Intern. J. Fuzzy Mathematical Archive Vol. 5, No. 1, 2014, 1-9 ISSN: 2320–3242 (P), 2320–3250 (online) Published on 5 August 2014 www.researchmathsci.org

k-Pseudo-Similar Interval–Valued Fuzzy Matrices

P.Jenita

Department of Mathematics Krishna College of Engineering and Technology Coimbatore-641 008, India Email: sureshjenita@yahoo.co.in

Received 16 July 2014; accepted 26 July 2014

Abstract. In this paper, we have introduced the concept of k-pseudo-similar intervalvalued fuzzy matrices (IVFM) as a generalization of k-pseudo-similar fuzzy matrices and as a special case for k=1, it reduces to pseudo-similar interval – valued fuzzy matrices (IVFM).

Keywords: pseudo-similar IVFM, k-pseudo-similar IVFM.

AMS mathematics Subject Classification (2010): 15A57, 15A09

1. Introduction

Throughout, we deal with IVFM, that is, matrices whose entries are intervals and all the intervals are subintervals of the interval [0, 1]. The concept of IVFM a generalization of fuzzy matrix was introduced and developed by Shyamal and Pal [7], by extending the max-min operations on fuzzy algebra F=[0, 1], for elements $a,b\in F$, $a+b=max\{a,b\}$ and $a\cdotb=min\{a,b\}$. In [3], Meenakshi and Kaliraja have represented an IVFM as an interval matrix of its lower and upper limit fuzzy matrices. $A \in F_{mn}$ is regular if there exists X such that AXA = A; X is called a generalized (g⁻) inverse of A and is denoted as A⁻. A{1} denotes the set of all g-inverses of a regular matrix A.

In [4], Meenakshi and Jenita have introduced the concept of k-regular fuzzy matrix as a generalization of regular fuzzy matrix developed in [1]. A matrix $A \in F_n$, the set of all n×n fuzzy matrices is said to be right (left) k-regular if there exists X (Y) \in F_n, such that

$$A^{k}XA = A^{k}(AYA^{k} = A^{k})$$

X (Y) is called a right (left) k-g-inverse of A, where k is a positive integer. Recently, Meenakshi and Poongodi have extended the concept of k-regularity of fuzzy matrices to IVFM and determined the structure of k-regular IVFM in [5].

In section 2, some basic definitions and results required are given.

In section 3, we have introduced the concept of k-pseudo-similar interval-valued fuzzy matrices (IVFM) as a generalization of k-pseudo-similar fuzzy matrices [6] and as a special case for k=1, it reduces to pseudo-similar interval – valued fuzzy matrices (IVFM).

2. Preliminaries

Definition 2.1. [2] $A \in F_m$ and $B \in F_n$ are said to be pseudo-similar and denoted as $A \cong B$ if there exist $X \in F_{mn}$ and $Y \in F_{nm}$ such that A = XBY, B = YAX and XYX = X.

Theorem 2.1. [2] Let $A \in F_m$ and $B \in F_n$ such that $A \cong B$. Then A is a regular matrix $\Leftrightarrow B$ is a regular matrix.

Theorem 2.2. [2] Let $A \in F_m$ and $B \in F_n$. Then the following are equivalent.

- (i) $A \cong B$
- (ii) $A^T \cong B^T$
- (iii) $A^k \cong B^k$, for any integer k ≥ 1 .
- (iv) $PAP^T \cong QBQ^T$, for some permutation matrices $P \in F_m$ and $Q \in F_n$.

Lemma 2.1. [2] Let $A \in F_m$ and $B \in F_n$. Then the following are equivalent:

- (i) $A \cong B$
- (ii) There exist $X \in F_{mn}$, $Y \in F_{nm}$ such that A = XBY, B = YAX and $XY \in F_m$ is idempotent.
- (iii) There exist $X \in F_{mn}$, $Y \in F_{nm}$ such that A = XBY, B = YAX and $YX \in F_n$ is idempotent.

Definition 2.2. [3] Let $A \in (IVFM)_{mn}$. If A is regular, then there exists a matrix $X \in (IVFM)_{nm}$, such that AXA = A for all $X \in A\{1\}$.

