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1. Introduction 
Let n be an integer. A set of positive integers { }maaa ,,, 21 … is said to have the property 

)(nD if naa ji + is a perfect square for all mji ≤<≤1 ; such a set is called a 

Diophantine m-tuple of size m . The problem of construction of such set was studied by 
Diophantus. Many mathematicians considered the problem of the existence of 
Diophantine quadruples with the property )(nD for any arbitrary integer n [1] and also 
for any linear polynomials n . Further, various authors considered the connections of the 
problem of Diaphanous, Davenport and Fibonacci numbers in [2-14]. 

In this communication, we present three sections where in each of which we find 
the Diophantine triples from Stella Octangula number with different ranks. A few 
interesting relations among the numbers in each of the above Diophantine triples are 
presented. 

 

We use Stella Octangula Number of rank n  = ( )12 2 −nn  
 

2. Method of analysis 
2.1. Section A  
Let 1562 23 −+−= nnna and nnb −= 32 be Stella Octangula number of rank 

1−n and n respectively such that ( )nnnnab −+−+ 234 9169  is a perfect square 

say 2α . 
 Let c be any non-zero integer such that  
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( ) 2234 9169 β=−+−+ nnnnac      (1) 

( ) 2234 9169 γ=−+−+ nnnnbc      (2) 

Setting αβ += a and αγ += b  , then subtracting (1) from (2), we get 

( ) ( )( )
( )( )abba

abc

−++=
−+=−=−

α
βγβγβγ

2

22

 

Thus, we get α2++= bac  
Similarly by choosing αβ −= a and αγ −= b , we obtain α2−+= bac  

Here we have nnn 232 23 +−=α and thus two values of c are given by 

18128 23 −+−= nnnc  and 1−=c . 

 Thus, we observe that { }18128,2,1562 23323 −+−−−+− nnnnnnnn and 

{ }1,2,1562 323 −−−+− nnnnn  are Diophantine triples with the property 

)9169( 234 nnnnD −+− . 
 
Some numerical examples are given below in the following table. 
 

Table 1: 
n  Diophantine Triples )9169( 234 nnnnD −+−  
1 (0,1,3) and (0,1,-1) 1 
2 (1,14,31) and (1,14,-1) 50 
3 (14,51,131) and (14,51,-1) 375 

 
 We present below, some of the Diophantine triples for Stella Octangula number 
of rank mentioned above with suitable properties. 
 

Table 2: 
a  b  c  )(nD  

1562 23 −+− nnn  nn −32  
16128 23 −+− nnn  

nnnn −+− 234 6105  
12 −n  

1562 23 −+− nnn  nn −32  
110128 23 −+− nnn  

nnnn −+− 234 142213  
12 −− n  

1562 23 −+− nnn  nn −32  
112128 23 −+− nnn  

nnnn −+− 234 212817  
14 −− n  

 
2.2. Section B 
Let 1423122 23 −+−= nnna and nnb −= 32 be Stella Octangula number of rank 

2−n and n respectively such that ( )nnnnab 142444 234 −++−+  is a perfect square 

say 2α . 
 Let c be any non-zero integer such that  

( ) 2234 142444 β=−++−+ nnnnac      (3) 
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( ) 2234 142444 γ=−++−+ nnnnbc      (4) 
Applying the procedure as mentioned in section (A), we obtain 

1424248 23 −+−= nnnc  and 1420 −= nc  
Thus, we observe that  

{ }1424248,2,1423122 23323 −+−−−+− nnnnnnnn and 

{ }1420,2,1423122 323 −−−+− nnnnnn  are Diophantine triples with the 

property )142444( 234 nnnnD −++− . 
 
Some numerical examples are given below in the following table. 
 

Table 3: 
n  Diophantine Triples )142444( 234 nnnnD −++−  
1 (-1,1,-6) & (-1,1,6) 10 
2 (0,14,2) & (0,14,26) 36 
3 (1,51,58) & (1,51,46) -42 

 
 We present below, some of the Diophantine triples for Stella Octangula number 
of rank mentioned above with suitable properties. 
 

Table 4: 
a  b  c  )(nD  

1423122 23 −+− nnn
 

nn −32
 

1426248 23 −+− nnn
 nnn 14278 23 −+−  

1418 −n  

1423122 23 −+− nnn
 

nn −32
 

1428248 23 −+− nnn
 nnnn 1432204 234 −+−

 
1416 −n  

1423122 23 −+− nnn
 

nn −32
 

1430248 23 −+− nnn
 nnnn 1439328 234 −+−

 
1414 −n  

 
2.3. Section C 
Let 1423122 23 −+−= nnna and 1562 23 −+−= nnnb be Stella Octangula number 
of rank 2−n and 1−n respectively such that  

( )149320217435 234 −+−+−+ nnnnab  is a perfect square say 2α . 
 Let c be any non-zero integer such that  

( ) 2234 149320217435 β=−+−+−+ nnnnac     
 (5) 

( ) 2234 149320217435 γ=−+−+−+ nnnnbc     
 (6) 

Applying the procedure as mentioned in section (A), we obtain 
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1534368 23 −+−= nnnc  and 1522 −= nc  
 

Thus, we observe that  

{ }1534368,1562,1423122 232323 −+−−+−−+− nnnnnnnnn and

{ }1522,1562,1423122 2323 −−+−−+− nnnnnnn  are Diophantine triples with the 

property )149320217435( 234 −+−+− nnnnD . 
 
Some numerical examples are given below in the following table. 
 

Table 5: 
n  Diophantine Triples )149320217435( 234 −+−+− nnnnD  
1 (-1,0,-9) and (-1,0,7) 16 
2 (0,1,-27) and (0,1,29) 196 

3 
(1,14,-21) and 
(1,14,51) 

310 

 
 We present below, some of the Diophantine triples for Stella Octangula number 
of rank mentioned above with suitable properties. 
 

Table 6: 

 
 
3. Conclusion 
In this paper, we have presented a few examples of constructing a Diophantine triples for 
Stella Octangula number of different rank with suitable properties. To conclude one may 
search for Diophantine triples for other numbers with their corresponding suitable 
properties. 
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