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Abstract. Hajos Fuzzy graph is a new fuzzy graph obtained by applying a binary operation, 

named Hajos construction, on two fuzzy graphs. The Hajos construction on two (fuzzy) 

graphs produces many different (fuzzy) graphs depending on the choice of vertices and 

edges. The cardinality of Hajos (fuzzy) graphs is the total number of Hajos (fuzzy) graphs 

from two given Hajos (fuzzy) graphs. Here, the cardinality of Hajós fuzzy graphs are 

determined for any two fuzzy graphs based on the permutations and combinations 

method.is By this concept, the cardinality of Hajós (fuzzy) graphs is derived for the 

combinations of the two (fuzzy) graphs, such as the fan graph, lollipop graph, friendship 

graph, tadpole graph and crown graphs. 
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I. Introduction 

Graph theory is an emerging research field with numerous applications in real-life 

problems.  Due to uncertainty in real-life problems which weighted crisp graphs cannot 

address, there is a need for fuzzy graph theory. Fuzzy graph theory is an extension of graph 

theory, which plays a crucial role in real-world circumstances like medical diagnosis, social 

network analysis, and natural language processing. Rosenfeld initially introduced fuzzy 

graph theory in 1975 [10].  Yamuna and Karthika have studied the Hajos stable graphs in 

a note on Hajos stable graphs [12]. Juan Carlos García-Altamirano, Mika Olsen, Jorge 

Cervantes-Ojeda studied the methods to obtain symmetric cycles and symmetric cycles of 

length 5 in their works How to construct the symmetric cycle of length 5 using Hajós 

construction with an adapted Rank Genetic Algorithm [5] and Computational complexity 

of Hajós constructions of symmetric odd cycles [6].  

The preliminaries that we have studied to develop our new concepts are as follows: 
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Let G1 and G2 be any two graphs, (𝑢1, 𝑣1) be an edge of G1 and (𝑢2, 𝑣2) be an edge 

of G2.  Then the Hajós construction produces a different graph H that combines the two 

graphs by 

i. Merging vertices 𝑢1  and 𝑢2 into a single vertex 𝑢12 

ii. Eliminating the two edges (𝑢1, 𝑣1)  and  (𝑢2, 𝑣2) 
iii. Adding a new edge (𝑣1, 𝑣2).[12]  

A fuzzy graph G is defined as an ordered pair G: (σ, µ) on graph G* : (V, E) where 

V is the set of vertices, a vertex is also called a node, and E is the set of edges which is a 

subset of V ×V, the membership functions are σ : V → [0, 1] and µ: V ×V → [0, 1].[10] 

A path graph is a graph whose vertices can be arranged as v1, v2, ⋯, vn so that the edges of 

the path are 𝑣𝑖𝑣𝑖+1, i = 1, 2, … , n − 1. [1] 

Friendship graph, is  a set of n triangles having a common central vertex.[11] 

A fan graph Fm,n is defined as the graph join 𝐾𝑚+ 𝑃𝑛 where is the empty graph on m nodes 

and Pn is the path graph on n nodes. The case m=1 corresponds to the usual fan graphs, 

while m=2 corresponds to the double fan graphs, etc.,[4] 

A lollipop graph by combining the complete graph 𝐾𝑚 and the path graph 𝑃𝑛 with 

a bridge (edge) so that the lollipop graph notation is 𝐿𝑚,   𝑛for any natural number 𝑚 and 

𝑛.[7] 
A crown graph (also known as a cocktail party graph) 𝐻𝑛,   𝑛   is a graph 

obtained from the complete bipartite graph 𝐾𝑛,   𝑛    by removing a perfect 

matching. Formally,  𝑉(𝐻𝑛,   𝑛 ) = { 1
′,⋯ , 𝑛′, 1,⋯ , 𝑛} and  𝐸(𝐻𝑛,   𝑛 ) = { 𝑖𝑗

′/ 𝑖 ≠
 𝑗′}.[8] 

Tadpole graph (𝑇𝑚,𝑛) is defined as a graph obtained by combining a vertex of cycle 

graph 𝐶𝑚 with one of the leaf of path graph 𝑃𝑛. Suppose that the vertices and edges in the 

tadpole graph are notated as follows.  𝑉(𝑇𝑚,   𝑛 ) = {𝑢𝑖;  𝑖 = 1, 2,⋯ , 𝑛} ∪ {𝑣𝑗;  𝑗 = 1,

2,⋯ , 𝑛}  𝐸(𝑇𝑚,   𝑛 ) = {𝑢1𝑢𝑚, 𝑢𝑖𝑢𝑖+1;  𝑖 = 1, 2,⋯ ,𝑚 − 1} ∪ {𝑢1𝑣1}  ∪ { 𝑣𝑖𝑣𝑖+1;  𝑖 =
1, 2,⋯ , 𝑛 − 1}.[2] 

The total number of Hajos graphs that can be constructed from two graphs 𝐺1* and 

𝐺2* is defined as the cardinality of Hajos graph from 𝐺1* and 𝐺2*. It is denoted by 

C(H[𝐺1*; 𝐺2*]) or by |H[𝐺1 ∗; 𝐺2 ∗]|, where H[𝐺1*; 𝐺2*] denotes the set of all Hajos 

graphs from 𝐺1* and 𝐺2*.[9] 

The total number of Hajos fuzzy graphs that can be obtained from two fuzzy graphs 

𝐺1 and 𝐺2 is defined as the cardinality of Hajos fuzzy graph from 𝐺1 and 𝐺2. It is denoted 

by C(H[𝐺1; 𝐺2]) or by |H[𝐺1;  𝐺2]|, where H[𝐺1; 𝐺2] denotes the set of all Hajos fuzzy 

graphs from 𝐺1 and 𝐺2. 

(i) If 𝐺𝑖* and 𝐺𝑖
′* are isomorphic graphs, i = 1, 2, then C(H[𝐺1*; 𝐺2*]) = 

C(H[𝐺1′*; 𝐺2′*]).  

(ii) (ii)  If 𝐺𝑖 and 𝐺𝑖′ are isomorphic fuzzy graphs, i = 1, 2, then C(H[𝐺1; 𝐺2]) = 

C(H[𝐺1′ ; 𝐺2′]).[9] 

 

2. Methodology 

Here, the Hajós construction is applied on fuzzy graphs. Hajós construction is one of the 

effective ways that are used to combine two networks. The Hajós fuzzy graph is a fuzzy 

graph obtained by applying the binary operation, namely Hajós construction, on two fuzzy 

graphs. The cardinality of Hajós (fuzzy) graph are obtained.  
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Definition 2.1. Let 𝐺1: (𝜎1, 𝜇1) and G2:(𝜎2,  𝜇2) be two fuzzy graphs on G1* :(V1, E1) and 

G2*:(V2, E2) respectively. Let u1v1 be any edge in G1 and u2v2 be any edge in G2. The Hajós 

fuzzy graph of G1 and G2 with respect to the edge-vertices u1v1 – u1 and u2v2 – u2, denoted 

by 𝐻[𝐺1(𝑢1𝑣1; 𝑢1), 𝐺2(𝑢2𝑣2; 𝑢2)]: (𝜎, 𝜇) on 𝐻*:(𝑉, 𝐸) where 𝑉 = (𝑉1 – {𝑢1}) ∪
 (𝑉2 – {𝑢2})  ∪ {𝑢1 ∙  𝑢2  } 𝑎𝑛𝑑 𝐸 =  (𝐸1 – {𝑢1𝑣1})  ∪  (𝐸2– {𝑢2𝑣2})  ∪ {𝑣1𝑣2} is 

constructed as follows: 

(i) Merge the vertices 𝑢1 in 𝐺1 and 𝑢2  in 𝐺2 into a new single vertex 𝑢1 ∙  𝑢2  with 

membership value σ(𝑢1 ∙  𝑢2 ) = 𝜎1(𝑢1) ∨ 𝜎2(𝑢2). 

(ii) Remove the edges 𝑢1𝑣1 in 𝐺1 and 𝑢2𝑣2 in 𝐺2.    

(iii) Insert a new edge 𝑣1𝑣2 in 𝐻 with membership value µ (𝑣1𝑣2)  =  𝜇1(𝑢1𝑣1)  ∧
  𝜇2(𝑢2𝑣2). 
       The edges 𝑣𝑤   𝐸𝑖  – {𝑢𝑖𝑣𝑖} are of two types:  

𝑣𝑤 ∈ 𝐸𝑖 , 𝑣 ≠ 𝑢𝑖, 𝑤 ≠ 𝑢𝑖;   𝑣 ∈ 𝑉𝑖, 𝑤 = 𝑢1 ⋅ 𝑢2, i = 1, 2.  Assign the membership values 

for these edges as 

µ(vw) = 

{
 

 
µ1(𝑣𝑤),    𝑖𝑓 𝑣𝑤 ∈ 𝐸1, 𝑣 ≠ 𝑢1, 𝑤 ≠ 𝑢1
 𝜇2(𝑣𝑤),     𝑖𝑓 𝑣𝑤 ∈  𝐸2, 𝑣 ≠ 𝑢2, 𝑤 ≠ 𝑢2
𝜇1(𝑣𝑤), 𝑖𝑓 𝑣 ∈ 𝑉1, 𝑤 = 𝑢1 ∙  𝑢2      

𝜇2(𝑣𝑤),  𝑖𝑓 𝑣 ∈ 𝑉2, 𝑤 = 𝑢1 ∙  𝑢2          

 

 (iv) For all the vertices v ≠ ui i=1, 2, assign their membership value as 

σ(v) = {
𝜎1 (𝑣), 𝑖𝑓 𝑣 ∈ 𝑉1
𝜎2 (𝑣), 𝑖𝑓 𝑣 ∈ 𝑉2

 

Let us verify that 𝜎 and µ satisfy the conditions of fuzzy graph. 

