatics Vol. 10, 2017, 125-133 ISSN: 2349-0632 (P), 2349-0640 (online) Published 11 December 2017 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/jmi.v10a17

Journal of **Mathematics and** Informatics

On the Homogeneous Ternary Quadratic Equation $11x^2-2y^2 = 9z^2$

S. Yogeshwari¹ and S. Vidhyalakshmi²

Department of Mathematics, Shrimati Indira Gandhi College Trichy-2, Tamilnadu, India. ¹e-mail: <u>yogeshwarishanmugavel0@gmail.com</u>; ²e-mail: <u>vidhyasigc@gmail.com</u>

Received 4 November 2017; accepted 6 December 2017

Abstract. An attempt has been made to obtain all integer solutions of the homogeneous ternary quadratic Diophantine equation given $by 11x^2 - 2y^2 = 9z^2$. Different choices of integer solution to the above equation are obtained. A few interesting relations between the solutions and special polygonal numbers are presented.

Keywords: Homogeneous quadratic, ternary quadratic, integer solution.

AMS Mathematics Subject Classification (2010): 11D09

1. Introduction

The Diophantine equations offer an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-8] for quadratic equations with three unknowns. This communication concerns with yet another interesting equation $11x^2 - 2y^2 = 9z^2$ representing homogeneous quadratic equation with three unknowns for determining its infinitely many non-zero integral points. Also, few interesting relations among the solutions are presented.

2. Notations

i) Polygonal number of rank 'n' with size m:

$$t_{m,n} = n \left[1 + \frac{(n-1)(m-2)}{2} \right]$$

ii) Pronic number of rank 'n':

$$PR_n = n(n+1)$$

iii) Centered hexagonal pyramidal number of rank 'n':

$$CP_{n,6} = n^3$$

iv) Centered triangular pyramidal number of rank 'n':

$$CP_{n,3} = \frac{n^3 + n}{2}$$

3. Method of analysis

The ternary quadratic equation under consideration is

$$11x^2 - 2y^2 = 9z^2 \tag{1}$$

3.1. Introducing the linear transformations	
x = X + 2T , y = X + 11T	(2)

in (1), it is written as

$$X^{2} = 22T^{2} + z^{2}$$
 (3)
which is satisfied by

 $T = 2rs, \ X = 22r^2 + s^2, \ z = 22r^2 - s^2$ (4)

Substituting the above values of X and T in (2), we have

$$x = 22r^{2} + s^{2} + 4rs$$
, $y = 22r^{2} + s^{2} + 22rs$ (5)

Thus the integer solutions of (1) are given by (4) and (5).

Properties:

 $i)x(r,r) + z(r,r) - 48t_{4,r} = 0$ $ii)y(r,r+1) - x(r,r+1) - 36t_{3,r} = 0$ $iii).x(r,1) - t_{46,r} - 1 \equiv 0 \pmod{5}$

3.2. Note that (3) is expressed in the system of double equations as follows:

X + z	$1 1T^{2}$	11 <i>T</i>	22T
X - z	2	2T	Т

Solving each of the above systems and performing a few calculations, the corresponding three sets of solutions to (1) are given by

Set 1

$$x = 22k^{2} + 4k + 1$$
, $y = 22k^{2} + 22k + 1$, $z = 22k^{2} - 1$

Properties:

 $i) y(k) + z(k) - t_{90,k} \equiv 0 \pmod{13}$ $ii) y(k) - 44t_{3,k} - 1 = 0$ $iii) y(k(k+1)) - x(k(k+1)) - 36t_{3,k} = 0$ Set 2 x = 17k , y = 35k , z = 9kSet 3 x = 27k , y = 45k , z = 21k

3.3. Observe that (3) is expressed in the form of ratio as

$$\frac{(X+z)}{2T} = \frac{11T}{(X-z)} = \frac{\alpha}{\beta}, \ \beta \neq 0$$
(6)

The above equation (6) is equivalent to the system of equations

 $\beta X + \beta z - 2\alpha T = 0$, $\alpha X - \alpha z - 11\beta T = 0$

The above system is solved by applying the method of cross multiplication and after simplification the values of x, y, z are given by

$$x = 2\alpha^2 + 11\beta^2 + 4\alpha\beta , \quad y = 2\alpha^2 + 11\beta^2 + 22\alpha\beta , \quad z = 2\alpha^2 - 11\beta^2$$

