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Abstract. In this paper the double dominating energy of a graph is introduced. The double
dominating energy of a crown graph, cocktail party graph and complete graph are
computed.
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1. Introduction

The concept of energy of a graph was introduced by I. Gutman [1], in the year 1978. Let
G be a graph with n vertices and m edges and let A = (a;;) be the adjacency matrix of the
graph. The eigen values Ay, Ay, A3, ..., A, of A, assumed in non-decreasing order
M=M= A3 ... 2\, are the eigen values of the graph G. Since A(G) is real and
symmetric, its eigen values are real numbers. The energy E(G) of G is defined to be the

sum of the absolute values of its eigen values of G. That is E(G) = i [\
i=1

In HMO Theory, the total energy of the xelectrons is equal to the sum of the
energies of all 7 -electrons in the considered molecule. It can be calculated from the eigen
values of the underlying molecular graph [2, §].

Similar to energies like Laplacian energy, distance energy, minimum covering
energy, incidence energy [3,4, 5, 6, 7], the double dominating energy is defined in this
paper and same is found out for some graphs.

2. Double dominating energy

Let G be a simple graph of order n with vertex set V = {vy, v,, vs, ... ,v4} and edge set E.
A subset D'c V is a double dominating set if D’ is a dominating set and every vertex of V
— D’ is adjacent to atleast two vertices in D’. The Double Domination number 7,,(G) is
the minimum cardinality taken over all the minimal double dominating sets of G.
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Let D' be the minimum double dominating set of a graph G. The minimum double
dominating matrix of G is the n x n matrix defined by Ap(G) = (aij )where
1 ifvyv,eE
a; = ¢1 ifi=jandv, €D’
0 otherwise
The characteristic polynomial of Ap/(G) is denoted by fn(G, 1) = det(Al — Ap(G).
The minimum double dominating eigen values of the graph G are the eigen values of
Ap(QG).
Since Ap(G) is real and symmetric, its eigen values are real numbers and are labelled

in non-increasing order A; > Ay >A3>... 2> A,. The minimum double dominating energy
of G is defined as

Ex(G)= 3[2,1

Example 2.1. Let G be a cycle C4 on 4 vertices u;, u, u3, uy with minimum double
dominating set D' = {u;, u3}. Then

1
0
Ap(Cy) = 1
0

=
e e e =)
—_— O

0
The characteristic polynomial of Ap(Cy) is A*— 2% — 34 + 42, the minimum double

1+\/ﬁ 1—Jﬁ
2 2

>

dominating eigen values are 0, 1, , and the minimum double dominating

energy is Ep(Cy) = 1+/17.

3. Properties of double dominating energy
Theorem 3.1. Let G be a graph with n vertices and m edges.

If A, Ao As, e, A, are the eigen values of Ap(G), then i kf = 2|E| + D'
i=1

Proof :
The sum of square of the eigen values of Ap(G) is the trace of Ap(G)™.

27\‘12 - i i al_]ajl

i=1 i=1j=1

n 2 ’ '
=23 (a;) + ;(aﬁ) =2|E|+|D'|=2m+|D'|.

Theorem 3.2. Let G be a simple graph with n vertices, m edges and let D' be a double
dominating set of G and F = |detAp/(G)| then

J2m + |D'| +n(@-D)f*" < E,(G) < /n2m + D))

Proof :
LetA;2A2232...2 4 be the eigen values of Ap(G). By Cauchy-Schwarz inequality,
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(ab) < ()2 (02))
leta; =1, b;=| A |,
Ep(G) = (-i“‘i |)2 < n(ilm |2)= nﬁle = nQ2m+|D'|
Ep(G) <y/n2m+|D’|
Eo@F = (181 = 10 F+ 21 1)

From the inequality between the arithmetic and geometric mean, we obtain
1

Sl 13 {Hmmj"("”

n(n_l)lij i%j

4| >n(n—l){H| h P ”} o

>n(n-1) H|x @
11 }

2n(n-1)

ENEN)

Zn(n-D|[ 12 |

2
% | |4 |2n@-1E

1#j
[Ex(GF 234 F +n@- DE"
i=1
>(2m + |D'|+n(n- F*"
[Ex(G)] >\/@m + |D'|+n(n- 1)F"

Bapat and Pati showed that if the graph energy is a rational number, then it is an even
integer [9]. The analogous result for minimum double dominating energy is given in the
following theorem.

