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Abstract. In this paper, the evolution of a dynamical system representing the population 
growth of Mozambique is analyzed. The correspondence between the boundary value 
problem and the integral equation is leveraged to address the issue of the local existence of 
solutions to the boundary value problem. The conclusion that the function converges to a 
function that is the unique solution to the boundary value problem is arrived at by way of 
constructing a sequence of approximations using Picard’s method of successive 
approximations and contraction mapping. The exponential function is globally Lipschitz, 
hence uniformly continuous; however, its solution does not converge to a fixed point 
implying that the population will grow without bounds as t→∞. The logistic model solves 
T (ϕ) = ϕ, whence T has a unique fixed point ϕ that is a continuous solution to the integral 
equation and consequently to the boundary value problem. Therefore, population growth 
is bounded. In addition, this function is locally Lipschitz and, therefore, not uniformly 
continuous.  
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1.   Introduction  
In this article, the evolution of a system described by a dated vector of real numbers 
�(�)�ℝ� is analyzed. Here the vector-valued function mapping the set XxℝxΩ into ℝ�, i.e, 
ϕxℝxΩ ⊆ ℝ����� → ℝ� with �(�) = ϕ(��, t, α) gives the values of the state vector at any 
time t as a function of the initial condition �� � ℝ� and a vector of parameters α � ℝ�. By 
assigning values to t given ��� ℝ�and α � ℝ� the time path of the system obtains [1]. In 
this particular case, the system represents the population growth of Mozambique.  

Mathematical modelling, in particular, the exponential function and the logistic 
model of limited growth and some of the properties governing differential equations, are 
used in this paper. Specifically, the correspondence between the boundary value problem 
and the integral equation is considered. The continuity of a function and Lipschitz 
condition are also reviewed in a prelude to the local existence and uniqueness of solutions 
as well as contraction mapping concepts. The data used was obtained from the World Bank 
database [2]. 
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2. Methodology 
Consider a parameterized continuous time dynamical system which characterizes 
population growth, given by 

  ��
�

= �(�, α, �)         (1) 

where the function f maps the set XxΩxI into X, a subset of ℝ�, that is, f: XxΩxI ⊆
ℝ����� → X ⊆ ℝ�. As described in [3], a differentiable function �(�):  ! → X defined on 
the interval  ! ⊆ " with the property that for all t in  !, (#(�), �)�$ and #%(�) =
�[#(�), #, �] where D is an open and connected set in ℝ��� is a particular solution of 
equation (1). With #(�) being a solution function and t� (  !, then by setting �� = #(�) it 
is the case that #(�) must be a solution of the boundary value problem  

�� = �(�, α, �),  �(t� ) = ��                          (2) 
Its orbit through the point (��, t� ) induced by the corresponding solution function 

#(�): ϕ(t, ��, t� , α) is given by )(��, t� ) = #*[t� , +), = {��.; � = #(�) for all � (  
 0*��, t�,α, = (1, +)}, where   0*��, t�,α, is the maximal interval of definition. The 
positive orbit through the point (��, t� ) is specified as )�(��, t� ) = #*[t� , +), =
{��.; � = #(�), � ( [1, +)  ⊆  0*��, t�,α,} and the negative orbit given  by )3(��, t� ) =
#(1, t� ] = {��.; � = #(�), � ( (1, t� ]  ⊆  0*��, t�,α,}. Note that )(��, t� ) =  )�(��,  
t�) ∪ )3(��, t�) [4].  