Properties:

des:

$$i)x(\alpha,1) - t_{6,\alpha} \equiv 1 \pmod{5}$$

$$ii)y(\alpha,\alpha+1) - x(\alpha,\alpha+1) - 36t_{3,\alpha} = 0$$

$$iii)x(\alpha,1) + y(\alpha,1) + z(\alpha,1) - t_{14,\alpha} \equiv 11 \pmod{31}$$

Note that equation (3) may also be represented in three ways as follows:

Way 1

$$\frac{(X+z)}{T} = \frac{22T}{(X-z)} = \frac{\alpha}{\beta}, \beta \neq 0$$

Way 2

$$\frac{(X+z)}{11T} = \frac{2T}{(X-z)} = \frac{\alpha}{\beta}, \beta \neq 0$$

Way 3

$$\frac{(X+z)}{22T} = \frac{T}{(X-z)} = \frac{\alpha}{\beta}, \beta \neq 0$$

Following the above procedure, the corresponding solutions to (1) obtained from each of the above representations are presented below.

Integer solutions from way 1

$$x = \alpha^2 + 22\beta^2 + 4\alpha\beta , \ y = \alpha^2 + 22\beta^2 + 22\alpha\beta , \ z = \alpha^2 - 22\beta^2$$

Properties:

$$i) y(\alpha, 1) + z(\alpha, 1) - t_{6,\alpha} \equiv 0 \pmod{23}$$

$$ii) y(\alpha, 1) - x(\alpha, 1) - 18PR_{\alpha} - 18t_{4,\alpha} = 0$$

$$iii) z(\alpha, 1) - t_{4,\alpha} \equiv 0 \pmod{2}$$

Integer solutions from way 2

$$x = 11\alpha^2 + 2\beta^2 + 4\alpha\beta$$
, $y = 11\alpha^2 + 2\beta^2 + 22\alpha\beta$, $z = 11\alpha^2 - 2\beta^2$

Properties:

i) $x(1, \beta) - t_{6,\beta} \equiv 1 \pmod{5}$ *ii*) $y(\alpha, 1) + z(\alpha, 1) - 44t_{3,\alpha} = 0$

$$iii)z(\alpha, \alpha+1)-t_{20,\alpha} \equiv 2 \pmod{4}$$

Integer solutions from way 3

$$x = 22\alpha^2 + \beta^2 + 4\alpha\beta$$
, $y = 22\alpha^2 + \beta^2 + 22\alpha\beta$, $z = 22\alpha^2 - \beta^2$

Properties:

$$i)z(\alpha, \alpha + 1) - t_{44,\alpha} + 1 \equiv 0 \pmod{18}$$

$$ii)y(\alpha, \alpha^{2}) - x(\alpha, \alpha^{2}) - 18CP_{\alpha,6} = 0$$

$$iii)y(\alpha, 2\alpha - 1) - x(\alpha, 2\alpha - 1) - 18t_{6,\alpha} = 0$$

In addition to the above solutions we have other choices of solutions to (1) which are illustrated below.

Choice 1

3.4. Introducing the linear transformations	
x = X + 9T , z = X + 1 1T	(7)
in (1), it is written as	

$$X^2 = 99T^2 + y^2 \tag{8}$$

which is satisfied by

 $T = 2rs, \ X = 99r^2 + s^2, \ y = 99r^2 - s^2$ (9)

Substituting the above values of X and T in (7), we have $x = 99r^2 + s^2 + 18rs$, $z = 99r^2 + s^2 + 22rs$ (10)

 $x = 99r^{2} + s^{2} + 18rs$, $z = 99r^{2} + s^{2} + 22rs$ Thus the integer solutions of (1) are given by (9) & (10)

Properties:

 $i)z(2s-1,s)-4t_{3,s}=0$ $ii).x(1,s)-y(1,s)-2t_{4,s}\equiv 0 \pmod{18}$ $iii)z(1,s)-t_{4,s}\equiv 11 \pmod{22}$