Definition 2.3. [3] For a pair of fuzzy matrices $E=(e_{ij})$ and $F=(f_{ij})$ in F_{mn} such that $E \leq F$, let us define the interval matrix denoted as [E, F], whose ij^{th} entry is the interval with lower limit e_{ij} and upper limit f_{ij} , that is ($[e_{ij}, f_{ij}]$). In particular for E=F, IVFM [E, E] reduces to $E \in F_{mn}$.

For $A=(a_{ij})=[a_{ijL}, a_{ijU}] \in (IVFM)_{mn}$, let us define $A_L=(a_{ijL})$ and $A_U=(a_{ijU})$. Clearly A_L and A_U belongs to F_{mn} such that $A_L \leq A_U$ and from Definition 2.3 A can be written as $A=[A_L, A_U]$, where A_L and A_U are called lower and upper limits of A respectively.

The basic operations on IVFM are as follows [3]: For $A=(a_{ij})_{m\times n}$ and $B=(b_{ij})_{m\times n}$, their sum A+B is defined by, $A+B=A=(a_{ij}+b_{ij})=([(a_{ijL}+b_{ijL}), (a_{ijU}+b_{ijU})])$ (2.1) and their product is defined by,

AB=(c_{ij})=
$$\sum_{k=1}^{n} a_{ik} b_{kj} = \left[\sum_{k=1}^{n} (a_{ikL} b_{kjL}), \sum_{k=1}^{n} (a_{ikU} b_{kjU})\right]$$
i=1,2,...,m and j=1,2,...,p (2.2)

In particular if $a_{ijL} = a_{ijU}$ and $b_{ijL} = b_{ijU}$ then (2.2) reduces to the standard max-min composition of fuzzy matrices [1]. $A \le B \Leftrightarrow a_{ijL} \le b_{ijL}$ and $a_{ijU} \le b_{ijU}$. For $A \in (IVFM)_{mn}$, A^T denote the transpose of A.

Lemma 2.2. [3] For $A=[A_L, A_U] \in (IVFM)_{mn}$ and $B=[B_L, B_U] \in (IVFM)_{np}$ the following hold:

(i) $A^{T} = [A_{L}^{T}, A_{U}^{T}]$ (ii) $AB = [A_{L} B_{L}, A_{U}B_{U}]$

Definition 2.4. [5] A matrix $A \in (IVFM)_n$, is said to be right k-regular if there exists a matrix $X \in (IVFM)_n$ such that $A^k XA = A^k$, for some positive integer k. X is called a right k-g-inverse of A.

Let $A_r \{1^k\} = \{X / A^k X A = A^k\}.$

Definition 2.5. [5] A matrix $A \in (IVFM)_n$, is said to be left k-regular if there exists a matrix $Y \in (IVFM)_n$ such that $AYA^k = A^k$, for some positive integer k. Y is called a left k-g-inverse of A.

Let $A_{\ell}\{1^k\} = \{Y/AYA^k = A^k\}.$

In general, right k-regular IVFM is different from left k-regular IVFM. Hence a right k-g-inverse need not be a left k-g-inverse [5].

Theorem 2.3. [5] Let $A=[A_L, A_U] \in (IVFM)_n$. Then A is right k-regular IVFM $\Leftrightarrow A_L$ and $A_U \in F_n$ are right k-regular.

Theorem 2.4. [5] Let $A=[A_L, A_U] \in (IVFM)_n$. Then A is left k-regular IVFM $\Leftrightarrow A_L$ and $A_U \in F_n$ are left k-regular.

3. k-pseudo-similar IVFM

Definition 3.1. $A = [A_L, A_U] \in (IVFM)_m$ and $B = [B_L, B_U] \in (IVFM)_n$ are said to be pseudosimilar IVFM, denoted by $A \cong B$ if there exist $X = [X_L, X_U] \in (IVFM)_{mn}$ and $Y = [Y_L, Y_U] \in$

 $(\text{IVFM})_{\text{nm}}$ such that A = XBY, B = YAX and XYX = X.

Remark 3.1. In particular, if $A_L = A_U$ and $B_L = B_U$ then Definition 3.1 reduces to pseudosimilar fuzzy matrices (Definition 2.1). Also we observe that $A \cong B \Leftrightarrow B \cong A$.

Definition 3.2. $A=[A_L, A_U] \in (IVFM)_n$ is said to be right k-pseudo-similar to $B=[B_L, B_U] \in (IVFM)_n$ and it is denoted by $A \cong_r^{I(k)} B$ if there exist $X=[X_L, X_U], Y=[Y_L, Y_U] \in (IVFM)_n$ such that A = XBY, $B = YAX^k$, $X^kYX = X^k$ and YXY = Y.