Theorem 3.3. Let G be a graph with a minimum double dominating set D’. If the
minimum double dominating energy Ep(G) is a rational number, thenEp(G) =

|D’|(mod2).
Proof: Let Ay, Ay, A3, . . . ,A, be the minimum double dominating eigen values of a graph
G of which A4, A,, . . . ,A; are positive and the remaining are non-positive, then
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Ep(G) =+t .. .. ) = st . +4.)
=20+ Aot ... ) - (Mt )
=2+ At ... +h) - DN

i=1

=2+t ..., +2) - |D|
En(G) =|D'|(mod2)

4. Double dominating energies of some families of graphs

Definition 4.1. The crown graph S. for an integer n > 2 is the graph with vertex set{u,
Uy, oonn Un, VI, V2, o v v . vny and the edge set {ujvj: 1 <1,j<n,1#j}.

Theorem 4.2. For n >4, the double dominating energy of the crown graph S,° is equal
to

2+2(n-3)+ \/n2—2n+9 +\/n2+2n—7

Proof:
The crown graph Sg with vertex set v= {u;, uy, ..... Un, VI, V2, v . Va},
the minimum double dominating set D’ = {uy, uy, vy, v»,}.

1 o0 - 00O0T1T1 -1

o010 .--01T0T1 -1

0000110 -1

ThenAD,(Sﬁ)= 000 01 1 1 0
0 1 1 1100 0
1 0 1 1 010 0
1 10 1 0 00 0
1110000 - O]
characteristic polynomial is
A-1 0 0 -~ 0 0 -1 -1 - 1]
0O -1 0 - 0 -1 o -1 .- -1
0 o » - 0 -1 -1 0 - -1
0 0 O Ao -1 -1 -1 0
0 -1 -1 -1 A-1 0 O 0
-1 0 -1 -1 0 A-1 0 0
-1 -1 0 -1 0 0 A 0
-1 -1 -1 0 O 0 0 A

characteristic equation is
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AMA=2)A+D" A=) (W +(n=3)A-(2n—-4)(A* - (n—-D)A-2) =0
Minimum double dominating eigen values are
A=0,A=2,A=-1,(n—3 times), L = 1 (n— 3 times)
5 = (n=1) + Vn*-2n+9
2
2 = (3-n) £ Vn’+2n-7
2
Minimum double dominating energy

Ey () =2+2(n-3)+/n>—2n+9 +/n>+2n—7

(one time each)

(one time each)

Theorem 4.3. The double dominating energy of the complete graph K, is equal to

(n-3)++/n*-2n+9.

Proof:
The complete graph K, with vertex set v = {v;, vo, . . . .. Va}, the minimum double
dominating set D' = {vy, v,}. Then
111 1 1]
111 1 1
110 1 1
Ay K, )=
»(K,) 1110 1
i r1r - 1 0]
characteristic polynomial is
A-1 -1 -1 -1 - —1]
-1 A-1 -1 -1 - -1
-1 -1 x -1 - -1
-1 -1 -1 A - -1
-1 -1 -1 -1 - X

characteristic equation is
MA+D" (A —(n—-DA-2)=0
Minimum double dominating eigen values are
A=0,A=-1(n-3 times)

o (=D * Vn?-2n+9
2
Minimum double dominating energy

E,(K,) =(n-3)++n’-2n+9

(one time each)
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Definition 4.4. The cocktail party graph is denoted by K,.,, is a graph having the vertex

setV= O {ui , V, } and the edge set
i=1

E= {u.u.

U, Vvl 7&]} v/ {u.v. viu; il 1<) < n}

i°]?

Theorem 4.5. The minimum double dominating energy of cocktail party graph K, is

(2n-3)++/4n’ —4n +9.

Proof:

12 i

Let K be the cocktail party graph with vertex set V= J{u,,v;}. The minimum
i=1

double dominating set is D’ = {uy, v;}. Then

1 0 1 1 1 1 11
01 1 1 1 1 1 1
1 100 1 1 11
1 100 I 1 11
AD'(KnXZ): o . .
I 1 11 0 0 11
1 1 1 1 0 0 1 1
1 1 11 1 100
111 11 1 1 0 0]
characteristic polynomial is
A-1 0 -1 -1 - -« -1 -1 -1 -1
o -1 -1 -1 - -~ -1 -1 -1 -1
-1 -1 A 0 -1 -1 -1 -1
-1 -1 0 x - - -1 -1 -1 -1
-1 -1 -1 -1 A0 -1 -1
-1 -1 -1 -1 0 » -1 -1
-1 -1 -1 -1 -« - -1 =1 A 0
! -1 -1 -1 - o =1 -1 0 A

characteristic equation is

A -D(A+2)" (M —(2n—-3)A—2n) =0
Minimum double dominating eigen values are

A =0(n-1 times) ,A = 1,A = -2(n-2 times)
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5 (2n-3) + \4n® —4n +

5 2 (one time each)

Minimum double dominating energy

E, (K. ,)=1+2(N—2)+v4n> —4n+9= (2n-3)+ v/4n®> —4n +9.

5. Conclusion
Thus in this paper, the new energy namely the double dominating energy is defined and
has been found for some graphs.
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