Let 𝑣𝑤 be any edge of 𝐻. Then 𝑣𝑤   𝐸𝑖  – {𝑢𝑖𝑣𝑖}  or 𝑣𝑤 = 𝑣1𝑣2. 

If vw ∈ E1, 𝑣 ≠  𝑢1, 𝑤 ≠ 𝑢1, 𝜇(𝑣𝑤) = 𝜇1(𝑣𝑤)  ≤ 𝜎1(𝑣) ∧ 𝜎1(𝑤)  =  𝜎 (𝑣) ∧  𝜎 (𝑤). 
If vw ∈ E2, 𝑣 ≠ 𝑢2, 𝑤 ≠ 𝑢2, 𝜇(𝑣𝑤) = 𝜇2(𝑣𝑤)  ≤ 𝜎2(𝑣) ∧ 𝜎2(𝑤)  =  𝜎 (𝑣) ∧  𝜎 (𝑤). 
For any edge v (𝑢1 ∙  𝑢2)  with v ∈ 𝑉1,  µ(𝑣(𝑢1 ∙  𝑢2)) = 𝜇1(𝑣𝑢1) ≤ σ1(𝑣) ∧ σ1(𝑢1)  ≤
 σ1(𝑣) ∧ (σ1(𝑢1) ∨  σ1(𝑢2))  =  σ (𝑣) ∧  σ ((𝑢1 ∙  𝑢2)). 
Similarly for any edge v(𝑢1 ∙  𝑢2) with v ∈ 𝑉2, µ(v(𝑢1 ∙  𝑢2))  ≤ σ (𝑣) ∧  σ ((𝑢1 ∙  𝑢2)). 
For the new edge 𝑣1𝑣2 in H,  

𝜇(𝑣1𝑣2) = 𝜇(𝑢1𝑣1) ∧  𝜇(𝑢2𝑣2)   ≤ σ1(𝑢1) ∧ σ1(𝑣1) ∧ σ2(𝑢2) ∧ σ2(𝑣2)  ≤  σ1(𝑣1)  ∧
 σ2(𝑣2) 

      =  σ (𝑣1) ∧  σ (𝑣2).  
Therefore for all the edges vw in H, µ (vw) ≤ σ (𝑣) ∧  σ (𝑤) 
Hence 𝐻[𝐺1(𝑢1𝑣1; 𝑢1), 𝐺2(𝑢2𝑣2; 𝑢2)]: (𝜎, 𝜇) is a fuzzy graph, called the Hajós fuzzy 

graph on G*(V, E). 

 

Example 2.1. F2 and F4 are two fuzzy graphs from which u3 and V6 are identified 

respectively and the edges u3u4  and V5 V6 are deleted to form a new edge namely u4V5 

whose membersip value is 𝜇(u4V5) = 0.1 and new vertex u3∙V6 formed with a membership 

value 𝜎(u3∙V6) = 0.8 
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3. Results and discussions 

3.1. Cardinality of Hajós graphs and Hajós fuzzy graphs on fan graph, lollipop graph, 

friendship graph, tadpole graph and crown graph 

In this chapter, the cardinality of Hajós Fuzzy Graphs is derived from the combinations of 

the graphs, such as the Fan Graph, Lollipop Graph, Friendship Graph, Tadpole graph and 

Crown Graphs. 

 

Theorem 3.1. The number of Hajós graphs that can be constructed from the underlying 

crisp graphs 𝐺1* and 𝐺2* is the same as the number of Hajós  fuzzy graphs that can be 

constructed from the fuzzy graphs 𝐺1 and 𝐺2. 

 

Theorem 3.2. Let Gi*(Vi, Ei), i = 1, 2 be two Fan Graphs 𝐹𝑛𝑖,   𝑚𝑖
. Then the number of 

Hajós graphs that can be obtained from Gi*, i = 1, 2  is 4(𝑚1𝑛1 +  𝑛1 − 1) (𝑚2𝑛2 +  𝑛2 −
1). 
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Proof: Let V1 = { 𝑣11, 𝑣12,⋯ , 𝑣1𝑚1
, 𝑣21, 𝑣22,⋯ , 𝑣2𝑛1} and V2 = 

{𝑢11, 𝑢12, ⋯ , 𝑢1𝑚2
, 𝑢21, 𝑢22,⋯ , 𝑢2𝑛2} be the vertex sets of G1* and G2* respectively, 

where  𝑣11𝑣12⋯𝑣1𝑚1
 and 𝑢11𝑢12⋯𝑢1𝑚2

 are the paths of the G1* and G2* respectively. 

Let the remaining vertices 𝑣21, 𝑣22,⋯ , 𝑣2𝑛1 of G1* and 𝑢21, 𝑢22,⋯ , 𝑢2𝑛2G2* be the 

vertices of 𝐾𝑛1
̅̅ ̅̅ ̅ and 𝐾𝑛2

̅̅ ̅̅ ̅ respectively. Let 𝑖 ∈ {1, 2,⋯ ,𝑚1}, 𝑗 ∈ {1, 2,⋯ , 𝑛1}, 𝑘 ∈
{1, 2,⋯ ,𝑚2} and  𝑙 ∈ {1, 2,⋯ , 𝑛2}. 

For each identification of vertices in the construction of Hajós graphs, there exist 

different cases as follows: 

(i) 𝑣1𝑖 is identified with 𝑢1𝑘,where both are end vertices (ii) 𝑣1𝑖 is an end vertex is 

identified with 𝑢1𝑘 is an internal vertex (iii) 𝑣1𝑖 is an internal vertex identified with 

𝑢1𝑘 is an end vertex, (iv) 𝑣1𝑖 is identified with 𝑢1𝑘, where both are internal vertices (v) 

𝑣2𝑗 is identified with 𝑢2𝑙 , (vi) 𝑣2𝑗 is identified with 𝑢1𝑘 is an internal vertex, (vii) 𝑣2𝑗 

is identified with 𝑢1𝑘 is an end vertex, (viii) 𝑣1𝑖 is an end vertex is identified with 𝑢2𝑙, 
(ix) 𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙.    

 

Case (i): 𝑣1𝑖 is identified with 𝑢1𝑘, where both are end vertices. 

For each edge incident at 𝑣1𝑖, there are (𝑛2 + 1) choices of edges incident at 𝑢1𝑘 for 

constructing Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge 

incident at 𝑣1𝑖 is  (𝑛2 + 1). Since the number of edges incident at 𝑣1𝑖 is (𝑛1 + 1), the 

number of Hajós graphs corresponding to all the edges incident at 𝑣1𝑖 is (𝑛1 + 1).  As there 

are 2 end vertices in the paths of 𝐺1 ∗ and 𝐺2 ∗,   the total number of Hajós graphs obtained 

by identifying 𝑣1𝑖 with 𝑢1𝑘 is  4(𝑛1 + 1)(𝑛2 + 1).  
 

Case (ii):  𝑣1𝑖 is an end vertex is identified with 𝑢1𝑘 is an internal vertex . 

For each edge incident at 𝑣1𝑖, there are (𝑛2 + 2) choices of edges incident at 𝑢1𝑘. 

Therefore, the number of Hajós graph corresponding to an edge incident at 𝑣1𝑖,  is (𝑛2 +
2). Since the number of edges incident at 𝑣1𝑖 is (𝑛1 + 1),  the number of Hajós graphs 

corresponding to all the edges incident at 𝑣1𝑖 is (𝑛1 + 1)(𝑛2 + 2). As there are 2 end 

vertices in the path of 𝐺1 ∗ and (𝑚2 − 2)  internal vertices in 𝐺2 ∗, the total number of 

Hajós graphs obtained by identifying 𝑣1𝑖,  with 𝑢1𝑘 is  2(𝑛1 + 1)(𝑛2 + 2)(𝑚2 − 2). 
 

Case (iii): 𝑣1𝑖 is an internal vertex identified with 𝑢1𝑘 is an end vertex. 
For each edge incident at 𝑣1𝑖, there are (𝑛2 + 1) choices of edges incident at 𝑢1𝑘. 

Therefore, the number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is (𝑛2 + 1). 
Since (𝑛1 + 2) edges are incident at 𝑣1𝑖, the number of Hajós graphs corresponding to all 

the edges incident at 𝑣1𝑖 is (𝑛2 + 1)(𝑛1 + 2) . As there are (𝑚1 − 2)  internal vertices in 

the path of  𝐺1 ∗ and 2 end vertices in 𝐺2 ∗  , the total number of Hajós graphs obtained by 

identifying 𝑣1𝑖 with 𝑢1𝑘 is  2(𝑚1 − 2)(𝑛2 + 1)(𝑛1 + 2). 
 