3.5. Note that (8) is expressed in the system of double equations as follows:

X + y	$9T^2$	11 <i>T</i>	33T	$3T^2$
X - y	11	9T	3T	3

Solving each of the above systems and performing a few calculations, the corresponding four sets of solutions to (1) are given by,

Set 1

$$x = 18k^{2} + 36k + 19$$
, $y = 18k^{2} + 18k - 1$, $z = 18k^{2} + 40k + 21$

Properties: $i z(k^2) - y(k^2) - 22t_{4,k} \equiv 0 \pmod{2}$

ii)
$$y(k) - 18PR_k + 1 = 0$$

iii) $z(k^2) - x(k^2) - 4t_{4,k} \equiv 0 \pmod{2}$

Set 2

$$x = 38k$$
, $y = 2k$, $z = 42k$

Set 3

$$x = 54k$$
, $y = 30k$, $z = 58k$

Set 4

$$x = 66k^{2} + 84k + 27$$
, $y = 66k^{2} + 66k + 15$, $z = 66k^{2} + 88k + 29$

Properties:

$$iz(k(k+1)) - y(k(k+1)) - 22PR_{k} \equiv 0 \pmod{2}$$

$$iz(k) + y(k) - t_{268,k} \equiv 42 \pmod{281}$$

$$iz(k(2k-1)) - x(k(2k-1)) - 4t_{6,4} \equiv 0 \pmod{2}$$

3.6. Observe that (8) is expressed in the form of ratio as,

$$\frac{(X+y)}{9T} = \frac{11T}{(X-y)} = \frac{\alpha}{\beta}, \beta \neq 0$$
(11)

The above equation (11) is equivalent to the system of equations

 $\beta X + \beta y - 9\alpha T = 0$, $\alpha X - \alpha y - 11\beta T = 0$

The above system is solved by applying the method of cross multiplication and after simplification the values of x, y, z are given by

$$x = 9\alpha^2 + 11\beta^2 + 18\alpha\beta$$
, $y = 9\alpha^2 - 11\beta^2$, $z = 9\alpha^2 + 11\beta^2 + 22\alpha\beta$

Properties:

 $i)x(\alpha,1) + y(\alpha,1) - 36t_{3,\alpha} = 0$ $ii)y(1,\beta) + 11t_{4,\beta} \equiv 0 \pmod{3}$ $iii)x(\alpha,1) - 9t_{4,\alpha} \equiv 11 \pmod{18}$

Note that (8) may also be represented in three ways as follows:

Way 1

$$\frac{(X+y)}{3T} = \frac{33T}{(X-y)} = \frac{\alpha}{\beta}, \beta \neq 0$$

Way 2

$$\frac{(X+y)}{11T} = \frac{9T}{(X-y)} = \frac{\alpha}{\beta}, \beta \neq 0$$

.

Way 3

$$\frac{(X+y)}{33T} = \frac{3T}{(X-y)} = \frac{\alpha}{\beta}, \beta \neq 0$$

Following the above procedure, the corresponding solutions to (1), obtained from each of the above representations are presented below:

Integer solutions from way 1

$$x = 3\alpha^2 + 33\beta^2 + 18\alpha\beta$$
, $y = 3\alpha^2 - 33\beta^2$, $z = 3\alpha^2 + 33\beta^2 + 22\alpha\beta$

Properties:

i) $y(\alpha,1) + z(\alpha,1) - t_{14,\alpha} \equiv 0 \pmod{27}$ *ii*) $6[z(\alpha,1) - x(\alpha,1)]$ is a nasty number. *iii*) $z(\alpha,1) - t_{8,\alpha} \equiv 9 \pmod{24}$

Integer solutions from way 2

 $x = 11\alpha^2 + 9\beta^2 + 18\alpha\beta$, $y = 11\alpha^2 - 9\beta^2$, $z = 11\alpha^2 + 9\beta^2 + 22\alpha\beta$

Properties:

 $i) y(\alpha, 1) + z(\alpha, 1) - 44t_{3,\alpha} = 0$ $ii) y(\alpha, \alpha + 1) - t_{6,\alpha} \equiv 8 \pmod{17}$ $iii) z(\alpha, \alpha + 1) - x(\alpha, \alpha + 1) - 4PR_{\alpha} = 0$