Definition 3.3. $A=[A_L, A_U] \in (IVFM)_n$ is said to be left k-pseudo-similar to $B=[B_L, B_U] \in (IVFM)_n$ and it is denoted by $A \cong_{\ell}^{I(k)} B$ if there exist $X=[X_L, X_U], Y=[Y_L, Y_U] \in (IVFM)_n$ such that $A = X^k BY$, B = YAX, $XYX^k = X^k$ and YXY = Y.

Remark 3.2. In particular, if $A_L=A_U$ and $B_L=B_U$ then Definition 3.2 and Definition 3.3 reduce to right (left) k- pseudo-similar fuzzy matrices studied in [6]. Further, for k=1, Definitions 3.2 and 3.3 are identical and reduced to pseudo-similar IVFM [Definition

3.1]. We observe that the right (left) k-pseudo similarity relation on IVFM is not transitive as in the case of pseudo similar fuzzy matrices [2].

Lemma 3.1. Let $A=[A_L, A_U]$, $B=[B_L, B_U] \in (IVFM)_n$. If $A \stackrel{I(k)}{\cong} B$ then we have the following:

(i) $A_L^k = X_L B_L^k Y_L$ and $A_U^k = X_U B_U^k Y_U$ (ii) $B_L Y_L X_L = Y_L X_L B_L = B_L$ and $B_U Y_U X_U = Y_U X_U B_U = B_U$ (iii) $A_L X_L Y_L = X_L Y_L A_L = A_L$ and $A_U X_U Y_U = X_U Y_U A_U = A_U$ (iv) $B_L^k = Y_L A_L^k X_L$ and $B_U^k = Y_U A_U^k X_U$

Proof: Since $A \cong^{I(k)} B$, A = XBY, $B = YAX^{k}$, $X^{k}YX = X^{k}$ and YXY = Y.

 $A = XBY \Longrightarrow A^2 = (XBY)(XBY) = X(BYX)BY$ (i) $BYX = (YAX^{k})YX = YA(X^{k}YX) = YAX^{k} = B$ Therefore, $A^2 = (XBY)(XBY) = X(BYX)BY = XBBY = XB^2Y$. Thus proceeding we get $A^k = XB^kY$. $A^{k} = XB^{k}Y \Longrightarrow [A_{I}, A_{II}]^{k} = [X_{I}, X_{II}][B_{I}, B_{II}]^{k}[Y_{I}, Y_{II}]$ $\Rightarrow [A_{I}^{k}, A_{U}^{k}] = [X_{I}, X_{U}][B_{I}^{k}, B_{U}^{k}][Y_{I}, Y_{U}] \Rightarrow A_{I}^{k} = X_{I}B_{I}^{k}Y_{I} \text{ and } A_{U}^{k} = X_{U}B_{U}^{k}Y_{U}.$ Thus (i) holds. $YXB = YX(YAX^{k}) = (YXY)AX^{k} = YAX^{k} = B$ (ii) $YXB = B \Longrightarrow [Y_L, Y_U][X_L, X_U][B_L, B_U] = [B_L, B_U] \Longrightarrow Y_L X_L B_L = B_L \text{ and}$ $Y_{II}X_{II}B_{II}=B_{II}.$ $BYX = B \Rightarrow [B_I, B_{II}][Y_I, Y_{II}][X_I, X_{II}] = [B_I, B_{II}] \Rightarrow B_I Y_I X_I = B_I$ and $B_{II}Y_{II}X_{II} = B_{II}$ AXY = (XBY)XY = XB(YXY) = XBY = A(iii) XYA = XY(XBY) = X(YXB)Y = XBY = A. $AXY = A \Longrightarrow [A_{I}, A_{II}][X_{I}, X_{II}][Y_{I}, Y_{II}] = [A_{I}, A_{II}]$ $\Rightarrow [A_I X_I Y_I, A_U X_U Y_U] = [A_I, A_U] \Rightarrow A_I X_I Y_I = A_I \text{ and } A_U X_U Y_U = A_U$ $XYA = A \Longrightarrow [X_L, X_U][Y_L, Y_U][A_L, A_U] = [A_L, A_U] \Longrightarrow [X_L Y_L A_L, X_U Y_U A_U] = [A_L, A_U]$ $\Rightarrow X_{I}Y_{I}A_{I} = A_{I}$ and $X_{II}Y_{II}A_{II} = A_{II}$. (iv) $B = YXB \Rightarrow B^{k} = YXB^{k} \Rightarrow B^{k} = YX(B^{k}YX) = Y(XB^{k}Y)X = YA^{k}X.$ $B^{k} = YA^{k}X \Longrightarrow [B_{I}, B_{II}]^{k} = [Y_{I}, Y_{II}][A_{I}, A_{II}]^{k}[X_{I}, X_{II}]B_{I}^{k} = Y_{I}A_{I}^{k}X_{I}$ and $\Rightarrow [B_I^k, B_I^k] = [Y_I, Y_{II}] [A_I^k, A_{II}^k] [X_I, X_{II}] \Rightarrow B_{II}^k = Y_{II} A_{II}^k X_{II}.$