The problem of the existence and uniqueness of solutions to the boundary value 
problem is akin to determining the existence and uniqueness of continuous solutions of the 
integral equation, which is a solution to the boundary value problem, there being a 
correspondence between the boundary value problem and the integral equation. In 
particular, given a continuous function  �(�, �) in some domain $ = .x"  with the point 
(��, t� ) in D for � �  !, the function �:  ⊆ " → ℝ� where t� ∈   is a solution of the 
integral equation 

  �(�) = �� + 7 �(8, �)9
:; 

<8       (3) 

whose solution function is constructed recursively using Picard’s method of successive 

approximations to yield a sequence of functions {ϕ�}, ϕ���(t) = �� + 7 [ϕ�, 8]9
9;

<8 for 

each ��  given ϕ�(t) = �� [5,6].  
Local existence and uniqueness of solutions are predicated on a function being 

continuous and satisfying the Lipschitz condition. In particular, a function mapping 
�: .� → =� at ���>� satisfies the Lipschitz condition if there is a neighbourhood in the 
open ball ?(��, () and some constant @ > 0 such that  ‖�(�) − �(E)‖ ≤ @‖� − E‖, with 
M being applicable in the whole interval.  If the function is globally Lipschitz, then it is 
uniformly continuous. Otherwise, it is locally Lipschitz, that is, ‖�(�) − �(E)‖ ≤
@�‖� − E‖ and consequently not uniformly continuous. Here @� is not a fixed value [7,8]. 
By definition a function �: (., <) → (=, G) is uniformly continuous on H ⊆ . if ∀�, E�H 
given ( > 0 ∃ G(() independent of x such that G[�(�), �(E)] < ( whenever <(�, E) ≤
G(() [9].  

The lemma on local existence and uniqueness of solutions makes it precise that a 
solution to the boundary value problem in some neighbourhoods of �� exists. Specifically, 
given a function defined on a closed box by B(��, t� ) = ?��x"� = {(�, �); |� − t� | ≤
1‖� − ��‖ ≤ +} and some constant M > 0 such that ‖�(�, �) − �(E, �)‖ ≤ @‖� − E‖  for 
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all  (�, �) and (E, �) in B(��, t� ) then there is a number ℎ ≤ 1 such that the boundary value 
problem �� = �(�, �) with �(��) = �� has a unique solution ϕ(�) defined on the interval 
 = [�� − ℎ, �� + ℎ] with ϕ(t) in ?�� ∀ � ∈   . Now consider a space of continuous real-
valued functions C(J) defined on the interval   = [�� − ℎ, �� + ℎ] with ϕ(t) in 

?(��, t�)  for all � (  . Let #(�) = �� + 7 �[#(8), 8]<8 ∀ � (   ]9
9;

 and define the operator 

O: P( ) → P( ). This operator is applied to obtain successive Picard’s approximation given 
by the sequence of functions {QR} defined for each t in J by  ϕ� = �� and ϕ���(t) =
Oϕ�(t) for S = 1,2,3, … . The function Q is a solution of the integral equation provided 
that O(ϕ) = ϕ, meaning that it has a fixed point of T [10]. Given a metric space (., <) and 
some constant X the distance function giving the metric <(O�, OY) ≤ X<(�, E) for all 
�, E � . where X � (0,1) ensures the existence and uniqueness of solutions of a function in 
view of the fact that T is a contraction mapping and therefore a fixed point [11,12,16].  
 
3. Analysis and results 
Population growth is a function of time t and population � described by the equation 

��
�

= �(�, �)            (4) 

where �: .x " ⊆ ℝ��� → . ⊆ ℝ�. The assumption that migration does not affect the 
system’s trajectory yields a function that depends on birth rate +(�, Z) and death rate 
<(�, Z), that is,  �(�, �) = +(�, �) −  <(�, �). Given a function �(�, �) the evolution of the 
system �(�)�ℝ� satisfies the growth equation �� = (�, �)� which together with the 
prescribed initial conditions  �(t�) = �� yields the boundary value problem 

�� = (�, �)�,              �(t�) = ��                                       (5)                
Assuming a constant rate of growth, that is,  �(�, �) = [ ∀(�, �)� ℝ���,  with 

[ � ℝ� the following dynamical system obtains  
�� = [�              �(t�) = ��                                             (6)                           

where �: .x \ ⊆ ℝ��� → . ⊆ ℝ� and [ > 1 is the base of the exponential function and 
� ≠ 0. Thus the solution depends on the initial condition ��� ℝ� and a parameter α � ℝ�   
[13]. 

