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Abstract. An attempt has been made to determine four non-zero distinct integers x, y, z

and W such that the difference of squares of any two integers equal's the sum of the cubes
of other two integers. A few relations among x,y,z and W are presented. A genera

formula for generating sequence of integer solutions based on the given solution is also
presented.
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1. Introduction

Integral solutions for the non-homogeneous Diophantine cubic equation is an interesting
concept asit can be seen from [1,2,3]. In [4-8], afew special cases of cubic Diophantine
equations with three and four unknowns are studied. In this communication, we present
the integral solutions of an interesting cubic equation with four unknowns

x? - y? = 7% +W?. A few remarkable rel ations between the solutions are presented.

2. Notations
+ .
ty, = y =Triangular number of rankn

t,, = Nn? =Square number of rank N

te, = N(2n-1) = Hexagonal number of rank n
PR, = n(n +1) =Pronic number of rank n

G, =2n-1= Gnomonic number of rank N

_ mn(n —1) +

Cton #2 = Centered polygonal number of rank n with m sides.

CR¢= n* = Centered hexagonal pyramidal number of rank n.

n®+n

CP,s = =Centered pentagonal pyramidal number of rank n
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3. Method of analysis
The non-homogeneous cubic equation with four unknowns to be solved is,
xX2-y? =22 +w (1)
Applying the method of factorization, (1) is written as the system of double equations
represented by

X+y=272°—2w+w’ 2

X—y=z2+w 3
Solving (2) and (3) for Xand vy , we have

xzé(zz—zw+w2+z+w) 4)

y:%(zz—zw+w2—z—w) )

Asour interest is on finding integer solutions, we have to choose z and W
suitably so that, X and y areintegers.

3.1. Choice

L

z(k) = Zk} ©

« w()=2l
Using (6) in (4) and (5)
we have,
x(k,1)=2k? =2kl + 212 +k +| 7
y(k,1)=2k? -2kl +212 =k | (8)
Thus, (6),(7) and (8) are represent integer solutionsto (1).

PEOPERTIES
1. x(k,1) - y(k,1)is always even.

2. 6[x(k, k) + y(k, k)] isaNasty number.
3.2x(k,2) + z(k) - 8t,, -6 =0(mod 4)
4.x(k,~1)-2PR, +tg, —2t,, —1=0
5.y(@1)+w()-ts, -G, =0(mod2)
6.x(k -11)+3z(k -1) - tey = (mod2)
7.x(k,k)+ w(k) - 4t;, -G, -1=0

3.2. Choice
Introducing the linear transformations

x:2u+v}

y=2u-v ®)

and taking vj((g)) z 222} (10)
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in (1), itiswritten as

uv =P +Q°
which is satisfied by
u=P+Q,v=P? -PQ+Q? (1)
Substituting (11) in (9), we have
x(P,Q)=2(P+Q)+P?-PQ+Q? (12)
y(P.Q)=2(P+Q)-(P? - PQ+Q?) (13)

Thus, (10),(12) and (13) represent integer solution to (1).

PROPERTIES
1. x(P Q)+ y(P,Q) isalways even.
2.x(P,P)+4ts -9t,,, =0
3.x(P.1) - w(P) - PR; ~2C3p +3,p ~P-1=0
4.x(2,P)-y(2,P)-2PR, +2G, - 6= 0(mod2)
5.y(-1
6. 7(
7.x(

P)-z(P)+PR, +3=0
P-1)+wW(P)-4PR, +4t,, +2=0
P,P)+ z(P)- PR, —10CP, 5 +5CP; ¢ = 0
3.3. Choice
Let
2(k) = 2k +1
14
o ] o
Using (14) in (4) and (5), we have
x(k,1)=2k? +212 - 2kl +3k +1 (15)
y(k,1)=2k?+212 - 2kl +k -2l (16)

Thus, (14),(15) and (16) represent integer solutionsto (1).

PROPERTIES
1. x(k,1) - y(k,1) is always odd.
2.Ix1) - yll)~w{ ) =8,

3. x(k, k) + y(k,k) - 4ty —tg, —k-1=0
4.x(k.1) - z(k) - 2PR, -2 =0(mod?3)

5. y(k —11) + 3w(k - 1) -t +3=0(mod 2)

6. 6[x(2, k)+y(2,k) —10k] isaNasty number.
7.y(k,k) + z(k) - 4t ~ G +k =0

3.4. Choice
Let
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z(k) = (4k + 4)k -5

(W)= (ac-+a) -
wi)=4 -3

Using (17) in (1), we have

x(k,1) =16Kk® +48k° —12k* —104k® +161° +15k? — 361 2 + 75k + 27| — 37 (18)

y(k,1) =16k® + 48k®> —12k* —104k® +161° +15k? — 3612 + 75k + 271 -39 (19)

Thus, (17), (18) and (19) represent integer solutionsto (1).

PROPERTIES

1. x(k,1)- y(k,1) isaways two.

2.2(k) +Wk)-4PR, - 2G, +6=0

3. y(2,k) + z(k) -16CP, ¢ +16t, , —1702 = 0(mod15)
4.2(k -1)-4PR, +4G, +9=0

5.w(k)-4PR, +4t,, +3=0

6. y(L—k)+32CP, 5 + 36PR, +1= 0(mod 25)

7.2(k) - w(2k) - 4PR, +16CP, s —8CP, ;s +2 =0

4. Generation of solutions
Let (xo, Yo zo,wo) be the given initial integer solution of (1).
Let x, =2h-3%x,,y, =h+3%y,,z =3%2,,w, = 3°w, (20)
be the second solution of (1), where his a non-zero integer to be determined.
Substituting (20) in (1) and simplifying, we get
h =36x, +18y,
Therefore, the second solution of (1) expressed in the matrix formiis,
(o yn) =MOG Vo), 2 =322, = 32w,
45 36
36 45
Repeating the above process, we have, in genera
(men)t :Mn(xo’yo)t! z, =3%zy,w, =3""w, (21)
9"19"+1 9"-1
2(9"-1 9"+1
Giving n=123,...inturn in (21), one obtains sequence of integer solutions to
(1) based on the given solution (xo, Yo zo,wo).

where, M {
where, M" =

5. Conclusion
In this paper, we have presented infinitely many non-zero distinct solutions to the non-

homogeneous cubic equation with four unknowns given by x* - y? = z® +w?. In other
words, this problem under consideration is equivalent to finding non-zero distinct integer
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guadruples such that the difference of squares of any two members in a quadruple equals
the sum of the cubes of other two member of the quadruple. In conclusion, one may
search for quadruples with different relations among its members.
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