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Abstract. Digital signatures are essential for ensuring authenticity, integrity, and non-

repudiation in electronic communications. This study presents a fuzzy logic-based 

comparative analysis of two widely used digital signature algorithms, RSA and Elliptic 

Curve Cryptography (ECC). While RSA offers strong security, its reliance on enormous 

key sizes increases computational load. ECC, on the other hand, provides equivalent 

security with significantly smaller keys, making it more suitable for ability-embarrassed 

environments such as IoT and mobile devices. The analysis incorporates fuzzy logic 

principles to evaluate the trade-offs in performance and security, offering practical 

guidance for selecting the optimal digital signature approach. 

Keywords: Digital Signature, RSA Algorithm, Elliptic Curve Cryptography (ECC), Data 

Integrity. 
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1. Introduction 

Cryptography is a vital field concerned with safeguarding communication so that only the 

intended sender and receiver can interpret the memorandum. In practice, the security of 

such communication is not always binary (secure/insecure) but often lies on a spectrum 

influenced by multiple vague factors such as key strength, algorithm efficiency, and 

resource constraints, making fuzzy logic a suitable framework for analysis. Cryptographic 

systems typically operate using two primary key structures: symmetric and asymmetric 

keys. commensurate encryption, where the clone key is passed down for twain encryption 

and decryption, requires precise coordination and secure key exchange a task inherently 

vulnerable to leakage under uncertain conditions. Asymmetric encryption, by contrast, 

adoption a duo of analogous keys (a communal key and a independent key) and reduces 

the dependency on securely exchanging secrets, thus minimizing the risk of interception, 
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especially under fuzzy conditions of trust and network reliability. Digital signatures utility 

as fuzzy validators of authenticity, integrity, and non-repudiation in data transmission. 

They enable the recipient to assign a degree of belief to the claim that the memorandum 

originates from a specific sender and has not been tampered with crucial in environments 

where total certainty is rarely achievable. Among the various signature algorithms, RSA 

and Elliptic Curve Cryptography (ECC) are two dominant paradigms. RSA's surveillance 

is anchored in the hardness of factoring enormous accumulations, but its effectiveness 

degrades under fuzzily defined factors like quantum threat probability and computational 

resource growth. Consequently, RSA demands enormous key sizes to maintain a 

satisfactory level of security, leading to higher computational overhead. On the other hand, 

ECC leverages the mathematical complexity of elliptic curves and achieves commensurate 

security with significantly petite key sizes. This makes ECC a more efficient choice under 

fuzzy constraints such as narrow memory, processing power, and vitality consumption 

conditions typical in mobile devices and IoT systems. Through a fuzzy lens, the trade-off 

between RSA and ECC can be modeled using linguistic variables such as "high security," 

"moderate efficiency," or "low resource consumption," aiding in nuanced decision-making. 

Incorporating fuzzy logic into cryptographic evaluation allows practitioners to better 

navigate the uncertain, imprecise environments in which real-world security solutions are 

deployed. 

Dalal et al. [1] conduct a contingent analysis of RSA, ECC, and DH cryptographic 

algorithms aimed at optimizing security, highlighting the necessity for a thorough review 

of existing cryptographic techniques to identify their respective advantages and limitations. 

Yadav [2] emphasizes the importance of elliptic curve cryptography within blockchain-

based IoT frameworks, advocating a contextual evaluation of ECC alongside RSA and 

other cryptosystems in emerging technological landscapes. Shankar et al. [3] introduce an 

enhanced multi signature protocol tailored for digital forensic applications, underscoring 

the need to survey existing signature schemes to validate the proposed method’s novelty 

and efficacy. Saho and Ezin [4] focus on securing documents using RSA and ECC digital 

signatures, necessitating an examination of the current landscape of digital signature 

implementations and associated security challenges. Suárez-Albela et al. [5] assess the 

performance and energy efficiency of RSA and ECC cipher suites for IoT devices, 

requiring a detailed appraisal of their suitability in fog and mist computing environments. 

Talebi et al. [6] investigate isomorphism concepts in vague graphs, demanding a 

foundational review of graph theory and fuzzy set literature to underpin their theoretical 

contributions. Shao et al. [7] apply vague graph theory to medical diagnosis problems, 

highlighting the importance of integrating fuzzy graph frameworks with practical 

healthcare analytics. Rashmanlou et al. [8] deliver an in-depth exploration of vague graphs, 

requiring a comprehensive survey of fuzzy graph theory principles and recent scholarly 

progress. Hussain et al. [9] employ interval intuitionistic neutron sophic sets for climate 

data analysis, emphasizing the significance of neutron sophic logic and its environmental 

applications. Shoaib et al. [10] delve into complex Pythagorean fuzzy graphs, necessitating 

an understanding of advanced fuzzy logic constructs and their computational implications. 