Integer solutions from way 3

$$x = 33\alpha^2 + 3\beta^2 + 18\alpha\beta$$
, $y = 33\alpha^2 - 3\beta^2$, $z = 33\alpha^2 + 3\beta^2 + 22\alpha\beta$

Properties:

i) $y(\alpha, \alpha) - 30t_{4,\alpha} = 0$ *ii*) $6[z(\beta, \beta) - x(\beta, \beta)]$ is a nasty number. *iii*) $x(\alpha, 1) + y(\alpha, 1) - 66t_{4,\alpha} \equiv 0 \pmod{18}$

Choice 2

3.7. Introducing the linear transformations y = X + 9T, z = X - 2T (12) in (1), it is written as $x^2 = 18T^2 + X^2$ (13)

which is satisfied by

T = 2rs, $X = 18r^2 - s^2$, $x = 18r^2 + s^2$ (14)

$$y = 18r^2 - s^2 + 18rs \ z = 18r^2 - s^2 - 4rs \tag{15}$$

Thus the integer solutions of (1) are given by (14) and (15)

Properties:

 $i) y(r,1) + z(r,1) - t_{74,r} \equiv 47 \pmod{49}$ $ii) x(r,1) + z(r,1) - 36t_{4,r} \equiv 0 \pmod{4}$ $iii) y(r, r^{2} + 1) - z(r, r^{2} + 1) - 44CP_{r,3} = 0$

3.8. Note that (13) is expressed in the system of double equations as follows:

x + X	9T	$9T^2$	6T	$3T^2$
x - X	2T	2	3T	6

Solving each of the above systems and performing few calculations, the corresponding four sets of solutions to (1) are given by

Set 1

Set 2

x = 11k, y = 25k, z = 3k $x = 18k^{2} + 1$, $y = 18k^{2} + 18k - 1$, $z = 18k^{2} - 4k - 1$

Properties:

$$i)z(k^{3}) - y(k^{3}) + 22CP_{k,6} = 0$$

$$ii)x(k) - 18t_{4,k} - 1 = 0$$

$$iii)y(k^{2}) - x(k^{2}) - 18t_{4,k} \equiv 0 \pmod{2}$$

Set 3

$$x = 9k$$
, $y = 21k$, $z = -k$

Set 4

$$x = 6k^{3} + 3$$
, $y = 6k^{2} + 18k - 3$, $z = 6k^{2} - 4k - 3$

Properties:

$$i) y(k^{2}) - z(k^{2}) - 22t_{4,k} = 0$$

$$ii) x(k) + y(k) - t_{26,k} \equiv 0 \pmod{29}$$

$$iii) x(k) - 6t_{4,k} \equiv 0 \pmod{3}$$

3.9. Observe that (13) is expressed in the form of ratio as

$$\frac{(x+X)}{2T} = \frac{9T}{(x-X)} = \frac{\alpha}{\beta}, \beta \neq 0$$
(16)

The above equation (16) is equivalent to the system of equations (16) = 0

 $\beta x + \beta X - 2\alpha T = 0$, $\alpha x - \alpha X - 9\beta T = 0$

The above system is solved by applying the method of cross multiplication and after simplification the values of x, y, z are given by

 $x = 2\alpha^2 + 9\beta^2$, $y = 2\alpha^2 - 9\beta^2 + 18\alpha\beta$, $z = 2\alpha^2 - 9\beta^2 - 4\alpha\beta$

Properties:

i)6[$x(\alpha, \alpha + 1) + y(\alpha, \alpha + 1) - 36t_{6,\beta}$] is a nasty number. ii) $y(2\beta - 1, \beta) - z(2\beta - 1, \beta) - 22t_{6,\beta} = 0$ iii) $x(\alpha, \alpha) - 11t_{4,\alpha} = 0$

Note that (13) may also be represented in three ways as follows:

Way 1

$$\frac{(x+X)}{3T} = \frac{6T}{(x-X)} = \frac{\alpha}{\beta}, \beta \neq 0$$

Way 2

$$\frac{\left(x+X\right)}{T} = \frac{18T}{\left(x-X\right)} = \frac{\alpha}{\beta}, \beta \neq 0$$

