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Abstract. Targeted to the division of community structuralirected networks, this paper
gives a definition of the node strength. Basedtangrinciple of the node strength, the
division of the local community structure algorithim proposed in directed and
overlapping networks. The basic idea is to findiratial community from a node with
maximal node strength and to expand the communjitadding nodes. The algorithm
only requires local information of nodes used, Be time complexity is very low,
reaching a linear complexity. Finally, the algonithis applied to the classic Zachary
network to verify the validity of the algorithm.
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1. Introduction
Various complex systems are described as graphsemebrks™® in nature. With the
development of network in the field of physics andthematics, the important property
of the social network has been recognized—commusiitycturé®. That is to say, the
whole network is made up of several groups andyevertex of the related group is
linked to others tightly, while the link betweerogp and group is very sparse. Therefore,
research about complex network plays an import@letin realizing that structure of the
social network and analysis its property. Also camity structure analysis is widely
usei% in management, sociology, biology, physics eodhputer science and related
are

Research about how to divide communities among tmpetwork has been taken
for long times. Meanwhile researchers have proposany different algorithms toward
various group structures, in order to divide thenownities into certain kind of groups:
(1) Eigenvalues spectral bisection algorithm of lrajan matrix based on graphs
(2)K-L algorithms based on greedy algoritAmin recent years, mang algorithm about
dividing communities have been invited based on utaity®. In 2004, Newman
proposed a fast algorithm that for dividing comntigig”’, which is based on modularity
and have a good result in dividing networks, esglgcfor Sparse Network. Currently,
how to find out the local community and its veride becoming a hot topi€. However,
there doesn't exist any kind of communities thgtasated to each other. It is different to
classify the network into several separated patabse they have connections. Therefore,
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Palla et al. presented a clique percolation algoHt! which is good at dividing overlap
networks.

Aimed at the community structure partitioning pevhl of the directed network, this
paper first described the definition of node sttengeighbors. We will use the local
community divide method into the directed netwodsd&d on node strength. The main
thought of this algorithm is begin with the largeside strength and then find an initial
community, after that expanded the community byirsglshodes. Finally, we use this
approach into the classical Zachary network; th&ulteshows this method good at
processing overlapped community problems.

This paper is structured as follows. In sectiow@,introduce several basic function
and modularity function related to community stuwet partition. In section 3, we
presented a local community partition algorithmdshen node strength. In section 4 is
devoted to an example that uses the classical Bactetwork, in order to show the
effectiveness of the proposed algorithm. Secticoriludes.

2. Definitions and M odularity Function
2.1. Definitions

First of all, we will introduce some basic knowledgf network, suppos& =G (V, E)
is an undirected graph wherev={v,v,, -y} is vertex set and
E:{(vi,vj)|\/i Ov.,v, DV} the set of directed edgesd(Vv) is the degree oW in
graph G, which is also regard as the neighborsvaf SupposeD =(V(D),E(D))
is a directed graph an¥ (D)={v,,v,---,v,} is a vertex setv,v, 0V (D) and
(vi,vj)D E. A directed edge from a vertey to a vertexv; is denoted b i,vj).

Therefore, (vi,vj) and (vj,vi) are to different edges. We say, (v) and d,, (V)

denote the in-degree and out-degreevofinD. In the following part some definition
about dividing the community structure of directgeph will be presented.

Definition 1. SupposeD = (V (D),E(D)) is a directed graph, verticesv, OV (D),
where v, and v; are neighbors if there is an edge from to v, .

For example, from figure 1 we can see there isdgedrom v, to Vv,, so Vv, is
the neighbor ofv,.
Definition 2. Suppose D :(V(D),E(D)) is a directed graphyOV (D), the note
strength of vertexvis the number of all the neighbors &f, which is the in-degree of/
note asd,, (V).

