
Journal of Mathematics and Informatics
Vol. 25, 2023, 77-81
ISSN: 2349-0632 (P), 2349-0640 (online)
Published 3 September 2023
www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/jmi.v25a08231

77

An Algorithm for the Longest Common
Subsequence and Substring Problem

Rao Li1, Jyotishmoy Deka2 and Kaushik Deka3
1Department of Computer Science, Engineering, and Mathematics

University of South Carolina Aiken, Aiken, SC 29801, USA
E-mail: raol@usca.edu

2Departtment of Electrical Engineering
Tezpur University, Tezpur, Assam 784028, India

E-mail: jyotishmoydeka62@gmail.com
3Department of Computer Science and Engineering,

National Institute of Technology Silchar, Cachar, Assam 788010, India
E-mail: jagatdeka20@gmail.com

Received 16 July 2023; accepted 2 September 2023

Abstract. In this note, we first introduce a new problem called the longest common
subsequence and substring problem. Let X and Y be two strings over an alphabet ∑. The
longest common subsequence and substring problem for X and Y is to find the longest
string, which is a subsequence of X and a substring of Y. We propose an algorithm to
solve the problem.

Keywords: Algorithm, the longest common subsequence, the longest common substring.

AMS Mathematics Subject Classification (2010): 68W32, 68W40

1. Introduction
Let ∑ be an alphabet and S a string over ∑. A subsequence of a string S is obtained by
deleting zero or more letters of S. A substring of a string S is a subsequence of S
consisting of consecutive letters in S. Let X and Y be two strings over an alphabet. The
longest common subsequence problem for X and Y is to find the longest string, which is
a subsequence of both X and Y. The longest common substring problem for X and Y is to
find the longest string, which is a substring of both X and Y. Both the longest common
subsequence problem and the longest common substring problem have been well-studied
in the last several decades. They have applications in different fields, for example, in
molecular biology, the lengths of the longest common subsequence and the longest
common substring are the suitable measurements for the similarity between two
biological sequences. More details on the algorithms for the first problem can be found in
[1], [2], [4], [5], [7], and [8] and the second problem can be found in [3] and [9].
Motivated by the two problems above, we introduce a new problem called the longest
common subsequence and substring problem. The longest common subsequence and

Rao Li, Jyotishmoy Deka and Kaushik Deka

78

substring problem for X and Y is to find the longest string, which is a subsequence of X
and a substring of Y. In this note, we propose an algorithm to solve this problem.

2. The foundations of the algorithm
In order to present our algorithm, we need to prove some facts which are the foundations
for our algorithm. Before proving the facts, we need some notations as follows. For a
given string S = s1 s2 ... sl over an alphabet ∑, the size of S, denoted |S|, is defined as the
number of letters in S. The ith prefix of S is defined as Si = s1 s2 ... si, where 1 ≤ i ≤ l.
Conventionally, S0 is defined as an empty string. The l suffixes of S are the strings of s1
s2 ... sl, s2 s3 ... sl, ..., s(l – 1) sl, and sl. Let X = x1 x2 ... xm and Y = y1 y2 ... yn be two strings.
We define Z[i, j] as a string satisfying the following conditions, where 1 ≤ i ≤ m and 1 ≤
j ≤ n.
 (1) It is a subsequence of X i.
 (2) It is a suffix of Yj.
 (3) Under (1) and (2), its length is as large as possible.

Fact 1. Let U = u1 u2 ... ur be a longest string which is a subsequence of X and substring
of Y. Then r = max{|Z[i, j]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
Proof of Fact 1. For each i with 1 ≤ i ≤ m and each j with 1 ≤ j ≤ n, we, from the
definition of Z[i, j], have that Z[i, j] is a subsequence of X and substring of Y. By the
definition of U, we have that |Z[i, j]| ≤ |U| = r. Thus max{|Z[i, j]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ≤
r.