Case (iv): 𝑣1𝑖 is identified with 𝑢1𝑘, where both are internal vertices 

For each edge incident at 𝑣1𝑖, there are (𝑛2 + 2)  choices of edges incident at 𝑢. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is (𝑛2 + 2) . Since the 

number of edges incident at 𝑣1𝑖 is (𝑛1 + 2), the number of Hajós graphs corresponding to 

all the edges incident at 𝑣1𝑖 is (𝑛1 + 2)(𝑛2 + 2). As there are (𝑚1 − 2) and (𝑚2 − 2)  
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vertices in the internal vertices of 𝐺1* and 𝐺2 ∗. Hence the total number of Hajós graphs 

obtained by identifying 𝑣1𝑖 with 𝑢1𝑘 is  (𝑚1 − 2)(𝑛1 + 2)(𝑚2 − 2)(𝑛2 + 2). 
 

Case (v): 𝑣1𝑖 is an end vertex is identified with 𝑢2𝑙 
For each edge incident at 𝑣1𝑖, there are 𝑚2 choice of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is 𝑚2. Since the number 

of edges incident at 𝑣1𝑖 is (𝑛1 + 1), the number of Hajós graphs corresponding to all the 

edges incident at 𝑣1𝑖 is (𝑛1 + 1) 𝑚2. As there are 2 end vertices in 𝐺1 and n2  vertices of  

𝐾𝑛2
̅̅ ̅̅ ̅ in 𝐺2, the total number of Hajós graphs obtained by identifying 𝑣1𝑖 with 𝑢2𝑘 is  2(𝑛1 +

1) 𝑚2𝑛2 . 

 

Case (vi):  𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙 . 
For each edge incident at 𝑣1𝑖, there are 𝑚2 choices of edges incident at 𝑢2𝑙. Therefore the 

number of Hajós graphs corresponding to an edge incident at 𝑣1𝑖 is 𝑚2. The number of 

edges incident at`2 𝑣1𝑖 is (𝑛1 + 2). Therefore the number of Hajós graphs corresponding 

to all the edges incident at 𝑣1𝑖 is (𝑛1 + 2)𝑚2.  As there are (𝑚1 − 2) internal vertices in 

𝐺1 ∗ and n pendant vertices in G2*, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑖 with 𝑢1𝑘 is (𝑚1 − 2)(𝑛1 + 2)𝑚2𝑛2. 

 

Case (vii): 𝑣2𝑗 is identified with 𝑢2𝑙 

For each edge incident at 𝑣2𝑗, there are 𝑚2 choices of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is  𝑚2. Since 𝑚1 edges 

are incident at 𝑣2𝑗, the number of Hajós graphs corresponding to all the edges incident at 

𝑣2𝑗 is 𝑚1𝑚2.  As there are 𝑛1 and 𝑛2 pendant vertices in 𝐺1 and 𝐺2,  the total number of 

Hajós graphs obtained by identifying 𝑣2𝑗 with 𝑢2𝑙 is 𝑚1𝑚2𝑛1𝑛2.  

 

Case (viii): 𝑣2𝑗 is identified with 𝑢1𝑘 is an internal vertex 

For each edge incident at 𝑣2𝑗, there are (𝑛2 + 2)  choice of edges incident at 𝑢1𝑘. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣 is (𝑛2 + 2).  Since the 

number of edges incident at 𝑣2𝑗 is 𝑚1, the number of Hajós graphs corresponding to all the 

edges incident at 𝑣2𝑗 is 𝑚1(𝑛2 + 2).  As there are 𝑛1 pendant vertices in 𝐺2 and (𝑚2 − 2)  

vertices in the internal vertices of 𝐺1*, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑗 with 𝑢1𝑘 is  𝑚1𝑛1(𝑚2 − 2)(𝑛2 + 2).  

 

Case (ix): 𝑣2𝑗 is identified with 𝑢1𝑘 is an end vertex 

For each edge incident at 𝑣2𝑗, there are (𝑛2 + 1)  choices of edges incident at 𝑢1𝑘. 

Therefore the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is (𝑛2 + 1). 

The number of edges incident at 𝑣2𝑗 is 𝑚1. Therefore the number of Hajós graphs 

corresponding to all the edges incident at 𝑣2𝑗 is 𝑚1(𝑛2 + 1).  As there are 𝑛1 pendant 

vertices in 𝐺1 ∗ and 2 end vertex in 𝐺2 ∗, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑗 with 𝑢1𝑘 is  2𝑚1𝑛1(𝑛2 + 1). 

 

From the above nine cases, the total number of Hajós graph from G1 and G2 is 4(𝑛1 +
1)(𝑛2 + 1) +2(𝑛1 + 1)(𝑛2 + 2)(𝑚2 − 2) + 2(𝑚1 − 2)(𝑛2 + 1)(𝑛1 + 2)+(𝑚1 −
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2)(𝑛1 + 2)(𝑚2 − 2)(𝑛2 + 2) +𝑚1𝑚2𝑛1𝑛2 +𝑚1𝑛1(𝑚2 − 2)(𝑛2 + 2) + 2𝑚1𝑛1(𝑛2 +
1) + 2(𝑛1 + 1)𝑚2𝑛2 + (𝑚1 − 2)(𝑛1 + 2)𝑚2𝑛2 = 4(𝑛1𝑚1 +  𝑚1 − 1) (𝑚2𝑛2 +  𝑚2 −
1). 
 

Theorem 3.3. Let Gi(Vi, Ei), i = 1, 2 be two fuzzy graphs on fan graphs 𝐹𝑛𝑖,   𝑚𝑖
 

respectively.  Then the number of Hajós graphs that can be obtained from Gi*, i = 1, 2  is 

4(𝑚1𝑛1 +  𝑚1 − 1) (𝑚2𝑛2 +  𝑚2 − 1). 
 

Theorem 3.4. Let Gi*(Vi, Ei), i = 1, 2 be two Lollipop graphs 𝐿𝑛1,   𝑚1
and 𝐿𝑛2,   𝑚2

. Then 

the number of Hajós graphs that can be obtained from Gi*, i = 1, 2  is (𝑛1(𝑛1 − 1) +
2𝑚1)(𝑛2(𝑛2 − 1) + 2𝑚2). 
Proof: Let V1 = { 𝑣11, 𝑣12,⋯ , 𝑣1𝑚1

, 𝑣21, 𝑣22,⋯ , 𝑣2𝑛1} and V2 = 

{𝑢11, 𝑢12, ⋯ , 𝑢1𝑚2
, 𝑢21, 𝑢22,⋯ , 𝑢2𝑛2} be the vertex sets of G1* and G2* respectively, 

where  𝑣11𝑣12⋯𝑣1𝑚1
 and 𝑢11𝑢12⋯𝑢1𝑚2

 are the paths of the G1* and G2* respectively. 

Let the remaining vertices 𝑣21, 𝑣22,⋯ , 𝑣2𝑛1 of G1* and 𝑢21, 𝑢22,⋯ , 𝑢2𝑛2G2* be the 

vertices of 𝐾𝑛1 and 𝐾𝑛2 respectively. Let 𝑖 ∈ {1, 2,⋯ ,𝑚1}, 𝑗 ∈ {1, 2,⋯ , 𝑛1}, 𝑘 ∈
{1, 2,⋯ ,𝑚2} and  𝑙 ∈ {1, 2,⋯ , 𝑛2}. 

For each identification of vertices in the construction of Hajós graphs, there exist 

different cases as follows: 

(i) 𝑣1𝑖 is identified with 𝑢1𝑘,where both are end vertices (ii) 𝑣1𝑖 is an end vertex is 

identified with 𝑢1𝑘 is an internal vertex (iii) 𝑣1𝑖 is an internal vertex identified with 

𝑢1𝑘 is an end vertex, (iv) 𝑣1𝑖 is identified with 𝑢1𝑘, where both are internal vertices (v) 

𝑣2𝑗 is identified with 𝑢2𝑙 , (vi) 𝑣2𝑗 is identified with 𝑢1𝑘 is an internal vertex, (vii) 𝑣2𝑗 

is identified with 𝑢1𝑘 is an end vertex, (viii) 𝑣1𝑖 is an end vertex is identified with 𝑢2𝑙, 
(ix) 𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙.    

 

Case (i): 𝑣1𝑖 is identified with 𝑢1𝑘, where both are end vertices  

Subcase (i.a): 𝑣1𝑖 is identified with 𝑢1𝑘, where both are end vertices and both are  

with a bridge connecting 𝐾𝑛1& 𝐾𝑛2. 

For each edge incident at 𝑣1𝑖, there are 2 choices of edges incident at 𝑢1𝑘 for constructing 

Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge incident at 

𝑣1𝑖 2. Since the number of edges incident at 𝑣1𝑖 is 2, the number of Hajós graphs 

corresponding to all the edges incident at 𝑣1𝑖 is 4.  As there exist 1 end vertex of the path 

that is incident with a bridge of 𝐺1 ∗ and 1 end vertex of the path that is incident with a 

bridge in 𝐺2 ∗,   the total number of Hajós graphs obtained by identifying 𝑣1𝑖 with 𝑢1𝑘 is  

4. 
 

Subcase (i.b): 𝑣1𝑖 is identified with 𝑢1𝑘, where both are end vertices, and both are without 

a bridge connecting 𝐾𝑛2. 

For each edge incident at 𝑣1𝑖, there exist only one edge incident at 𝑢1𝑘 for constructing 

Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge incident at 

𝑣1𝑖 1. Since the number of edges incident at 𝑣1𝑖 is 1, the number of Hajós graphs 

corresponding to all the edges incident at 𝑣1𝑖 is  1.  As there exist 1 end vertex of the path 

that is incident with the bridge in 𝐺1 ∗ and 1 end vertex of the path that doesn’t incident 
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with the bridge in 𝐺2 ∗,   the total number of Hajós graphs obtained by identifying 𝑣1𝑖 with 

𝑢1𝑘 is  1. 
 