Lemma 3.2. Let A=[A_L, A_U], B=[B_L, B_U] \in (IVFM)_n. If $A \approx_{\ell}^{I(k)} B$ then we have the following:

- $B_{I}^{k} = Y_{I} A_{I}^{k} X_{I}$ and $B_{II}^{k} = Y_{II} A_{II}^{k} X_{II}$ (i)
- $A_L X_L Y_L = X_L Y_L A_L = A_L$ and $A_U X_U Y_U = X_U Y_U A_U = A_U$ (ii)
- $B_{I}Y_{I}X_{I} = Y_{I}X_{I}B_{I} = B_{I}$ and $B_{II}Y_{II}X_{II} = Y_{II}X_{II}B_{II} = B_{II}$ (iii)
- $A_L^k = X_L B_L^k Y_L$ and $A_U^k = X_U B_U^k Y_U$ (iv)

Proof: This can be proved along the same lines as that of Lemma 3.1 and hence omitted.

Theorem 3.1. Let A, B \in (IVFM)_n such that $A \stackrel{I(k)}{\cong} B$. A is right (left) k-regular \Leftrightarrow B is right (left) k-regular.

Proof:

Since $A \stackrel{I(k)}{\cong} B$, A = XBY, $B = YAX^k$, $X^kYX = X^k$ and $YXY = Y \Longrightarrow$ $A_{L} = X_{L}B_{L}Y_{L}, B_{L} = Y_{L}A_{L}X_{L}^{k}, A_{U} = X_{U}B_{U}Y_{U} \text{ and } B_{U} = Y_{U}A_{U}X_{U}^{k}.$ By Lemma 3.1. $A_{I}^{k} = X_{I}B_{I}^{k}Y_{I}, A_{II}^{k} = X_{II}B_{II}^{k}Y_{II}, B_{I}Y_{I}X_{I} = Y_{I}X_{I}B_{I} = B_{I},$ $B_{U}Y_{U}X_{U} = Y_{U}X_{U}B_{U} = B_{U}, A_{L}X_{L}Y_{L} = X_{L}Y_{L}A_{L} = A_{L}, A_{U}X_{U}Y_{U} = X_{U}Y_{U}A_{U} = A_{U}$, $B_L^k = Y_L A_L^k X_L$ and $B_U^k = Y_U A_U^k X_U$. Let A be right k-regular. Then by Theorem 2.3, A_L and A_U are right k-regular. Since, A_L and A_U are right k-regular there exists $G=[G_L, G_U] \in (IVFM)_n$ such that $A_L^k G_L A_L = A_L^k$ and $A_U^k G_U A_U = A_U^k$. Choose U=YGX, U=[U_L, U_U] \in (IVFM)_n. $U = YGX \Rightarrow U_L = Y_L G_L X_L$ and $U_U = Y_U G_U X_U$. To prove that, B is right k-regular, let us prove that B_L and B_U are right k-regular. $B_{L}^{k}U_{L}B_{L} = (Y_{L}A_{L}^{k}X_{L})(Y_{L}G_{L}X_{L})B_{L} = Y_{L}(A_{L}^{k}X_{T}Y_{T})G_{L}(X_{T}B_{T})$ $=Y_{I}A_{I}^{k}G_{I}(X_{I}B_{I}Y_{I}X_{I})=Y_{I}A_{I}^{k}G_{I}(A_{I}X_{I})=Y_{I}(A_{I}^{k}G_{I}A_{I})X_{I}=Y_{I}A_{I}^{k}X_{I}=B_{I}^{k}$ $B_{U}^{k}U_{U}B_{U} = (Y_{U}A_{U}^{k}X_{U})(Y_{U}G_{U}X_{U})B_{U} = Y_{U}(A_{U}^{k}X_{U}Y_{U})G_{U}(X_{U}B_{U})$ $=Y_{U}A_{U}^{k}G_{U}(X_{U}B_{U}Y_{U}X_{U})=Y_{U}A_{U}^{k}G_{U}(A_{U}X_{U})=Y_{U}(A_{U}^{k}G_{U}A_{U})X_{U}=Y_{U}A_{U}^{k}X_{U}=B_{U}^{k}.$ Therefore, B_L and B_U are right k-regular. Hence by Theorem 2.3, B is right k-regular. Converse part follows by replacing A by B in the above proof. A is left k-regular \Leftrightarrow B is left k-regular can be proved in the same manner and hence omitted.