Since U = u1 u2 ... ur is a longest string which is a subsequence of X and a
substring of Y, there is an index s and an index t such that ur = xs and ur = yt such that U =
u1 u2 ... ur is a subsequence of Xs and a suffix of Yt. From the definition of Z[i, j], we
have that r ≤ |Z[s, t]| ≤ max{|Z[i, j]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Hence r = max{|Z[i, j]| : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and the proof of Fact 1 is complete.

Fact 2. Suppose that Xi = x1 x2 ... xi and Yj = y1 y2 ... yj, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. If
Z[i, j] = z1 z2 ... za is a string satisfying conditions (1), (2), and (3) above. Then we have

 [1]. If x i = yj, then a = 1 + the length of a longest string which is a subsequence
 of Xi - 1 and a suffix of Yj - 1.
 [2]. If x i ≠ yj, then a = the length of the longest string which is a subsequence of
 Xi - 1 and a suffix of Yj.

Proof of [1] in Fact 2. Suppose W = w1w2 ... wb is a string satisfying the following
conditions.
 (i) It is a subsequence of Xi - 1.
 (ii) It is a suffix of Yj - 1.
 (iii) Under (i) and (ii), its length is as large as possible.
Since W = w1 w2 ... wb is a subsequence of Xi - 1, a suffix of Yj - 1, and xi = yj, W = w1 w2
... wb xi is a subsequence of Xi and a suffix of Yj. From the definition of Z[i, j], we have
|W| + 1 = b + 1 ≤ |Z[i, j]| = a.

Since Z[i, j] = z1 z2 ... za is a string satisfying conditions (i), (ii), and (iii) above,
we have that za = yj = xi. We further have that z1 z2 ... za - 1 is a string which is a
subsequence of Xi - 1 and a suffix of Yj - 1. From the definition of W = w1 w2 ... wb, we

An Algorithm for the Longest Common Subsequence and Substring Problem

79

have that a - 1 ≤ b. Thus a = 1 + b and a = 1 + the length of the longest string, which is a
subsequence of Xi - 1 and a suffix of Yj - 1.
Proof of [2] in Fact 2. Suppose U = u1 u2 ... uc is a string satisfying the following
conditions.

(α) It is a subsequence of Xi - 1.
(β) It is a suffix of Yj.
(γ) Under (α) and (β), its length is as large as possible.

Since U = u1 u2 ... uc is a subsequence of Xi – 1 and a suffix of Yj, U = u1 u2 ... uc is a
subsequence of Xi and a suffix of Yj. By the definition of Z[i, j], we have |U| = c ≤ |Z[i, j]|
= a.

Since Z[i, j] = z1 z2 ... za is a string satisfying conditions (1), (2), and (3) above,
we have that za = yj ≠ xi. Thus z1 z2 ... za is a string that is a subsequence of Xi - 1 and a
suffix of Yj. From the definition of U = u1 u2 ... uc, we have that a ≤ c. Thus a = c and a =
the length of the longest string, which is a subsequence of Xi - 1 and a suffix of Yj. Hence,
the proof of Fact 2 is complete.

3. An algorithm for the longest common subsequence and substring problem
Based on Fact 1 and Fact 2 in Section 2, we can design an algorithm for the longest
common subsequence and substring problem. Once again, we assume that X = x1 x2 ... xm
and Y = y1 y2 ... yn are two strings over an alphabet ∑. In the following Algorithm A, W
is a two-dimensional array of size (m + 1) × (n + 1) and the cells W(i, j), where 1 ≤ i ≤ m
and 1 ≤ j ≤ n, store the lengths of strings such that each of them satisfies the following
conditions.

(1) It is a subsequence of Xi.
 (2) It is a suffix of Yj.
 (3) Under (1) and (2), its length is as large as possible.