Showing that the function in equation (6) is globally Lipschitz and, therefore, 
uniformly continuous is straightforward. For this purpose, let ( > 0 be given and assume 
that there exists some constant @ > 0 in the interval  0[��, ∞) satisfying the Lipschitz 
condition. Then by definition, ‖[� − [E‖ ≤ @‖� − E‖ ⇒ [ ‖� − E‖ ‖� − E‖⁄ ≤ @ ⇒ 
[ < @, where the derivative is bounded by a unique value [ at every point in the 
interval [��, ∞). The function �(�) = [� is uniformly continuous since for all 
�, E ( [t�, ∞) and given ( > 0 there is some number G(() > 0 independent of x such that 
‖�(�) − �(E)‖ < ( whenever ‖� − E‖ < G. Obviously, for @ = 0, ‖� − E‖ ≤ 0 < (. 
Next, let ( > 0 be arbitrary and choose G(() =  (/@. Then for any ‖[� − [E‖  < G =
(/@ it is the case that ‖[� − [E‖ ≤  @‖� − E‖ < @( @⁄ = ( and we are done.  

Picard’s method of successive approximations yields a sequence of functions 
ϕ�(t) = �� + ∑ [�� S!⁄d

�e�   to the unique solution to the boundary value problem (5) as 
S → ∞ and satisfies this equation. Notice that there does not exist X � (0,1) satisfying 
<(O�, OY) ≤ X<(�, E) for all �, E � . since <[�(�) − �(E)] =  ‖�(�) − �(E)‖ =
‖[(�(�) − �(E)‖  ≤ [ ‖� − E‖ ≤ [<(�, E) where [ > 1. Hence no fixed point implying 
that the model predicts that population growth is unbounded. It can also be said that the 
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system is not exponentially stable [14]. The exponential function has been modified to take 
into account the assumption that population growth is bounded by some number f > 0 
such that if � < f, �(�, �) > 0 and �(�, �) < 0 g� � > f. It is generally assumed that f is a 
linear function of �: �(�, �) = h(f − �) ∀ � � X ⊆ ℝ� where h, f > 0 and [ = hf. Thus 
the growth equation now becomes  

 �� = ([ − h�)�i = [� − h�i     �(t�) = ��                  (7) 
For small population size the population growth is governed by the exponential function 
while for large size the term h�i dominates with the result that population growth is 
dumped until it reaches f [15].   

This function is locally Lipschitz since by definition for any ( > 0 there is some 
constant @� > 0 such that ‖([� − h�i) − ([E − hEi) ‖ ≤ @�‖� − E‖ = ‖([� − h�i)   
−([E − hEi)‖/‖� − E‖ ≤ @� ≤ ([ − 2h�) ≤ @. The slope of the function at any  given 
point �� is bounded by ([ − 2h�) where [ and h are fixed positive parameters < 0 with 
h ≪ [, but it is not unique hence G varies in the interval [��, ∞). In order to show that the 
function is not uniformly continuous it is necessary to negate the definition of uniform 
continuity. In particular, we must show that given ( > 0 there is G > 0 such that for 
�, E � [t�, ∞), ‖�(�) − �(E)‖ ≥ (  whenever  ‖� − E‖ < G. To proceed let ( > 0 and fix 
some G independent of x. Then ‖�(�) − �(E)‖ = ‖([� − h�i) − ([E − hEi) ‖ =
[ ‖� − E‖ − h ‖�i − Ei‖ = [ ‖� − E‖ − h{‖� − E‖  ‖� + E‖ }.  Now set 1 = ‖� −
E‖ ⇒ 1 < G and without loss of generality let � < E. Since ‖� − E‖ one can also write 
‖E − �‖ and so ‖E − �‖ = 1 ⇒ E − � = 1 ⇒ E = � + 1. It follows that ‖�(�) −
�(E)‖ = [1 − h1(� + E) ⇒ [1 − h1(� + � + 1) ≥ ( ⇒ −h(2� + 1) ≥ ( − 1[ 1⁄ ⇒ 
� ≥ −( + [1 − h1i. Solving for a results in two solutions but the case where 1 = √( is 
considered. Given ( > 0 fix some arbitrary G and any number 1 = inf (G, √() and let  
E = � + 1 = (1 2h)⁄ [−( + [1 − h1i + 2h1i] > 0.  
Then ‖E − �‖ = ||� − (� + 1)|| = ‖−1‖ = ‖1‖ < G ⇒ 1 < G.  
Since ‖�(�) − �(E)‖ = [‖E − �‖ − h‖E − �‖‖E + �‖ −  h{1(� + E)}, +E)}.  
Observe ( ≥ (, following the substitution of the expressions for x and y and simplification. 
This concludes the proof.  