Hence the Theorem..

Theorem 3.2. Let A, B \in (IVFM)_n such that $A \stackrel{I(k)}{\cong}_{\ell} B$. A is right (left) k-regular \Leftrightarrow B is

right (left) k-regular.

Proof: This can be proved as that of Theorem 3.1 and hence omitted.

Remark 3.3. For k=1, Theorems 3.1 and 3.2 reduces to the following theorem.

Theorem 3.3. Let $A \in (IVFM)_m$ and $B \in (IVFM)_n$ such that $A \cong B$. Then A is a regular matrix \Leftrightarrow B is a regular matrix.

Remark 3.4. In particular, for fuzzy matrices, $A_L=A_U$ and $B_L=B_U$, Theorem 3.3 reduces to Theorem 2.1.

Lemma 3.3. Let A, $B \in (IVFM)_n$. If $A \cong_r^{I(k)} B$ then there exist X, $Y \in (IVFM)_n$ such that A = XBY, $B = YAX^k$ and XY is k-potent. Proof: Since $A \cong_r^{I(k)} B$, A = XBY, $B = YAX^k$, $X^kYX = X^k$ and YXY = Y. $(XY)^k = (XY)^{k-1}XY = (XY)^{k-2}XYXY = (XY)^{k-2}X(YXY) = (XY)^{k-2}XY = \dots = XY.$

Hence the proof.

Lemma 3.4. Let A, $B \in (IVFM)_n$. If $A \stackrel{I(k)}{\cong} B$ then there exist X, $Y \in (IVFM)_n$ such that $A = X^k BY$, B = YAX and YX is k-potent. Proof: Since $A \stackrel{I(k)}{\cong} B$, $A = X^k BY$, B = YAX, $XYX^k = X^k$ and YXY = Y. $(YX)^k = (YX)^{k-1}YX = (YX)^{k-2}YXYX = (YX)^{k-2}(YXY)X = (YX)^{k-2}YX = \dots = YX.$

Hence the proof.

Remark 3.5. For k=1, from Lemma 3.3 and Lemma 3.4 we get an equivalence condition for pseudo similar IVFM in the following:

Lemma 3.5. Let $A \in (IVFM)_m$ and $B \in (IVFM)_n$. Then the following are equivalent:

- (i) $A \cong B$
- (ii) There exist $X \in (IVFM)_{mn}$, $Y \in (IVFM)_{nm}$ such that A = XBY, B = YAXand $XY \in (IVFM)_m$ is idempotent.
- (iii) There exist $X \in (IVFM)_{mn}$, $Y \in (IVFM)_{nm}$ such that A = XBY, B = YAXand $YX \in (IVFM)_n$ is idempotent.

Proof:

(i) \Rightarrow (ii) and (i) \Rightarrow (iii) are trivial, since $XYX = X \Rightarrow XY \in (IVFM)_m$ and $YX \in (IVFM)_n$ are idempotent matrices.

(ii) \Rightarrow (i): A = XBY = X(YAX)Y = (XY)A(XY) = (XY)XBY(XY) = (XYX)B(YXY).

Similarly, B = YAX = (YXY)A(XYX). Put XYX = X' and YXY = Y'. Then, A = X'BY' and B = Y'AX'. Further using XY is idempotent, we get X'Y' = (XYX)(YXY) = XY and (X'Y')(X'Y') = (XY)(XY) = X'Y'. Thus X'Y' is idempotent. Set X'Y'X' = X'' and Y'X'Y' = Y''. Then, A = X'BY' = X'Y'AX'Y' = (X'Y'X')B(Y'X'Y'), therefore A = X''BY''. Similarly, B = Y''AX''. By using X'Y' is idempotent, we have

X''Y''X'' = (X'Y'X')(Y'X'Y')(X'Y'X') = X'Y'X' = X''. Therefore, $A \cong B$. Thus (i) holds.

