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Abstract. A topological representation of a molecule is called molecular graph. A 
molecular graph is a collection of points representing the atoms in the molecule and set of 
lines representing the covalent bonds.  These points are named vertices and the lines are 
named edges in graph theory language. One of the most widely known topological 
descriptors is Wiener index.  It is named after chemist Harold Wiener who introduced in 
the year 1947.  The Wiener index W (G) is a distance-based topological invariant much 
used in the study of the structure-property and the structure-activity relationships of 
various classes of biochemically interesting compounds. It is defined by the sum of the 
distances between all (ordered) pairs of vertices of G.  In this paper, we find the Wiener 
index of switching the consecutive vertices in a cycle, path graphs. 
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1. Introduction 
The Wiener index W(G) is a distance-based topological invariant much used in the study 
of the structure-property and the structure-activity relationships of various classes of 
biochemically interesting compounds  introduced  by Harold Wiener in 1947 for 
predicting boiling points   b.p of alkanes based on the formula  

γβα ++= )3(. wWpb  
where γβα ,, are empirical constants, and w(3) is called path number [1,9]. 
It is defined as the half sum of the distances between all pairs of vertices of G. 
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where d(u,v) is the number of edges in a shortest path connecting the vertices u and v in 
G. 

Notation: [1,10] ∑∑∑
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2. Definitions and preliminaries 
Ournotationisstandardandmainlytakenfromstandardbooksofgraphtheory.In this paper, we 
consider finite, nontrivial, simple and undirected graphs.  For a graph G, we denote by 
V(G) and E(G), its vertex and edge sets, respectively [2,3,4]. 
Let G = G(V;E) be a finite, simple graph. For a vertex v∈V, theoperation of switching at 
v transforms G to a new graph Gv by deleting alledges adjacent to v, and adding all 
potential edges from v to vertices notpreviously connected. This operation is known as 
vertex switching, nodeswitching, or Seidel Switching. It was originally introduced by 
J.H. van Lint and J.J. Seidel in 1966 as a tool to study equilateral point sets in elliptic 
spaces [5,8]. 

In 1973, J.J. Seidel  was discussed about switching in ‘A survey of two-graphs’ 
as  the operation of switching is an elegant example of a graph transformation, where the 
global transformation of a graph is achieved by applying local transformations to the 
vertices. The elegance stems from the fact that the local transformations are group 
actions, and hence basic techniques of group theory can be applied in developing the 
theory of switching. For a finite undirected graph G = (V;E) and a subset σ⊆  V , the 
switch of G by σ is defined as the graph G σ = (V;E’), which is obtained from G by 
removing all edges between σ and its complement V - σ and adding as edges all non-
edges between σ and V - σ. The switching class [G] determined (generated) by G consists 
of all switches G σ for subsets σ⊆ V [6]. 

In this paper, In particular we consider σbe the set of {1,2,….t} consecutive 
verticesand σ⊂ V. In this article, we have given MATLAB Program for computing 
Adjacency matrix of switching the consecutive vertices in a Cycle Cn and Path Pn. This 
article is the continuation of the work [7] in which we had given MATLAB Program for 
computing Wiener index. 
 
3. Switching the vertices in a cycle Cn 
Lemma3.1. Let G be a cycle with n vertices and switching any one of its vertices then  

����� � � �� 	 1�� �� � � 4,5
�� 	 � 	 3 �� � � 6.� 

Proof: Let v1,v2, …,vn  be the successive vertices of Cn and Gv denotes graph obtained by 
switching one of the vertex v of G= Cn. Without loss of generality, let the switched vertex 

be v1. We note that )(
1v

GV = n and )(
1v

GE =2n-5.It follows immediately from the 

basic definition of W(G). 
 
 
  
 

 
Figure 1: Switching a arbitrary vertex in C5 

 

Now we see, switching of  t consecutive vertices in a cycle. We note that in a 
cycle with n vertices, maximum possibility of switching vertices be n-3. If it exceeds n-3, 
the graph becomes disconnected.Finding Wiener indices of the above switched graphs are 
very difficult when we switch the ‘t’ consecutive vertices. 
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Theorem 3.2. Let G be a cycle with n vertices and switching t consecutive vertices then  
W(

ivG )  = n2-(n-1)t+t2-5  for 1≤ t ≤ n-5,   for all n≥6 

               = n2-3n+6            for t = n-4,        for all n≥5 
               = (n-1)2                        for t =n-3,         for all n≥4. 
 
