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Abstract. The non-homogeneous cubic equation with four unknowns given by

(X—y)2 =22 +Wis analyzed for its distinct integer solutions. Three different patterns

of integer solutions to the above equation are obtained. A few interesting relations
between the solutions and special polygonal numbers are a so obtained.
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1. Introduction

Integral solutions for the non-homogeneous Diophantine cubic equation is an interesting
concept asit can be seen from [1, 2, 3]. In [4-8] afew specia cases of cubic Diophantine
equation with three and four unknowns are studied. In this communication, we present
theintegral solutions of an interesting cubic equation with four unknowns (x-y)?= 22+w?.
A few remarkabl e relations between the solutions are presented.

2. Notations
1) Polygonal number of rank ‘n’ with m sides

e 0°30-2)

2) Gnomonic number of rank ‘n’
G, =2n-1

3) Pronic number of rank ‘n’
PR=n(n+1)

4) Centered Polygonal number of rank ‘n’ with m sices
c, - mn(n ;1)+ 2
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5) Centered hexagonal Pyramidal number of rank ‘n'with m sides
CP =N’

6) Star number of rank ‘n’

Sz6in-1+

3. Method of analysis
The non-homogeneous cubic equation with four unknowns under consideration is

(x-y)? =222 +w? )
Introducing the linear transformations

X=u+v, y=u-v, z=2T ()]
in (1), itiswritten as

v —g?=4r°3 (3)

The above equation (3) iswritten in the system of double equations as follows:;

System| 1 2 3 4 5
vts (T T? | 2T |2 | 4r?
V-5 4 AT | o12 | 213 | T

Consider system (1)and solving for v ands,
3 3 _
wehavev:4+2T ,s:T24,T=2k

Using the above valuesin (2) we have,
x=u+4k*+2,y=u-4k®*-2, z=4k, w=8k*-4 (4)
which represent the integer solutions of (1)

Properties:
1.3[(x —y)P? +w? - 32] is a nasty number.
2.x(u, k)— y(u, k)— CP,s4=0
3.x(u, k) + y(u, k) is aways even.
Consider system (2)and solving for v ands, we have
_T2+4T T? 4T

, S= , T =2k
2 2
Using the above valuesin (2) we have,
x=u+2k?+4k, y=u-2k* -4k, z=4k, w=4k? -8k (5)

which represent the integer solutions of (1)

Properties:
1 x(u k)+ y(u, k) -G,~1=0
2.7(k) + w(k) - 4PR, +4G,+4 =0
3.y(k,k)+2(k) +t5,= 0
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Consider system (3)and solving for v and swe have,

v=T+T?%,s=T-T? T=2k

Using the above valuesin (2) we have,

x=u+2k+4k?, y=u-2k-4k?, z=4k, w=4k -8k? (6)
which represent the integer solutions of (1)

Properties:
1.x(k, k) - y(k, k)—8t4,kE 0(mod 4)
2.7(k) - w(k)-16t,,+4G,-4=0
3.x(k, k) +w(k) - 4PR, +8t, = 0(mod 3)
Consider system (4)and solving for v and s we have,
v=1+T? s=1-T3% T=2k
Using the above valuesin (2) we have,
x=u+1+8k® y=u-1-8k3 z=4k, w=2-16k> (7)
which represent the integer sol utionsof (1)

Properties:
1.6[x(u, k) - y(u, k) + w(k)] is a nasty number
2.x(u, k) + y(u, k) -G,-1=0
3.y(Lk)-w(k)-CP, s+2=0
Consider system(5) and solving for v and s we have,
2 2 _
V=4T +T, s=4T T T =2
2 2
Using the above valuesin (2) we have,
x=u+8k?+k, y=u-8k?-k , z=4k, w=16k? - 2k (8)
which represent the integer solutions of (1)

Properties:

1.x(k,k)-8PR,= 0(mod 6)

2.6[x(2, k)+y(2, k)] is anasty number.

3.z(k)+ w(k)-12t, ,~2t¢ ,= 0(mod 4)
Note that equation (3) is solved as follows,
Replacing v by 2V and s by 2P inequation (3) we have,
v2-p2=T? ©)
Following the procedure as above we obtain two sets of integer solution to (1)
represented as below.

Set 1l
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X=U+2tr , y=U-2tyr, 2=2T, W=4t;4 )

Set 2

x=u+8k®+2k, y=u-8k*-2k, z=4k, w=16k*® - 4k

In addition to the above sets of solutions we have some more choices of solutionsto (1)
illustrated bel ow:

Taking x=y+U (20
in (1), we have
U2-w? =27 (12)

The above equation (11) iswritten in the system of double equations as follows:

System| 6 7 8

U+w | 22 |2 | 252

U-w | 22| 23|z

Consider system (6)and solving for U andw , we have
2z+2% 2z-7°

U= , W= ,2=2k
2 2

Using the above valuesin (10) we have,
x=s+2k+2k?, y=s, z=2k, w= 2k - 2k? (12)
which represent the integer solutions of (1)

Properties:
1.x(s,k)- y(s)- 2PR,= 0
2.7(k)+ w(k) - 2G, +2t,,—2=0
3.z(n)+ y(n)+2Ct ,,-3t,,—2=0
Consider system (7)and solving for U andw, we have
x=s+1+4k® y=s,z=2k,w=1-4k? (13)
which represent the integer solutions of (1)

Properties:
1.z(n)-w(n)-G,-4Ct , 4= 0
2.x(n,n)+ y(n)-4cP, -2CP, -1=0
3w(n)+ x(n,n)+2Ct, ,-t, ,—4=0
Consider system (8)and solving for U andw , we have
U=4k®+k, w=4k*-k, z=2k
Using the above valuesin (10) we have,
x=k+s+4k?,y=s, z=2k, w=4k? -k (14)
which represent the integer solutions of (1).

Properties:
1.x(k,s) - y(s)- 4PR, = 0(mod 3)
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2.2(k)+ w(k)-4t,,~G, +k-1=0
3.x(k,k)+ z(k)- 4PR,= 0

Note that equation (11) isaso solved as follows:
Replacing U by a + S and w by a - 8 in equation (11) we have,

203 =7° (15)
Choosinga = 2%**23% k=0

we get ,

Z:2k+lﬁ, W:23k+2ﬁ2 _ﬁ, U :23k+2ﬁ2 +ﬁ

Using the above valuesin (10) we have,
X:S+23k+2ﬁ2+ﬂ:y:S|Z:2k+lﬁ|W:23k+2[)’2_ﬂ (16)
which represent the integer solutions of (1)

Properties:

1.6[2(2,1) + y(l)] is anasty number.
2.2(0,n)+w(0,n)- 4PR,-2Ct ; ,-3t, ,-2 =0
3.x(Ln,n)+ y(n)-26t, ,+s,-1=0(mod 7)

4. Conclusion

In this paper, we have made an attempt to obtain all possible integer solutions to the non-
homogeneous cubic equation with four unknowns represented by (x - y)? = 223 + w?
Since, by definition, the cubic equation in four unknowns are rich in variety, to conclude
one may search for integer solutions to other choices of cubic equations along with
suitable properties.
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