For example, let's look at figure 1, the note sgtbnof vertexv, is 3, the note

strength of vertex v, is O etc.. To be note that if a network is a uectied graph, we
say that the note strength of every vertex is etjutiiere degree.
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Definition 3. Suppose D = (V (D),E(D)) is a directed graphy OV (D), where the
compactness of vertex and communitycis describeds follows:

B(v,c) = S+
dy, (V) +1
An example can be given from Figure 1, if a comrmunic includes
vertices{vl,vz,v3,v4} , the compactness of vertex, and community ¢

; 2+1 Ccimi _2+1 _0+1_
ISB(VS,C):m: O?S’Slmllarly’ B(VG,C)—m—O.G! B(VS,C)—m—O.ZS'

1)

Figure 1: A directed network

2.2. Modularity Function
Girban and Newman have given the definition of niadty function in their papers,
which is as follows:

Q=3 (g -4 (2)

Note that g, is the percentage of the edges that connect to cortync  divide all the

edges, a is the percentage of the edges that connect coniesidivide all the edges of

the graph. We can generate a network by the reldgédition, and each community is
not changed, the edges of vertex and vertex cantieach other freely, where the
function Q is used to describe the level of dividedhmunity.

When the communities are known in the graphis noted as the community of
vertexv. The proportion of the edges that belongs to trarounity among all the edges

in the network is:
Z AN (CU’CV) 1
v =
> A 2m
uv
where A, is a matrix that contains elements from netwouk. &ample, if there is an

edge betweenu and v, then § . =1, otherwise 5, . =0; mis the number of
edges in the network. In random network, the proipalbetween verticesuandv can

%: Ao, ®3)
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d(u)d(v)

be expressed asz—, where d(v) is the degree of vertex. Therefore the
m

expression of the modularity function is:

Now we will talk about the modularity function iirected network?. Note that the
community structure in directed network problemal&o connected with the proportion
of the related edges in all the edges and the pliopdoetween communities. However,
the difference is that the direction should be @ered and the position of an edge is
related to its direction. For example, there amicesA, B, where vertex A has a high

out-degree and low in-degree, meanwhile vertdis opposite. That is to say, the
direction betweenA and B is more likely to be AtoB, rather thanB toA.

Therefore, if there is an edge fro8 toA, we should pay more attention. In other
words, if we know all the in-degree and out-degoéehe whole network and their
connection structure, then the related structurdehoan be obtained. The probability

d,, (V) gy (U)
m
and out-degree of vertex and u, A, is a matrix that contains elements from

network, if uandv are neighbors thefy,, =1, otherwise A,, =0. And the related
modularity function is defined as following:

Q =1Z{AN —M}% ©

m4; m

from u to Vv is , where d,,(v) and d,, (u) denote the in-degree

3. Description of community structure partition algorithm based on note strength
Two steps are included in this algorithm: (1) fithe initial community; (2) expand the
community

3.1. Find theinitial community

Given a directed netwollR, first we calculate its vertex note strength amehtbegin to
find the initial community from the largest noteestgth vertex; the process is detailed as
following:

(1) With every vOV (D), calculate d,, (v);

(2) Choose max{d, (v) vOV (D)} as vertexv and its neighborN (v), these
vertices form a communityC;

(3) Given vertexullc, if B(u,c)<B®( we chooseB® =0.5 ), delete vertex
u from community c;

(4) Repeat step (3) until for evemyJc, B(u,c)>Bis true. And we obtain a new
initial community, which we write it &.
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For example, figure 2 shows that after calculating node strength of every
vertex, v, and its neighbors were chosen as a comm{,lvlixyz,v3,v4,v6,v8} )

For every vertex, after calculatillﬁil:b), V, is deleted from the community,

finally we get the initial communig,, V,,V,,V, Vg -

Figure 2: Find the initial community

3.2. Expand the community
First find out all the neighborsN (c) of communityc. If there exisv N (c), such

that B(v, c) >B® , we add vertex Vv into community ¢ ; if for every
vertexON(c),B(v,c) <B", (B" =0.4), then we stop expanding the community;
now we consider a kind of vertex which meet the need oB" < B(v, C) < B¢, and

we add this kind of vertew into the communityc, after that the modularityQ'

become larger, finally the vertex was added to the communitg. The detailed
expanded progress is as following:

(1) Find out all the neighborsN(c) of initial community ¢, for every node
vON(c), calculate B(v,c);

(2) Find out vertices which meet the need B{v,c) > B andB" < B(v,c) < B,
write as N, ={v|B(v,c) > B} andN,, ={v|B" <B(v,c) < B}:

(3) If |[N,|>0, we add all the vertices oN, into the communityc which is
larger than before, and we still write @&s back to step (1);