 
 
 
 
 
 
 
 
 
 

  

  

Switching of  t consecutive vertices in a cycle Cn,where  4≤n≤15 and 1≤t≤n-3. 
 

 
Table 1: Programme for Finding Wiener index of a cycle Cn, by switching  t consecutive 

vertices   
 
MATLAB programme: 
 
n= input('Cycle with vertices n='); 
t= input('No. of consecutive  switching vertices t='); 
A=[]; 

 
 
 
 
 
 
W(����  

n\t 1 2 3 4 5 6 7 8 9 10 11 12 

4 9            
5 16 16           
6 27 24 25          
7 39 36 34 36         
8 53 49 47 46 49        
9 69 64 61 60 60 64       
10 87 81 77 75 75 76 81      
11 107 100 95 92 91 92 94 100     
12 129 121 115 111 109 109 111 114 121    
13 153 144 137 132 129 128 129 132 136 144   
14 179 169 161 155 151 149 149 151 155 160 169  
15 207 196 187 180 175 172 171 172 175 180 186 196 

Figure 2: Switching two consecutive 
vertices in C8 

Figure 3: Switching five consecutive 
vertices in C8 
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if n>=3&&t<=n-3 
for j=t+2:n-1 
for k=1:t 
for i=t+1:n-1 
A(i,i+1)=1;A(i+1,i)=1; 
end 
A(k,j)=1;A(j,k)=1; 
end 
end 
A; 
G = sparse(A); 
disp('Distance matrix') 
DM = graphallshortestpaths(G,'directed',false) 
M=sum(sum(DM)); 
fprintf('Wiener index of switching, W = %d \n' , M/2) 
elseif n==3||t>(n-3)  
disp('Switching does not exist') 
end 
 
4. Switching the vertices in a path Pn 

 
Lemma 4.1. Let G be a path with n vertices and switching one of its end vertices then  
W(Gv) = (n-1)2   for n = 3 
            = n(n-2) for n ≥ 4 
 
Proof: Let v1,v2, …,vn  be the successive vertices of Pn and Gv denotes the graph obtained 
by switching of  any one of its end vertex v of G= Pn. Without loss of generality, let the 
switched vertex be v1.  

We note that )(
1v

GV = n and )(
1v

GE =n+1. It follows immediately from the basic 

definition of W(G). 
 
 
  
 
 
 

 
Figure 4: Switching a end vertex in P4 

 
Now we see, switching of t consecutive vertices in a Path.We note that in a Path with n 
vertices, maximum possibility of switching vertices  be n-2. If it exceeds n-2, the graph 
tends to disconnected.  
 
Theorem 4.1. Let G be a Path with n vertices and switching t consecutive vertices 
{1,2,…t} then  
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W(
ivG )  = n2–n+ t(1-n)+t2-2,1≤t≤n-3,n≥5 

              = n(n-2)for t = n-3 for all n=4. 
              = (n-1)2 for t = n-2 for all n≥3. 
 
  
 

 
 
 
 
 

 
 

Table 2: The above table illustrates Switching of  t consecutive vertices in a path Pn, 
Where 3≤ n ≤ 15 and 1≤ t ≤ n-2 

 

 
 
 
 
 
 
 
W(   

n\t 1 2 3 4 5 6 7 8 9 10 11 12 13 

3 4             
4 8 9            
5 15 14 16           
6 24 22 22 25          
7 35 32 31 32 36         
8 48 44 42 42 44 49        
9 63 58 55 54 55 58 64       
10 80 74 70 68 68 70 74 81      
11 99 92 87 84 83 84 87 92 100     
12 120 112 106 102 100 100 102 106 112 121    
13 143 134 127 122 119 118 119 122 127 134 144   
14 168 158 150 144 140 138 138 140 144 150 158 169  
15 195 184 175 168 163 160 159 160 163 168 175 184 196 

Figure 5:  Switching 2 consecutive 
vertices in P5, 

Figure 6: Switching 3 consecutive 
vertices inP5 
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Figure 7: Comparison of Wiener index of cycle with respect to switching vertices 

Figure 8: Comparison of Wiener index of path with respect to switching vertices 
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5. Conclusion 
In this paper, we have determined the Wiener index of switching a particular vertex, 
consecutivevertices in a cycle, pathgraphsand compared the maximum and minimum 
Wiener indices with respect to the switching vertices in MATLAB Approach. 
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