Subcase (i.c): 𝑣1𝑖 is identified with 𝑢1𝑘, where both are end vertices and 𝑣1𝑖 is a vertex 

incident   

with a bridge connecting 𝐾𝑛1 and 𝑢1𝑘 is a vertex that doesn’t incident with the bridge 

connecting 𝐾𝑛2. 

For each edge incident at 𝑣1𝑖, there exist only one edge incident at 𝑢1𝑘 for constructing 

Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge incident at 

𝑣1𝑖 is 1. Since the number of edges incident at 𝑣1𝑖 is 2, the number of Hajós graphs 

corresponding to all the edges incident at 𝑣1𝑖 is 2.  As there exist 1 end vertex of the path 

that is incident with the bridge in  𝐺1 ∗ and 1 end vertex of the path that does not incident 

with the bridge in 𝐺2 ∗,   the total number of Hajós graphs obtained by identifying 𝑣1𝑖 with 

𝑢1𝑘 is  2. 
 

Subcase (i.d): 𝑣1𝑖 is identified with 𝑢1𝑘, where both are end vertices and 𝑣1𝑖 is a vertex 

that does not incident with a bridge connecting 𝐾𝑛1 and 𝑢1𝑘 is a vertex that incident with 

the bridge connecting 𝐾𝑛2. 

For each edge incident at 𝑣1𝑖, there are 2 choices of edges incident at 𝑢1𝑘 for 

constructing Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge 

incident at 𝑣1𝑖 is 2. Since the number of edges incident at 𝑣1𝑖 is 1, the number of Hajós 

graphs corresponding to all the edges incident at 𝑣1𝑖 is 2.  As there exist 1 end vertex of 

the path that does not incident with the bridge in  𝐺1 ∗ and 1 end vertex of the path that is 

incident with the bridge in 𝐺2 ∗,   the total number of Hajós graphs obtained by identifying 

𝑣1𝑖 with 𝑢1𝑘 is  2. 
 

Case (ii):  𝑣1𝑖 is an end vertex is identified with 𝑢1𝑘 is an internal vertex  

Subcase(ii.a): 𝑣1𝑖 is an end vertex incident with the bridge connecting  𝐾𝑛1 is identified 

with 𝑢1𝑘 is an internal vertex 

For each edge incident at 𝑣1𝑖, there are 2 choices of edges incident at 𝑢1𝑘. Therefore, the 

number of Hajós graph corresponding to an edge incident at 𝑣1𝑖  is 2. Since the number of 

edges incident at 𝑣1𝑖 is 2,  the number of Hajós graphs corresponding to all the edges 

incident at 𝑣1𝑖 is 4.  As there are 1 end vertex in the path of 𝐺1 ∗ that incident with the 

bridge and (𝑚2 − 2) internal vertices in the path of 𝐺2 ∗, the total number of Hajós graphs 

obtained by identifying 𝑣1𝑖,  with 𝑢1𝑘 is  4(𝑚2 − 2). 
 

Subcase(ii.b): 𝑣1𝑖 is an end vertex that does not incident with the bridge connecting  𝐾𝑛1 

is identified with 𝑢1𝑘 is an internal vertex 

For each edge incident at 𝑣1𝑖, there are 2 choices of edges incident at 𝑢1𝑘. Therefore, the 

number of Hajós graph corresponding to an edge incident at 𝑣1𝑖  is 2. Since the number of 

edges incident at 𝑣1𝑖 is 1,  the number of Hajós graphs corresponding to all the edges 

incident at 𝑣1𝑖 is 2.  As there are 1 end vertex in the path of 𝐺1 ∗ that incident with the 

bridge and (𝑚2 − 2) internal vertices in the path of 𝐺2 ∗, the total number of Hajós graphs 

obtained by identifying 𝑣1𝑖,  with 𝑢1𝑘 is  2(𝑚2 − 2). 
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Case (iii): 𝑣1𝑖 is an internal vertex identified with 𝑢1𝑘 is an end vertex. 

Subcase (iii.a): 𝑣1𝑖 is an internal vertex identified with 𝑢1𝑘 is an end vertex, 𝑢1𝑘 with a 

bridge connecting 𝐾𝑛2. 

For each edge incident at 𝑣1𝑖, there are 2 choices of edges incident at 𝑢1𝑘. Therefore, the 

number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is 2. Since 2 edges are 

incident at 𝑣1𝑖, the number of Hajós graphs corresponding to all the edges incident at 𝑣1𝑖 
is 4. As there are (𝑚1 − 2)  internal vertices in the path of  𝐺1 ∗ and 1 end vertex with a 

bridge connecting 𝐾𝑛2 in 𝐺2 ∗  , the total number of Hajós graphs obtained by identifying 

𝑣1𝑖 with 𝑢1𝑘 is  4(𝑚1 − 2). 
 

Subcase (iii.b): 𝑣1𝑖 is an internal vertex identified with 𝑢1𝑘 is an end vertex, 𝑢1𝑘 without 

a bridge connecting 𝐾𝑛2. 

For each edge incident at 𝑣1𝑖, there exist only one edge incident at 𝑢1𝑘. Therefore, the 

number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is 1. Since 2 edges are 

incident at 𝑣1𝑖, the number of Hajós graphs corresponding to all the edges incident at 𝑣1𝑖 
is 2. As there are (𝑚1 − 2)  internal vertices in the path of  𝐺1 ∗ and and 1 end vertex 

without a bridge connecting 𝐾𝑛2 in 𝐺2 ∗, the total number of Hajós graphs obtained by 

identifying 𝑣1𝑖 with 𝑢1𝑘 is  2(𝑚1 − 2). 
 

Case (iv): 𝑣1𝑖 is identified with 𝑢1𝑘, where both are internal vertices 

For each edge incident at 𝑣1𝑖, there are 2  choices of edges incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is 2 . Since the number of 

edges incident at 𝑣1𝑖 is 2, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣1𝑖 is 4.  As there are (𝑚1 − 2) and (𝑚2 − 2)  vertices in the internal vertices 

of the paths of  𝐺1* and 𝐺2 ∗, the total number of Hajós graphs obtained by identifying 𝑣1𝑖 
with 𝑢1𝑘 is  4(𝑚1 − 2)(𝑚2 − 2). 
 

Case (v): 𝑣1𝑖 is an end vertex is identified with 𝑢2𝑙 
Subcase (v.a): When 𝑣1𝑖 is an end vertex with a bridge connecting 𝐾𝑛1 is identified with 

𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are 𝑛2 choice of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is 𝑛2. Since the number 

of edges incident at 𝑣1𝑖 is 2, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣1𝑖 is 2𝑛2.  As there exist 1 end vertex that incident with the bridge in 𝐺1 ∗ and 

1  vertex of  𝐾𝑛2 in 𝐺2 ∗, with a bridge connecting 𝑃𝑚2
, the total number of Hajós graphs 

obtained by identifying 𝑣1𝑖 with 𝑢2𝑙 is  2𝑛2. 
 

Subcase (v.b): 𝑣1𝑖 is an end vertex with a bridge connecting 𝐾𝑛1 is identified with 𝑢2𝑙, 

𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are (𝑛2 − 1) choice of the edges incident at 𝑢2𝑙. 
Therefore the number of Hajós graph corresponding to an edge incident at 𝑣1𝑖  is (𝑛2 − 1).  
Since the number of edges incident at 𝑣1𝑖 is 2, the number of Hajós graphs corresponding 

to all the edges incident at 𝑣1𝑖 is 2(𝑛2 − 1).  As there exist 1 end vertex that is incident 
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with the bridge in 𝐺1 ∗ and  (n2 − 1) vertices in Kn2  of G2* without a bridge connecting 

𝑃𝑚2
, the total number of Hajós graphs obtained by identifying 𝑣1𝑖 with 𝑢2𝑙 is  2(𝑛2 − 1)

2. 

 

Subcase (v.c): When 𝑣1𝑖 is an end vertex that does not incident with bridge connecting 

𝐾𝑛1 is identified with 𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are 𝑛2 choice of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is 𝑛2. Since the number 

of edges incident at 𝑣1𝑖 is 1, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣1𝑖 is 𝑛2.  As there exist 1 end vertex that does not incident with the bridge in 

𝐺1 ∗ and 1  vertex of  𝐾𝑛2 in 𝐺2 ∗, with a bridge connecting 𝑃𝑚2
, the total number of Hajós 

graphs obtained by identifying 𝑣1𝑖 with 𝑢2𝑙 is  𝑛2. 
 

Subcase (v.d): 𝑣1𝑖 is an end vertex without a bridge connecting 𝐾𝑛1 is identified with 𝑢2𝑙, 

𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are (𝑛2 − 1) choice of the edges incident at 𝑢2𝑙. 
Therefore the number of Hajós graph corresponding to an edge incident at 𝑣1𝑖  is (𝑛2 − 1).  
Since the number of edges incident at 𝑣1𝑖 is 1, the number of Hajós graphs corresponding 

to all the edges incident at 𝑣1𝑖 is (𝑛2 − 1).  As there exist 1 end vertex that does not incident 

with the bridge in 𝐺1 ∗ and  (n2 − 1) vertices in Kn2  of G2* without a bridge connecting 

𝑃𝑚2
, the total number of Hajós graphs obtained by identifying 𝑣1𝑖 with 𝑢2𝑙 is  (𝑛2 − 1)

2. 