(4) If |N,|>0, we add all the vertices oN,, into the communityc which is
larger than before, and we still write &s back to step (1);

(5) If |N,|=0 and|N,|=0, stop expanding the community, finally we obtain a
community.
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As shown in figure 2,{v5,v8} are the neighbors of initial community

c={W,V,,\,v,v4, then we getB(v;,c) = %: 0.75,B(Vg,C) = %: 0.4. As we

said before,v, can be added to community which is larger than before, still denoted
as C. After v, is added to the community; has only one neighbor vertey,,
becauseB(Vy,¢) = 0.4 and the modularity before adding, is Q'=3.25, after

adding v is Q'=2.25, that is to say modularity become small. Theref@ngex v,
cannot be added to the community; finally we getutimate

communitye ={V,,V,,V,,V, Vs,V -

Extract the communitg, the make note of every vertex af with sign T, repeat
process 3.1 and 3.2 until find out all the commigritAs shown in figure 3, extract the
first communityc :{vl,vz,VS,v4,v5,v6} , follow the algorithm we proposed above, we
can find out anther commun{tye,v7,v8,v9,vl(} , as can be seen in figure 4, vertex
is the common vertex of these two communities.

Figure 4: partition of network
4. Application of the algorithm
We choose the Zachary network as an example i todghow the effectiveness of the
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proposed algorithm which is a famous classic prmbddout social club network. In the
early 1970s, it took two years for Zachary to obeethe social relations among the
Karate club members in one of American universitg &nally Zachary constructed the
social network® among them. See figure 5. Interestingly, durirgshirvey he found that
the boss of the club and the supervisor has diffespinion about whether charge more
fees to the members of the club, thus the club lectwo communities under the
leadership of boss and the supervisor. Zacharysmglal network has become a classical
problem in complex network community structure argtandard in measuring whether a
network structure partition is good or not.

Figure 5: Zachary social karate club network model and #hations

We will analysis the Zachary social network witle tdgorithm that proposed above.
Zachary social network made up of 34 vertices ehddges. First of all, we will treat the
network as two-way network, that is to say, thel@égree and out-degree of every vertex

is equal to its vertex degree. Then we find thateve v,, and its 17 neighbors constitute

a community, after computirﬁ([b), V,, and V,, are deleted and form a new

community ¢ which is made up of vertex,, and others vertices without,,. V,,.
Because the in-degree and out-degree of vewgxis equal, V,, is regard as the
common vertex of both communities. Furthermorepubh add vertices and expand the
community. We then find out the neighbofs;,V,, V,,V;,,V 50,V 55V 54 Of communityc,
computeB(Lk), we find that the vertices compactneB{[X) of verticess;,V,, V,,
and communitycare all smaller than 0.4, thus these vertices dahaocadded to the
community. While B([X) of verticesv, , V,; and community ¢ is 1, and
verticesv,, V,, are added to the community Meanwhile verticesv, and v,, are all

included in N, we can compare th€)' before and after adding the vertices, it is can

Iv?
be calculated thafQ' is become smaller, sv, and V,, are not allowed to be added.
Stop expand and the ultimate community is obtawvadth is made up of vertexs,,,

V,s,V,s and other neighbors vertices excep},V,,. This can be seen from the square
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in figure 5. Then we can find the largest notersite, follow the above steps, we can
obtain the roundness in figure 5. And vertgy, is the common vertex between the two

communities.

Figure5: The result after using the proposed algorithra Eachary

Zachary as a social network, when we studytitstire, we didn’t consider the other
effect factors from the outside. Moreover, in diffiet social conditions, the partition of
Zachary network has different results. Therefoee|amg as the error is acceptable, we
say the algorithm is accurate. Figure 6 also shtwsesults is good enough to meet the
real world problem.

5. Conclusion
This paper introduces an algorithm about how taddithe local community structure of
directed network, which is based on the note strerf@omparatively, the advantage of
this algorithm is that we don't have to know theolehnetwork structure and the number
of communities before we use the algorithm. Andaldaformation is enough for this
approach. Therefore, this method is easy to usk leiv complexity. Moreover, this
algorithm is also can be used to find the commusitycture of the whole network.
Finally, after we use this approach into Zachargiadonetwork, a good result has been
achieved.
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