(iii) \Rightarrow (i): Can be proved in the same manner and hence omitted.

Remark 3.6. In particular, if $A_L = A_U$ and $B_L = B_U$, Lemma 3.5 reduces to Lemma 2.1. Lemma 3.6. Let $A \in (IVFM)_m$ and $B \in (IVFM)_n$. Then the following are equivalent:

- (i) $A \cong B$ (ii) There exist $X \in (IVFM)_{mn}$, $Y \in (IVFM)_{nm}$ such that A = XBY, B = YAX, XYX = X and YXY = Y.
- (iii) There exist $X \in (IVFM)_{mn}$, $Y \in (IVFM)_{nm}$ such that A = XBY, B = ZAX, XYX = X = XZX.

Proof:

(i) \Rightarrow (ii): Since $A \cong B$, A = XBY, B = YAX and XYX = X. Let Y=Z, then B = ZAX and X = XZX as required. Thus (iii) holds. (iii) \Rightarrow (ii): Suppose there exist $X \in (IVFM)_{mn}$, Y, $Z \in (IVFM)_{nm}$ such that A = XBY, B = ZAX, XYX = X = XZX, then A = XBY = X (ZAX)Y = XZ (XBY)(XY) = (XZX)B(YXY) = XB(YXY) and B = ZAX = Z (XBY)X = ZX (ZAX)YX = (ZXZ)A(XYX) = (ZXZ)AX. Set YXY = Y' and Z' = ZXZ. Then, X = XYX = XY(XYX) = XY'X and X = XZX = XZ(XZX) = XZ'X. In addition, we have A = XBY' and B = Z'AX. Set Y'' = Z'XY'. Then XY''X = XZ'(XY'X) = XZ'X = X and Y''XY'' = Z'(XY'X)Z'XY' = Z'XY' = Y''. We directly check that XBY'' = A, Y''AX = B. Thus there exist $X \in (IVFM)_{mn}$, $Y'' \in (IVFM)_{nm}$ such that A = XBY'', B = Y''AX, XY''X = X and Y''XY'' = Y''. Thus (ii) holds. (ii) \Rightarrow (i): This is trivial.

Theorem 3.4. Let A, $B \in (IVFM)_n$. Then the following are equivalent.

(i)	$A \stackrel{I(k)}{\cong}_{r} B$
(ii)	$B^T \stackrel{I(k)}{\cong} A^T$

(iii)
$$PAP^T \stackrel{I(k)}{\cong} PBP^T$$
 for some permutation matrix $P=[P_L, P_U] \in (IVFM)_n$ with $P_L=P_U=P$.

Proof:

(i) \Leftrightarrow (ii): This is direct by taking transpose on both sides and by using $(A^T)^T = A$ and $(AX)^T = X^T A^T$.

(ii)
$$\Leftrightarrow$$
(iii): Suppose $A \cong B$ then $A = XBY$, $B = YAX^k$, $X^kYX = X^k$ and $YXY = Y$.
 $A = XBY \Rightarrow PAP^T = PXBYP^T = (PXP^T)(PBP^T)(PYP^T)$

$$B = YAX^k \Rightarrow PBP^T = PYAX^kP^T = (PYP^T)(PAP^T)(PX^kP^T)^k$$
(3.1)

$$= (PYP^{T})(PAP^{T})(PXP^{T})$$
(3.2)

$$X^{k}YX = X^{k} \Rightarrow PX^{k}P^{T} = PX^{k}YXP^{T} \Rightarrow PX^{k}P^{T} = (PX^{k}P^{T})(PYP^{T})(PXP^{T})$$

$$\Rightarrow (PXP^{T})^{k} = (PXP^{T})^{k}(PYP^{T})(PXP^{T})$$
(3.3)

$$Y = YXY \Longrightarrow PYP^{T} = PYXYP^{T} \Longrightarrow PYP^{T} = (PYP^{T})(PXP^{T})(PYP^{T})$$
(3.4)

Hence
$$PAP^T \stackrel{T(k)}{\cong} PBP^T$$

Conversely, suppose $PAP^T \stackrel{I(k)}{\cong}_{r} PBP^T$.