 

Case (vi):  𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙 
Subcase (vi.a): 𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge 

connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are 𝑛2 choices of edges incident at 𝑢2𝑙. Therefore the 

number of Hajós graphs corresponding to an edge incident at 𝑣1𝑖 is 𝑛2. The number of 

edges incident at  𝑣1𝑖 is 2. Therefore the number of Hajós graphs corresponding to all the 

edges incident at 𝑣1𝑖 is 2𝑛2.  As there are (𝑚1 − 2) internal vertices in 𝐺1 ∗ and 1 vertex 

with a bridge connecting Pm2
 in Kn2  of G2*, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑖 with 𝑢1𝑘 is 2(𝑚1 − 2)𝑛2. 

 

Subcase (vi.b): 𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge 

connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are (𝑛2 − 1) choices of edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graphs corresponding to an edge incident at 𝑣1𝑖 is (𝑛2 − 1). The 

number of edges incident at  𝑣1𝑖 is 2. Therefore the number of Hajós graphs corresponding 

to all the edges incident at 𝑣1𝑖 is 2(𝑛2 − 1).  As there are (𝑚1 − 2) internal vertices in 𝐺1 ∗ 
and (n2 − 1) vertices in Kn2  of G2* without a bridge connecting 𝑃𝑚2

, the total number of 

Hajós graphs obtained by identifying 𝑣2𝑖 with 𝑢1𝑘 is 2(𝑚1 − 2)(𝑛2 − 1)
2. 

 

Case (vii): 𝑣2𝑗 is identified with 𝑢2𝑙 

Subcase (vii.a): 𝑣2𝑗 a vertex that is incident with a bridge connecting 𝑃𝑚1
 is identified with 

𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge connecting 𝑃𝑚2
. 
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For each edge incident at 𝑣2𝑗, there are 𝑛2 choices of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is  𝑛2. Since 𝑛1 edges 

are incident at 𝑣2𝑗, the number of Hajós graphs corresponding to all the edges incident at 

𝑣2𝑗 is 𝑛1𝑛2.  As there exists 1 vertex in 𝐾𝑛1 of 𝐺1 ∗ that incident with the bridge connecting 

𝑃𝑚1
 and 1 vertex of 𝐾𝑛2 with a bridge connecting 𝑃𝑛1 of 𝐺2 ∗,  the total number of Hajós 

graphs obtained by identifying 𝑣2𝑗 with 𝑢2𝑙 is 𝑛1𝑛2.  

 

Subcase (vii.b): 𝑣2𝑗 a vertex without a bridge connecting 𝑃𝑚1
 is identified with 𝑢2𝑙,  

𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣2𝑗, there are (𝑛2 − 1) choices of the edges incident at 𝑢2𝑙. 

Therefore the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is  (𝑛2 − 1). 

Since (𝑛1 − 1) edges are incident at 𝑣2𝑗, the number of Hajós graphs corresponding to all 

the edges incident at 𝑣2𝑗 is (𝑛1 − 1)(𝑛2 − 1).  As there exist  (𝑛1 − 1) vertices with the 

bridge and (𝑛2 − 1) vertices in 𝐾𝑛1and 𝐾𝑛2 of 𝐺1 ∗ and 𝐺2 ∗ respectively,  the total number 

of Hajós graphs obtained by identifying 𝑣2𝑗 with 𝑢2𝑙 is (𝑛1 − 1)
2(𝑛2 − 1)

2.  

 

Subcase (vii.c): 𝑣2𝑗 a vertex that is incident with a bridge connecting 𝑃𝑚1
 is identified with 

𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣2𝑗, there are (𝑛2 − 1) choices of the edges incident at 𝑢2𝑙. 

Therefore the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is  (𝑛2 − 1). 

Since 𝑛1 edges are incident at 𝑣2𝑗, the number of Hajós graphs corresponding to all the 

edges incident at 𝑣2𝑗 is 𝑛1(𝑛2 − 1).  As there exists 1 vertex in 𝐾𝑛1 of 𝐺1 ∗ that incident 

with the bridge connecting 𝑃𝑚1
 and (𝑛2 − 1) vertices in 𝐾𝑛2 without a bridge connecting 

𝑃𝑛1 of 𝐺2 ∗,  the total number of Hajós graphs obtained by identifying 𝑣2𝑗 with 𝑢2𝑙 is 

𝑛1(𝑛2 − 1)
2. 

 

Subcase (vii.d): 𝑣2𝑗 a vertex that is incident without a bridge connecting 𝑃𝑚1
 is identified 

with 𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣2𝑗, there are 𝑛2 choices of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is  𝑛2. Since (𝑛1 − 1) 

edges are incident at 𝑣2𝑗, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 𝑛2(𝑛1 − 1).  As there exists (𝑛1 − 1) vertices in 𝐾𝑛1 of 𝐺1 ∗ that does 

not incident with the bridge connecting 𝑃𝑚1
 and 1 vertex in 𝐾𝑛2 with a bridge connecting 

𝑃𝑛2 of 𝐺2 ∗,  the total number of Hajós graphs obtained by identifying 𝑣2𝑗 with 𝑢2𝑙 is 

𝑛2(𝑛1 − 1)
2. 

 

Case (viii): 𝑣2𝑗 is identified with 𝑢1𝑘,  𝑢1𝑘 is an internal vertex 

Subcase (viii.a): 𝑣2𝑗 a vertex that is incident with a bridge connecting 𝑃𝑚1
 is identified 

with 𝑢1𝑘,  𝑢1𝑘 is an internal vertex 

For each edge incident at 𝑣2𝑗, there are 2 choice of edges incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 2.  Since the number of 
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edges incident at 𝑣2𝑗 is 𝑛1, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 2𝑛1.  As there exist 1 vertex in 𝐾𝑛1 with a bridge connecting 𝑃𝑛1 of 𝐺1 ∗ 

and (𝑚2 − 2)  vertices in the internal vertices of 𝐺2*, the total number of Hajós graphs 

obtained by identifying 𝑣2𝑗 with 𝑢1𝑘 is  2𝑛1(𝑚2 − 2).  

 

Subcase (viii.b): 𝑣2𝑗 a vertex that does not incident with a bridge connecting 𝑃𝑚1
 is 

identified with 𝑢1𝑘,  𝑢1𝑘 is an internal vertex 

For each edge incident at 𝑣2𝑗, there are 2 choice of edges incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 2.  Since the number of 

edges incident at 𝑣2𝑗 is (𝑛1 − 1), the number of Hajós graphs corresponding to all the 

edges incident at 𝑣2𝑗 is 2(𝑛1 − 1).  As there are (𝑛1 − 1) vertices in 𝐾𝑛1 with a bridge 

connecting 𝑃𝑛1 of 𝐺1 ∗ and (𝑚2 − 2)  vertices in the internal vertices of 𝐺2*, the total 

number of Hajós graphs obtained by identifying 𝑣2𝑗 with 𝑢1𝑘 is  2(𝑚2 − 2)(𝑛1 − 1)
2. 

 

Case (ix): 𝑣2𝑗 is identified with 𝑢1𝑘 is an end vertex 

Subcase (ix.a): 𝑣2𝑗 is a vertex that incident with a bridge connecting 𝑃𝑚1
is identified with 

𝑢1𝑘 is an end vertex, where 𝑢1𝑘 with a bridge connecting 𝐾𝑛2. 

For each edge incident at 𝑣2𝑗, there are 2  choices of edges incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 2. The number of edges 

incident at 𝑣2𝑗 is 𝑛1. Therefore the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 2𝑛1.  As there exist 1 vertex in  𝐾𝑛1of 𝐺1 ∗ and  1 end vertex in 𝑃𝑚2
of 

𝐺2 ∗ without a bridge connecting 𝐾𝑛2, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑗 with 𝑢1𝑘 is  2𝑛1. 

 

Subcase (ix.b): 𝑣2𝑗 is a vertex incident with a bridge connecting 𝑃𝑚1
 is identified with 𝑢1𝑘 

is an end vertex, where 𝑢1𝑘 without a bridge connecting 𝐾𝑛2. 

For each edge incident at 𝑣2𝑗, there exist only one edge incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 1. The number of edges 

incident at 𝑣2𝑗 is 𝑛1. Therefore the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 𝑛1.  As there exist only one vertex in that incident to the bridge with 𝐾𝑛1of 

𝐺1 ∗ and 1 end vertex in 𝑃𝑚2
of 𝐺2 ∗ without a bridge connecting 𝐾𝑛2, the total number of 

Hajós graphs obtained by identifying 𝑣2𝑗 with 𝑢1𝑘 is  𝑛1. 

 

Subcase (ix.c): 𝑣2𝑗 is a vertex that incident without a bridge connecting 𝑃𝑚1
is identified 

with 𝑢1𝑘 is an end vertex, where 𝑢1𝑘 with a bridge connecting 𝐾𝑛2. 