Way 3

$$\frac{(x+X)}{9T} = \frac{2T}{(x-X)} = \frac{\alpha}{\beta}, \beta \neq 0$$

Following the above procedure, the corresponding solutions to (1) obtained from each of the above representations are presented below:

Integer solutions from way 1

$$x = 3\alpha^2 + 6\beta^2$$
, $y = 3\alpha^2 - 6\beta^2 + 18\alpha\beta$, $z = 3\alpha^2 - 6\beta^2 - 4\alpha\beta$

Properties:

ies:

$$i) y(\alpha, \alpha^{2}) - z(\alpha, \alpha^{2}) - 22CP_{\alpha,6} = 0$$

$$ii) x(\alpha, \alpha + 1) + y(\alpha, \alpha + 1) - 6t_{4,\alpha} - 36t_{3,\alpha} = 0$$

$$iii) z(\alpha, 1) - t_{8,\alpha} \equiv 0 \pmod{2}$$

Integer solutions from way 2

$$x = \alpha^2 + 18\beta^2$$
, $y = \alpha^2 - 18\beta^2 + 18\alpha\beta$, $z = \alpha^2 - 18\beta^2 - 4\alpha\beta$

Properties:

$$i) x(\alpha, \alpha) - 19t_{4,\alpha} = 0$$

$$ii) x(\alpha, 1) + y(\alpha, 1) - t_{6,\alpha} \equiv 0 \pmod{19}$$

$$iii) y(\alpha, \alpha^2) - z(\alpha, \alpha^2) - CP_{\alpha, 6} = 0$$

Integer solutions from way 3

$$x = 9\alpha^2 + 2\beta^2$$
, $y = 9\alpha^2 - 2\beta^2 + 18\alpha\beta$, $z = 9\alpha^2 - 2\beta^2 - 4\alpha\beta$

Properties:

 $i)x(\alpha,1) + y(\alpha,1) - 18PR_{\alpha} = 0$ $ii)y(\alpha,2\alpha-1) - z(\alpha,2\alpha-1) - 22t_{6,\alpha} = 0$ $iii)x(\alpha,\alpha) - 11t_{4,\alpha} = 0$

4. Conclusion

In this paper we have made an attempt to find all integer solutions to the ternary quadratic equation given by $11x^2 - 2y^2 = 9z^2$. It is worth to mention that the above equation represents a cone. As quadratic equations in three unknowns are rich in variety, one may attempt to find integer solutions to other choices of ternary quadratic equations along with suitable properties.

REFERENCES

- 1. L.E.Dickson, History of Theory of Numbers, Vol 2, Chelsea publishing company, New York, (1952).
- 2. L.J.Mordell, Diophantine Equations, Academic press, London, (1969).
- 3. R.D.Carmichael, The theory of numbers and Diophantine analysis, New York, Dover, (1959).
- 4. M.A.Gopalan and S.Premalatha, Integral solutions of $(x+y)(xy+w^2) = 2(k^2+1)z^3$. Bulletin of Pure and Applied Sciences, 28E (2) (2009) 197-202.
- 5. M.A.Gopalan and V.Pandichelvi, Remarkable solutions on the cubic equation with four unknowns $x^3 + y^3 + z^3 = 28(x + y + z)w^2$ Antarctica J. of Maths., 4(4) (2010) 393-401.
- 6. M.A.Gopalan and B.Sivagami, Integral solutions of homogeneous cubic equation with four unknowns $x^3 + y^3 + z^3 = 3xyz + 2(x + y)w^3$, *Impact. J. Sci. Tec*, 4(3) (2010) 53-60.
- 7. M.A.Gopalan and S.Premalatha, On the cubic Diophantic equations with four unknowns $(x y)(xy w^2) = 2(n^2 + 2n)z^3$, International Journal of Mathematical Sciences, 9(1-2) ((2010) 171-175.
- 8. M.A.Gopalan and J.Kaliga Rani, Integral solutions of $x^3 + y^3 + (x + y)xy = z^3 + w^3 + (z + w)zw$, Bulletin of Pure and Applied Sciences, 29E (1) (2010) 169-173.