Next it is shown that the function is a contraction mapping, to this end let 
< = [�(�) − �(E)] = ‖�(�) − �(E)‖ = ‖([� − h�i) − ([E − hEi) ‖ 

⇒ [‖� − E‖ − ‖� + E‖} = [‖� − E‖ (1 2⁄ )h‖� − E‖ = (1 2)⁄ ([ − h)‖� −
E‖ ≤ (1 2⁄ ) ([ − h)<(�, E). So     there is X � (0,1) satisfying the condition  

 (O�, OY) ≤ X<(�, E) ∀�, E � . ⇒ �(�) = [� − h�i is a contraction mapping and 
therefore has a fixed point  O([ h⁄ ) = ([ h⁄ ).  

It is immediately clear following a few Picard’s iterations in respect of equation of 

(7) that the solution function is ϕ�(�) → �� + (∑ [ �� S!⁄d
�e�  − ∑  d

�ei h*iopq,�(io3�)/ 
(3i)�3i(2� − 1) converging to a function that is the unique solution to the boundary value 
problem (7) as S → ∞. Notice that this solution is the  maximal solution. The solution 
function of equation (7) can be exhibited explicitly. By method of separation of variables 
and partial fractions it is shown that the solution function is  

�(�) = [�� h�� + ([ − h��)r3s(939;)⁄      ∀��ℝ     (8) 
Differentiating equation (7) yields �t = [([ − h�)�([ − h�)]�, henceforth �t > 0 if 
��(0, ([ 2h)⁄ ) ∪ ([ h)⁄ , ∞) meaning that population rises rapidly and �t < 0 if 
� �(([ 2h)⁄ , [ h)⁄ ) implying that population rises at a decreasing rate [17]. To determine 
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the parameter [, as described in [18] let ��, �� and �i be the years with corresponding 
population size ��, �� and �i respectively then from equation (8) the following expression 
emerges 

   r3s = ��(�i − ��) �i(�� − ��)⁄       (9) 
Considering population values for ��, �� and �i corresponding to years 2002, 2003 and 
2004 being �� = 19139658, �� =  22846758 and �i = 20312705, respectively, then  
[ =0.026802. The procedure for calculating h is as follows [19]. Given that the growth 
rate of the population per year in 2002 is 2.96% and since (1 �⁄ )�� = ([ − h��), then β =
 1.48073E − 10 so that [ h⁄ = 1.81E + 08  is the fixed point which the solution 
converges to. With the parameters [ and  h as well as  ��  and �� the orbit can now be 
obtained and is shown in figure 1 for � � (a, ∞). Notice that this is the maximal interval of 
the existence of the solution. 
 
4. Conclusion  
The objective of this article is to determine the state trajectory of the population of 
Mozambique. The exponential function is uniformly continuous, being globally Lipschitz, 
while the logistic function is locally Lipschitz and, therefore, not uniformly continuous. 
The former predicts unlimited population growth, while the latter indicates that it is 
bounded and has an S-shaped curve. The population size is expected to increase rapidly 
until 2082; thereafter, it will increase at a decreasing rate until 2301, when the upper bound 
is reached.  
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Appendix 
Figure 1:  Population projection for Mozambique  

 
Source: World Bank 
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