For each edge incident at 𝑣2𝑗, there are 2  choices of edges incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 2. The number of edges 

incident at 𝑣2𝑗 is (𝑛1 − 1). Therefore the number of Hajós graphs corresponding to all the 

edges incident at 𝑣2𝑗 is 2(𝑛1 − 1).  As there exist (𝑛1 − 1) vertices in  𝐾𝑛1of 𝐺1 ∗ and  1 

end vertex in 𝑃𝑚2
of 𝐺2 ∗ with a bridge connecting 𝐾𝑛2, the total number of Hajós graphs 

obtained by identifying 𝑣2𝑗 with 𝑢1𝑘 is  2(𝑛1 − 1)
2. 
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Subcase (ix.d): 𝑣2𝑗 is a vertex that incident without a bridge connecting 𝑃𝑚1
is identified 

with 𝑢1𝑘 is an end vertex, where 𝑢1𝑘 without a bridge connecting 𝐾𝑛2. 

For each edge incident at 𝑣2𝑗, there exist only one  edge incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 1. The number of edges 

incident at 𝑣2𝑗 is (𝑛1 − 1).  Therefore the number of Hajós graphs corresponding to all the 

edges incident at 𝑣2𝑗 is (𝑛1 − 1).  As there exist (𝑛1 − 1) vertices in  𝐾𝑛1of 𝐺1 ∗ and  1 

end vertex in 𝑃𝑚2
of 𝐺2 ∗ without a bridge connecting 𝐾𝑛2, the total number of Hajós graphs 

obtained by identifying 𝑣2𝑗 with 𝑢1𝑘 is  (𝑛1 − 1)
2. 

From the above nine cases, the total number of Hajós graph from G1* and G2* is 

(𝑛1(𝑛1 − 1) + 2𝑚1)(𝑛2(𝑛2 − 1) + 2𝑚2). 
 

Theorem 3.5. Let Gi(Vi, Ei), i = 1, 2 be two fuzzy Graphs on Lollipop Graphs 𝐿𝑛1,   𝑚1
and 

𝐿𝑛2,   𝑚2
 respectively.  Then the number of Hajós graphs that can be obtained from Gi, i = 

1, 2  is  (𝑛1(𝑛1 − 1) + 2𝑚1)(𝑛2(𝑛2 − 1) + 2𝑚2). 
 

Theorem 3.6. Let G1*(V1, E1) be two Tadpole graphs 𝑇𝑛1,   𝑚1
and 𝑇𝑛2,   𝑚2

 respectively.  
Then the number of Hajós graphs that can be obtained from Gi*, i = 1, 2  is 4(𝑛1 +
𝑚1)(𝑛2 +𝑚2). 
Proof: Let V1 = { 𝑣11, 𝑣12,⋯ , 𝑣1𝑚1

, 𝑣21, 𝑣22,⋯ , 𝑣2𝑛1} and V2 = 

{𝑢11, 𝑢12, ⋯ , 𝑢1𝑚2
, 𝑢21, 𝑢22,⋯ , 𝑢2𝑛2} be the vertex sets of G1* and G2* respectively, 

where  𝑣11𝑣12⋯𝑣1𝑚1
 and 𝑢11𝑢12⋯𝑢1𝑚2

 are the paths 𝑃𝑚1
 and 𝑃𝑚2

 of the G1* and G2* 

respectively. Let the remaining vertices 𝑣21, 𝑣22,⋯ , 𝑣2𝑛1 of G1* and 𝑢21, 𝑢22,⋯ , 𝑢2𝑛2G2* 

be the vertices of 𝐶𝑛1 and 𝐶𝑛2 respectively. Let 𝑖 ∈ {1, 2,⋯ ,𝑚1}, 𝑗 ∈ {1, 2,⋯ , 𝑛1}, 𝑘 ∈
{1, 2,⋯ ,𝑚2} and  𝑙 ∈ {1, 2,⋯ , 𝑛2}. 
For each identification of vertices in the construction of Hajós graphs, there exist different 

cases as follows: 

(i) 𝑣1𝑖 is identified with 𝑢1𝑘,where both are end vertices (ii) 𝑣1𝑖 is an end vertex is 

identified with 𝑢1𝑘 is an internal vertex (iii) 𝑣1𝑖 is an internal vertex identified with 

𝑢1𝑘 is an end vertex, (iv) 𝑣1𝑖 is identified with 𝑢1𝑘, where both are internal vertices (v) 

𝑣2𝑗 is identified with 𝑢2𝑙 , (vi) 𝑣2𝑗 is identified with 𝑢1𝑘 is an internal vertex, (vii) 𝑣2𝑗 

is identified with 𝑢1𝑘 is an end vertex, (viii) 𝑣1𝑖 is an end vertex is identified with 𝑢2𝑙, 
(ix) 𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙.    

For the four cases, (i) 𝑣1𝑖 is identified with 𝑢1𝑘,where both are end vertices (ii) 𝑣1𝑖 is an 

end vertex is identified with 𝑢1𝑘 is an internal vertex (iii) 𝑣1𝑖 is an internal vertex identified 

with 𝑢1𝑘 is an end vertex, (iv) 𝑣1𝑖 is identified with 𝑢1𝑘, where both are internal vertices, 

the proof follows from the theorem 3.5. 

Case (v): 𝑣1𝑖 is an end vertex is identified with 𝑢2𝑙 
 

Subcase (v.a): When 𝑣1𝑖 is an end vertex with a bridge connecting 𝐾𝑛1 is identified with 

𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are 3 choice of the edges incident at 𝑢2𝑙. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is 3. Since the number of 

edges incident at 𝑣1𝑖 is 2, the number of Hajós graphs corresponding to all the edges 
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incident at 𝑣1𝑖 is 6.  As there exist 1 end vertex that incident with the bridge in 𝐺1 ∗ and 1  

vertex of  𝐶𝑛2 in 𝐺2 ∗, with a bridge connecting 𝑃𝑚2
, the total number of Hajós graphs 

obtained by identifying 𝑣1𝑖 with 𝑢2𝑙 is  6. 
 

Subcase (v.b): 𝑣1𝑖 is an end vertex with a bridge connecting 𝐾𝑛1 is identified with 𝑢2𝑙, 

𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are 2 choice of the edges incident at 𝑢2𝑙. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣1𝑖  is 2  Since the number of 

edges incident at 𝑣1𝑖 is 2, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣1𝑖 is 4.  As there exist 1 end vertex that is incident with the bridge in 𝐺1 ∗ and  

(n2 − 1) vertices in Cn2  of G2* without a bridge connecting 𝑃𝑚2
, the total number of Hajós 

graphs obtained by identifying 𝑣1𝑖 with 𝑢2𝑘 is  4(𝑛2 − 1). 
Subcase (v.c): When 𝑣1𝑖 is an end vertex that does not incident with bridge connecting 

𝐾𝑛1 is identified with 𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are 3 choice of the edges incident at 𝑢2𝑙. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣1𝑖 is 3. Since the number of 

edges incident at 𝑣1𝑖 is 1, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣1𝑖 is 3.  As there exist 1 end vertex that does not incident with the bridge in 

𝐺1 ∗ and 1  vertex of  𝐶𝑛2 in 𝐺2 ∗, with a bridge connecting 𝑃𝑚2
, the total number of Hajós 

graphs obtained by identifying 𝑣1𝑖 with 𝑢2𝑙 is  3. 
Subcase (v.d): 𝑣1𝑖 is an end vertex without a bridge connecting 𝐾𝑛1 is identified with 𝑢2𝑙, 

𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are 2 choice of the edges incident at 𝑢2𝑙. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣1𝑖  is 2  Since the number of 

edges incident at 𝑣1𝑖 is 1, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣1𝑖 is 2.  As there exist 1 end vertex that does not incident with the bridge in 

𝐺1 ∗ and  (n2 − 1) vertices in Cn2  of G2* without a bridge connecting 𝑃𝑚2
, the total number 

of Hajós graphs obtained by identifying 𝑣1𝑖 with 𝑢2𝑘 is  2(𝑛2 − 1). 
 

Case (vi):  𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙 
Subcase (vi.a): 𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge 

connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are 3 choices of edges incident at 𝑢2𝑙. Therefore the 

number of Hajós graphs corresponding to an edge incident at 𝑣1𝑖 is 3. The number of edges 

incident at  𝑣1𝑖 is 2. Therefore the number of Hajós graphs corresponding to all the edges 

incident at 𝑣1𝑖 is 6.  As there are (𝑚1 − 2) internal vertices in 𝐺1 ∗ and 1 vertex with a 

bridge connecting Pm2
 in Cn2  of G2*, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑖 with 𝑢1𝑘 is 6(𝑚1 − 2). 
 

Subcase (vi.b): 𝑣1𝑖 is an internal vertex is identified with 𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge 

connecting 𝑃𝑚2
. 

For each edge incident at 𝑣1𝑖, there are 2 choices of edges incident at 𝑢2𝑙. Therefore the 

number of Hajós graphs corresponding to an edge incident at 𝑣1𝑖 is 2. The number of edges 

incident at  𝑣1𝑖 is 2. Therefore the number of Hajós graphs corresponding to all the edges 



Cardinality of Hajós Graphs and Hajós Fuzzy Graphs on Fan Graph, Lollipop Graph, 

Friendship Graph, Tadpole Graph and Crown Graph 

41 

 

incident at 𝑣1𝑖 is 4.  As there are (𝑚1 − 2) internal vertices in 𝐺1 ∗ and (n pendant vertices 

in G2* without a bridge connecting 𝑃𝑚2
, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑖 with 𝑢1𝑘 is 4(𝑚1 − 2)(𝑛2 − 1). 
 