Pre multiply by P^T and post multiply by P in Equations (3.1) to (3.4), we get A = XBY, $B = YAX^k$, $X^kYX = X^k$ and YXY = Y. Hence $A \stackrel{I(k)}{\underset{r}{\cong}} B$. Hence the proof.

Theorem 3.5. Let A, $B \in (IVFM)_n$. Then the following are equivalent.

- (i) $A \stackrel{I(k)}{\underset{\ell}{\cong}} B$ (ii) $B^T \stackrel{I(k)}{\underset{r}{\cong}} A^T$
- (iii) $PAP^T \stackrel{I(k)}{\cong} PBP^T$ for some permutation matrix $P=[P_L, P_U] \in (IVFM)_n$ with $P_L=P_U=P$.

Proof: Proof of the theorem is similar to Theorem 3.4 and hence omitted.

Theorem 3.6. Let A, B \in (IVFM)_n. If $A \stackrel{I(k)}{\cong}_{r} B$ then $A^{k} \stackrel{I(k)}{\cong}_{r} B^{k}$. **Proof:**

Suppose
$$A \stackrel{T(K)}{\cong}_{r} B$$
 then $A = XBY$, $B = YAX^{k}$, $X^{k}YX = X^{k}$ and $YXY = Y$.
Prove that, $A^{k} \stackrel{T(k)}{\cong}_{r} B^{k}$.
By Lemma [3.1] (i), $A^{k} = XB^{k}Y$.

Next, let us prove that, $B^k = YA^k X^k$. By Lemma [3.1] (ii), $BYX = YXB = B \Rightarrow$ $B^{k} = YXB^{k} = YXB^{k-1}B = YXB^{k-1}(YAX^{k}) = Y(XB^{k-1}Y)AX^{k} = Y(A^{k-1})AX^{k} = YA^{k}X^{k}$

Hence $A^k \cong^k B^k$.

Theorem 3.7. Let A, B \in (IVFM)_n. If $A \stackrel{I(k)}{\cong}_{\ell} B$ then $A^k \stackrel{I(k)}{\cong}_{\ell} B^k$.

Proof:

This is similar to Theorem 3.6 and hence omitted.

Remark 3.7: As a special case of Theorem 3.5, Theorem 3.6 and Theorem 3.7 for k=1, we have the following:

Theorem 3.8. Let $A \in (IVFM)_m$ and $B \in (IVFM)_n$. Then the following are equivalent.

- $A \cong^{I} B$ (i)
- $A^T \stackrel{I}{\cong} B^T$ (ii)
- $A^{k} \stackrel{I}{\cong} B^{k}$, for any integer k ≥ 1 . (iii)
- $PAP^{T} \cong PBP^{T}$, for some permutation matrix $P=[P_{L}, P_{U}] \in (IVFM)_{n}$ with (iv) $P_{\rm L}=P_{\rm U}=P$. (v)

Remark 3.8. In particular, if $A_L = A_U$ and $B_L = B_U$, Theorem 3.8 reduces to Theorem 2.2.

REFERENCES

- 1. K.H.Kim and F.W.Roush, Generalized fuzzy matrices, Fuzzy Sets and Systems, 4 (1980) 293-315.
- 2. AR.Meenakshi, Pseudo similarity in semi groups of fuzzy matrices, Proc. Int. Symp. on semi groups and Appl. Aug 9-11, 2006, Univ. of. Kerala, Trivandrum, 64-73.
- 3. AR.Meenakshi and M. Kaliraja, Regular interval valued fuzzy matrices, Advances in Fuzzy Mathematics, 5(1) (2010) 7-15.
- 4. AR. Meenakshi and P. Jenita, Generalized regular fuzzy matrices, Iranian Journal of Fuzzy Systems, 8(2) (2011) 133-141.
- 5. AR.Meenakshi and P. Poongodi, Generalized regular interval valued fuzzy matrices, International Journal of Fuzzy Mathematics and Systems, 2(1) (2012) 29-36.
- 6. AR. Meenakshi and P. Jenita, k-Pseudo-similar fuzzy matrices, communicated.
- 7. A.K.Shyamal and M.Pal, Interval-valued fuzzy matrices, Journal of fuzzy Mathematics, 14(3) (2006) 582-592.