ALG A (X, Y, m, n, W)
1. Initialization: W(i, 0) ˂ ̶ ̶ 0, where i = 0, 1, ..., m
 W(0, j) ˂̶ ̶ 0, where j = 0, 1, ..., n
 maxLength = 0
 lastIndexOnY = n
2. for i ˂̶ ̶ 1 to m
3. for j ˂̶ ̶ 1 to n
 if xi = yj W(i, j) ˂̶ ̶ W(i - 1, j - 1) + 1
 else W(i, j) ˂̶ ̶ W(i - 1, j)
 if W(i, j) > maxLength
 maxLength = W(i, j)
 lastIndexOnY = j
 4. return A substring of Y from (lastIndexOnY – maxLength + 1) to lastIndexOnY

Because of Fact 1 and Fact 2 in Section 2, Algorithm A is correct. Obviously, the
time complexity of Algorithm A is O(mn) and the space complexity of Algorithm A is
also O(mn). We implemented Algorithm A in Java and the program can be found at
“https://sciences.usca.edu/math/~mathdept/rli/LCSSeqSStr/LCSS.pdf”.

Rao Li, Jyotishmoy Deka and Kaushik Deka

80

Below is an example that illustrates Algorithm A above. Suppose X = abuvbc
and Y = dabca. Then the two-dimensional array W in Algorithm A is computed as
follows.

 Y d a b c a
X 0 0 0 0 0 0
a 0 0 1 0 0 1
b 0 0 1 2 0 1
u 0 0 1 2 0 1
v 0 0 1 2 0 1
b 0 0 1 2 0 1
c 0 0 1 2 3 1

Fig. 1. The two-dimensional array W computed in Algorithm A

Also, Algorithm A yields maxLength = 3, lastIndexOnY = 4, and outputs a string of abc,
the longest string that is a subsequence of X = abuvbc and a substring of Y = dabca.

4. Conclusion
In this note, we introduce a new problem called the longest common subsequence and
substring problem for two strings X and Y. Even though we can design an algorithm with
time and space complexities of O(|X||Y|) to solve the problem, we plan to design new
algorithms to improve the time and space complexities and find the applications of our
algorithm in the real world.

Acknowledgements. The authors would like to thank the referee for his/her suggestions,
which led to the improvements of the initial manuscript.

Conflicts of Interest. There are no conflicts of interest among the authors.

Authors’ contributions. All the authors contributed equally.

REFERENCES

1. A.Apostolico, String editing and longest common subsequences, in: G. Rozenberg
and A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 2, Linear Modeling:
Background and Application, Springer-Verlag, Berlin, 1997, 361-398.

2. A.Apostolico, Chapter 13: General pattern matching, in: M. J. Atallah (Ed.),
Handbook of Algorithms and Theory of Computation, CRC, Boca Raton, FL, 1998.

3. D.Gusfield, II: Suffix Trees and Their Uses, Algorithms on Strings, Trees, and
Sequences: Computer Science and Computational Biology, Cambridge University
Press, 1997.

4. L.Bergroth, H.Hakonen and T.Raita, A survey of longest common subsequence
algorithms, in: SPIRE, A Coruňa, Spain, 2000.

5. T.Cormen, C.Leiserson, R.Rivest and C.Stein, Section 15.4: Longest common
subsequence, Introduction to Algorithms (second edition), MIT Press, Cambridge,
MA, 2001.

An Algorithm for the Longest Common Subsequence and Substring Problem

81

6. D.Hirschberg, A linear space algorithm for computing maximal common
subsequences, Comm. ACM, 18 (1975) 341-343.

7. D.Hirschberg, Serial computations of Levenshtein distances, in: A. Apostolico and
8. Z.Galil (Eds.), Pattern Matching Algorithms, Oxford University Press, Oxford,

1997.
9. C.Rick, New algorithms for the longest common subsequence problem, Research

Report No. 85123-CS, University of Bonn, 1994.
10. P.Weiner, Linear pattern matching algorithms. In: 14th Annual Symposium on

Switching and Automata Theory, Iowa City, Iowa, USA, October 15–17, 1973, 1–11.