Case (vii): 𝑣2𝑗 is identified with 𝑢2𝑙 

Subcase (vii.a): 𝑣2𝑗 a vertex that is incident with a bridge connecting 𝑃𝑚1
 is identified with 

𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣2𝑗, there are 3 choices of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is  3. Since 3 edges 

are incident at 𝑣2𝑗, the number of Hajós graphs corresponding to all the edges incident at 

𝑣2𝑗 is 9.  As there exists 1 vertex in 𝐾𝑛1 of 𝐺1 ∗ that incident with the bridge connecting 

𝑃𝑚1
 and 1 vertex of 𝐶𝑛2 with a bridge connecting 𝑃𝑛1 of 𝐺2 ∗,  the total number of Hajós 

graphs obtained by identifying 𝑣2𝑗 with 𝑢2𝑙 is 9.  

 

Subcase (vii.b): 𝑣2𝑗 a vertex without a bridge connecting 𝑃𝑚1
 is identified with 𝑢2𝑙,  

𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣2𝑗, there are 2 choices of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is  2.  Since 2 edges 

are incident at 𝑣2𝑗, the number of Hajós graphs corresponding to all the edges incident at 

𝑣2𝑗 is 4.  As there exist  (𝑛1 − 1) vertices with the bridge in 𝐾𝑛1  of 𝐺1 ∗ and (𝑛2 − 1) 

vertices in 𝐶𝑛2 of 𝐺2 ∗ respectively,  the total number of Hajós graphs obtained by 

identifying 𝑣2𝑗 with 𝑢2𝑙 is 4(𝑛1 − 1)(𝑛2 − 1).  

 

Subcase (vii.c): 𝑣2𝑗 a vertex that is incident with a bridge connecting 𝑃𝑚1
 is identified with 

𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 without a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣2𝑗, there are 2 choices of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is  2. Since 3 edges 

are incident at 𝑣2𝑗, the number of Hajós graphs corresponding to all the edges incident at 

𝑣2𝑗 is 6.  As there exists 1 vertex in 𝐶𝑛1 of 𝐺1 ∗ that incident with the bridge connecting 

𝑃𝑚1
 and (𝑛2 − 1) vertices in 𝐶𝑛2 without a bridge connecting 𝑃𝑛1 of 𝐺2 ∗,  the total number 

of Hajós graphs obtained by identifying 𝑣2𝑗 with 𝑢2𝑙 is 6(𝑛2 − 1). 

 

Subcase (vii.d): 𝑣2𝑗 a vertex that is incident without a bridge connecting 𝑃𝑚1
 is identified 

with 𝑢2𝑙, 𝑤ℎ𝑒𝑟𝑒 𝑢2𝑙 with a bridge connecting 𝑃𝑚2
. 

For each edge incident at 𝑣2𝑗, there are 3 choices of the edges incident at 𝑢2𝑙. Therefore 

the number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 3. Since 2 edges are 

incident at 𝑣2𝑗, the number of Hajós graphs corresponding to all the edges incident at 𝑣2𝑗 

is 6.  As there exists (𝑛1 − 1) vertices in 𝐶𝑛1 of 𝐺1 ∗ that does not incident with the bridge 

connecting 𝑃𝑚1
 and 1 vertex in 𝐶𝑛2 with a bridge connecting 𝑃𝑛2 of 𝐺2 ∗,  the total number 

of Hajós graphs obtained by identifying 𝑣2𝑗 with 𝑢2𝑙 is 6(𝑛1 − 1). 
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Case (viii): 𝑣2𝑗 is identified with 𝑢1𝑘,  𝑢1𝑘 is an internal vertex 

Subcase (viii.a): 𝑣2𝑗 a vertex that is incident with a bridge connecting 𝑃𝑚1
 is identified 

with 𝑢1𝑘,  𝑢1𝑘 is an internal vertex 

For each edge incident at 𝑣2𝑗, there are 2 choice of edges incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 2.  Since the number of 

edges incident at 𝑣2𝑗 is 3, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 6.  As there exist 1 vertex in 𝐶𝑛1 with a bridge connecting 𝑃𝑛1 of 𝐺1 ∗ and 

(𝑚2 − 2)  internal vertices in 𝐺2*, the total number of Hajós graphs obtained by identifying 

𝑣2𝑗 with 𝑢1𝑘 is  6(𝑚2 − 2).  

 

Subcase (viii.b): 𝑣2𝑗 a vertex that does not incident with a bridge connecting 𝑃𝑚1
 is 

identified with 𝑢1𝑘,  𝑢1𝑘 is an internal vertex 

For each edge incident at 𝑣2𝑗, there are 2 choice of edges incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 2.  Since the number of 

edges incident at 𝑣2𝑗 is 2, the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 4.  As there are (𝑛1 − 1) vertices in 𝐶𝑛1 with a bridge connecting 𝑃𝑚1
 of 

𝐺1 ∗ and (𝑚2 − 2)  internal vertices in 𝐺2*, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑗 with 𝑢1𝑘 is  4(𝑚2 − 2)(𝑛1 − 1). 

 

Case (ix): 𝑣2𝑗 is identified with 𝑢1𝑘 is an end vertex 

Subcase (ix.a): 𝑣2𝑗 is a vertex that incident with a bridge connecting 𝑃𝑚1
is identified with 

𝑢1𝑘 is an end vertex, where 𝑢1𝑘 with a bridge connecting 𝐶𝑛2. 

For each edge incident at 𝑣2𝑗, there are 2  choices of edges incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 2. The number of edges 

incident at 𝑣2𝑗 is 3. Therefore the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 6.  As there exist 1 vertex in  𝐶𝑛1of 𝐺1 ∗ and  1 end vertex in 𝑃𝑚2
of 𝐺2 ∗ 

does not incident at the bridge connecting 𝐶𝑛2, the total number of Hajós graphs obtained 

by identifying 𝑣2𝑗 with 𝑢1𝑘 is  6. 

 

Subcase (ix.b): 𝑣2𝑗 is a vertex incident with a bridge connecting 𝑃𝑚1
 is identified with 𝑢1𝑘 

is an end vertex, where 𝑢1𝑘 without a bridge connecting 𝐶𝑛2. 

For each edge incident at 𝑣2𝑗, there exist only one edge incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 1. The number of edges 

incident at 𝑣2𝑗 is 3. Therefore the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 3.  As there exist only one vertex in that incident to the bridge with 𝐶𝑛1of 

𝐺1 ∗ and 1 end vertex in 𝑃𝑚2
of 𝐺2 ∗ without a bridge connecting 𝐶𝑛2, the total number of 

Hajós graphs obtained by identifying 𝑣2𝑗 with 𝑢1𝑘 is 3. 

 

Subcase (ix.c): 𝑣2𝑗 is a vertex that incident without a bridge connecting 𝑃𝑚1
is identified 

with 𝑢1𝑘 is an end vertex, where 𝑢1𝑘 with a bridge connecting 𝐶𝑛2. 

For each edge incident at 𝑣2𝑗, there are 2  choices of edges incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 2. The number of edges 
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incident at 𝑣2𝑗 is 2. Therefore the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 4.  As there exist (𝑛1 − 1) vertices in  𝐶𝑛1of 𝐺1 ∗ and  1 end vertex in 

𝑃𝑚2
of 𝐺2 ∗ with a bridge connecting 𝐾𝑛2, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑗 with 𝑢1𝑘 is  4(𝑛1 − 1). 

 

Subcase (ix.d): 𝑣2𝑗 is a vertex that incident without a bridge connecting 𝑃𝑚1
is identified 

with 𝑢1𝑘 is an end vertex, where 𝑢1𝑘 without a bridge connecting 𝐶𝑛2. 

For each edge incident at 𝑣2𝑗, there exist only one  edge incident at 𝑢1𝑘. Therefore the 

number of Hajós graph corresponding to an edge incident at 𝑣2𝑗 is 1. The number of edges 

incident at 𝑣2𝑗 is 2.  Therefore the number of Hajós graphs corresponding to all the edges 

incident at 𝑣2𝑗 is 2.  As there exist (𝑛1 − 1) vertices in  𝐶𝑛1of 𝐺1 ∗ and  1 end vertex in 

𝑃𝑚2
of 𝐺2 ∗ without a bridge connecting 𝐶𝑛2, the total number of Hajós graphs obtained by 

identifying 𝑣2𝑗 with 𝑢1𝑘 is  2(𝑛1 − 1). 

 

From the above nine cases, the total number of Hajós graph from G1* and G2* is 4(𝑛1 +
𝑚1)(𝑛2 +𝑚2). 
 

Theorem 3.7. Let Gi(Vi, Ei), i = 1, 2 be two fuzzy graphs on Tadpole graphs 𝑇𝑛1,   𝑚1
𝑎𝑛𝑑  

𝑇𝑛2,   𝑚2
 respectively. Then the number of Hajós graphs that can be obtained from Gi, i = 

1, 2  is 4(𝑛1 +𝑚1)(𝑛2 +𝑚2). 
 

Theorem 3.8. Let Gi*(Vi, Ei), i = 1, 2 be two Friendship graphs 𝐹 𝑛𝑖 respectively. Then 

the number of Hajós graphs that can be obtained from Gi*, i = 1, 2  is 12𝑛2 (𝑛1 + 𝑚1). 
Proof: Let V1 = {𝑣, 𝑣1, 𝑣2,⋯ , 𝑣2𝑛1} and V2 = {𝑢, 𝑢1, 𝑢2,⋯ , 𝑢2𝑛2} be the vertex sets of G1* 

and G2* respectively, where  𝑣  and 𝑢 are the central vertices of G1* and G2* respectively. 

Let the remaining vertices 𝑣1, 𝑣2,⋯ , 𝑣2𝑛1 and 𝑢1, 𝑢2,⋯ , 𝑢2𝑛2 be the non-central vertices 

of 𝐹𝑛1& 𝐹𝑛2 respectively. Let 𝑖 ∈ {1, 2,⋯ , 2𝑛1}, and  𝑙 ∈ {1, 2,⋯ , 2𝑛2}. 

For each identification of vertices in the construction of Hajós graphs, there exist different 

cases as follows: 

(i) 𝑣 is identified with 𝑢 (ii) 𝑣 is identified with 𝑢𝑙 (iii) 𝑣𝑖 identified with 𝑢 (iv) 𝑣𝑖 is 

identified with 𝑢𝑙 
 

Case (i): 𝑣 is identified with 𝑢. 

For each edge incident at 𝑣, there are 2𝑛2 choices of edges incident at 𝑢 for constructing 

Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge incident at 

𝑣 is 2𝑛2. Since the number of edges incident at 𝑣 is 2𝑛1, the number of Hajós graphs 

corresponding to all the edges incident at 𝑣 is 4𝑛1𝑛2.  As there exist 1 central vertex in 

𝐺1 ∗ and 1 central vertex in 𝐺2 ∗,   the total number of Hajós graphs obtained by identifying 

𝑣 with 𝑢 is  4𝑛1𝑛2. 
 

Case (ii): 𝑣 is identified with 𝑢𝑙 
For each edge incident at 𝑣, there are 2 choices of edges incident at 𝑢𝑙 for constructing 

Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge incident at 
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𝑣1𝑖 is 2. Since the number of edges incident at 𝑣 is 2𝑛1, the number of Hajós graphs 

corresponding to all the edges incident at 𝑣 is  4𝑛1.  As there exist 1 central vertex in 𝐺1 ∗ 
and 2𝑛2 non-central vertices in 𝐺2 ∗,   the total number of Hajós graphs obtained by 

identifying 𝑣1𝑖 with 𝑢 is  8𝑛1𝑛2. 
 

Case (iii): 𝑣𝑖 is identified with 𝑢 

For each edge incident at 𝑣𝑖, there are 2𝑛2 choices of  edges incident at 𝑢 for constructing 

Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge incident at 

𝑣𝑖 is 2𝑛2. Since the number of edges incident at 𝑣𝑖 is 2, the number of Hajós graphs 

corresponding to all the edges incident at 𝑣1𝑖 is 4𝑛2.  As there exist 2𝑛1 non-central vertices 

in  𝐺1 ∗ and 1 central vertex in 𝐺2 ∗,   the total number of Hajós graphs obtained by 

identifying 𝑣1𝑖 with 𝑢1𝑘 is  8𝑛1𝑛2. 
 

Case (iv): 𝑣𝑖 is identified with 𝑢𝑙  
For each edge incident at 𝑣𝑖, there are 2 choices of edges incident at 𝑢𝑙 for constructing 

Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge incident at 

𝑣1𝑖 is 2. Since the number of edges incident at 𝑣𝑖 is 2, the number of Hajós graphs 

corresponding to all the edges incident at 𝑣𝑖 is 4.  As there exist 2𝑛1 non-central vertices 

in  𝐺1 ∗ and 2𝑛2 non-central vertices in 𝐺2 ∗,   the total number of Hajós graphs obtained 

by identifying 𝑣1𝑖 with 𝑢𝑙 is  16𝑛1𝑛2. 
From the above six cases, the total number of Hajós graph from G1* and G2* is 36𝑛1𝑛2. 
 

Theorem 3.9. Let Gi(Vi, Ei), i = 1, 2 be two fuzzy graphs on Friendship graphs 𝐹 𝑛1and 
𝐹 𝑛2 . Then the number of Hajós fuzzy graphs that can be obtained from Gi, i = 1, 2  is 

36𝑛1𝑛2. 
 

Theorem 3.10. Let Gi*(Vi, Ei) be two Crown Graphs 𝐻𝑛1, 𝑛1and 𝐻𝑛2, 𝑛2 respectively.  
Then the number of Hajós graphs that can be obtained from Gi*, i = 1, 2  is 4𝑛1𝑛2(𝑛1 −
1) (𝑛2 − 1). 
Proof: Let V1 = {𝑣11, 𝑣12, ⋯ , 𝑣1𝑛2 , 𝑣21, 𝑣22,⋯ , 𝑣2𝑛2}and V2 = 

{𝑢11, 𝑢12, ⋯ , 𝑢1𝑛2 , 𝑢21, 𝑢22,⋯ , 𝑢2𝑛2} be the vertex sets of G1* and G2* respectively, 

where 𝑣 is the central vertex of the G1* and the remaining vertices 𝑣1, 𝑣2,⋯ , 𝑣2𝑛1 of G1* 

be the vertices of 𝐾𝑛1. Let V21 = {𝑢11, 𝑢12,⋯ , 𝑢1𝑛2} and V22 = {𝑢21, 𝑢22,⋯ , 𝑢2𝑛2} be the 

two partitions of V2 respectively. Let 𝑖 ∈ {1, 2,⋯ , 𝑛1}, and  𝑙 ∈ {1, 2,⋯ , 𝑛2}. 
For each identification of vertices in the construction of Hajós graphs, there exist different 

cases as follows: 

(i) 𝑣1𝑖 is identified with 𝑢1𝑙 (ii) 𝑣1𝑖 is identified with 𝑢2𝑙 (iii) 𝑣2𝑖is identified with 𝑢1𝑙 
(iv) 𝑣2𝑖 is identified with 𝑢2𝑙  

 

Case (i): 𝑣1𝑖  is identified with 𝑢1𝑙   
For each edge incident at 𝑢1𝑙, there are (𝑛2 − 1) choices of edges incident at 𝑢1𝑙 for 

constructing Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge 

incident at 𝑣 is (𝑛2 − 1). Since the number of edges incident at 𝑣1𝑖 is (𝑛1 − 1), the number 

of Hajós graphs corresponding to all the edges incident at 𝑣1𝑖 is (𝑛1 − 1)(𝑛2 − 1).  As 
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there exist 𝑛1 vertices in 𝑉11 of   𝐺1 ∗ and 𝑛2 vertices in 𝑉21 of 𝐺2 ∗,   the total number of 

Hajós graphs obtained by identifying 𝑣1𝑖 with 𝑢1𝑙 is  𝑛1𝑛2(𝑛1 − 1) (𝑛2 − 1). 
 

Case (ii): 𝑣1𝑖 is identified with 𝑢2𝑙. 
Proof is similar to that of case (i), the total number of Hajos graphs obtained by identifying 

𝑣 with 𝑢2𝑙 is 𝑛1𝑛2(𝑛1 − 1) (𝑛2 − 1). 
 

Case (iii): 𝑣2𝑖 is identified with 𝑢1𝑙 
For each edge incident at 𝑣2𝑖 , there are (𝑛2 − 1) choices of edges incident at 𝑢1𝑙 for 

constructing Hajós graphs. Therefore the number of Hajós graphs corresponding to an edge 

incident at 𝑣2𝑖  is (𝑛2 − 1). Since the number of edges incident at 𝑣2𝑖  is (𝑛1 − 1), the 

number of Hajós graphs corresponding to all the edges incident at 𝑣1𝑖 is (𝑛1 − 1)(𝑛2 − 1).  
As there are 𝑛1 vertices in 𝑉12 of 𝐺1 ∗ and 𝑛2 vertices in 𝑉21 of 𝐺2 ∗,   the total number of 

Hajós graphs obtained by identifying 𝑣2𝑖 with 𝑢2𝑙 is  𝑛1𝑛2(𝑛1 − 1) (𝑛2 − 1). 
 

Case (iv) 𝑣2𝑖 is identified with 𝑢2𝑙  
Proof is similar to that of case (iii), the total number of Hajos graphs obtained by identifying 

𝑣2𝑖 with 𝑢2𝑙 is 𝑛1𝑛2(𝑛1 − 1) (𝑛2 − 1). 
From the above four cases, the total number of Hajós graphs that can be obtained from G1* 

and G2* is 4𝑛1𝑛2(𝑛1 − 1) (𝑛2 − 1). 
 

Theorem 3.11. Let Gi(Vi, Ei), i = 1, 2 be two fuzzy graphs on Crown graphs 𝐻 𝑛𝑖, 𝑛𝑖   
respectively.  Then the number of Hajós fuzzy graphs that can be obtained from Gi, i = 1, 

2  is 12𝑛1𝑛2 (𝑛2 − 1). 
 

4. Conclusion 

In this paper, the cardinality of Hajós graphs, on Fan, Lollipop Graph, Tadpole Graph, 

Friendship Graph and Crown Graph are derived. The cardinality of Hajós fuzzy graphs is 

same as the cardinality of Hajos graphs. By applying the fact the cardinality of Hajos fuzzy 

graphs on Fan, Lollipop Graph, Tadpole Graph, Friendship Graph and Crown Graph are 

also obtained. 
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