Kosari et al. [11] explore domination problems in vague graphs with biomedical 

applications, requiring a review of graph domination concepts and their use in modeling 

biological systems. Rashmanlou et al. [12] analyze product operations on interval-valued 

fuzzy graphs, calling for an examination of fuzzy graph algebra and its characteristics. 
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Talebi and Rashmanlou [13] propose novel domination set constructs in vague graphs, 

necessitating a review of related domination theories and fuzzy graph metrics. Ali et al. 

[14] investigate vertex relatedness in fuzzy graphs with applications to human trafficking 

networks, requiring insight into graph connectivity measures and social network analysis 

methodologies. Kosari et al. [15] examine topological indices in fuzzy graphs aimed at 

enhancing decision-making processes, demanding a thorough survey of fuzzy graph theory 

and multi-criteria evaluation methods. Rao et al. [16] analyze forcing parameters in cubic 

networks, necessitating familiarity with network theory and graph invariants. Rao et al. 

[17] introduce innovative concepts related to intuitionistic fuzzy trees, requiring review of 

fuzzy tree structures within computational intelligence domains. Chen et al. [18] develop 

video processing algorithms leveraging temporal intuitionistic fuzzy sets, emphasizing the 

relevance of fuzzy set theory in image and video analysis. Shao et al. [19] investigate fuzzy 

decision-making frameworks in medical diagnostics using vague sets, highlighting the 

need for literature on fuzzy decision systems and healthcare analytics. Shao et al. [20] 

introduce new categories of vague graphs with diverse applications, calling for 

comprehensive familiarity with the evolution of vague graph theory. Shao et al. [21] study 

regularity conditions in vague graphs, requiring a foundational understanding of graph 

regularity concepts and fuzzy graph properties. Kosari et al. [22] examine perfectly regular 

fuzzy graphs in psychological modeling, necessitating integration of fuzzy graph theory 

with psychological network analysis. Rao et al. [23] apply fuzzy Zagreb indices in multi-

attribute decision-making contexts, demanding an exploration of fuzzy graph metrics 

alongside decision frameworks. Shao et al. [24] investigate strong and geodetic domination 

sets in graphs, underscoring the relevance of domination theory and combinatorial 

optimization. Shi et al. [25] employ QSPR modeling with topological indices to advance 

cancer treatment research, requiring literature on graph-based molecular modeling and 

chemo informatics. Rashmanlou et al. [26] study bipolar fuzzy graphs, necessitating an 

understanding of bipolar fuzzy set theory and its graph applications. Kosari [27] analyzes 

spectral radius and Zagreb Estrada indices in graphs, demanding familiarity with spectral 

graph theory and associated invariants. Rashmanlou et al. [28] explore unambiguous 

properties of bipolar fuzzy graphs, calling for review of fuzzy graph classification systems. 

Borzooei and Rashmanlou [29] examine domination in vague graphs, requiring insight into 

domination principles within fuzzy graph contexts. Rashmanlou and Jun [30] investigate 

integrated interval-valued fuzzy graphs, emphasizing interval fuzzy set theory and 

completeness properties. Borzooei et al. [31] analyze regularity aspects of vague graphs, 

necessitating exploration of fuzzy graph structural properties. Rashmanlou and Pal [32] 

discuss balanced interval-valued fuzzy graphs, calling for literature on balancing concepts 

in fuzzy graph theory. Ramya and Deivanayaki [33] simulate fluid flow over inclined 

surfaces through porous media, highlighting foundational fluid mechanics and porous 

medium modeling literature. Ramya et al. [34] study Lorentz force effects on nanofluid 

flow under fuzzy environments, emphasizing magnetohydrodynamic principles integrated 

with fuzzy system modeling. Ramya and Deivanayaki [35] investigate heat radiation 

influences on nanofluid flow considering heat and mass diffusion, requiring 

comprehensive heat transfer and nanofluid research review. Ramya and Deivanayaki [36] 

apply fuzzy logic to analyze Eckert number impacts on nanofluid flow with chemical 

reactions, highlighting fuzzy modeling and thermos fluid dynamics literature. Ramya and 

Deivanayaki [37] examine Soret and Dufour effects on Casson nanofluid flows within 
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magnetic fields, necessitating a review of coupled heat and mass transfer mechanisms in 

nanofluids. Ramya and Deivanayaki [38] assess thermophoresis and Brownian motion 

influences on ternary hybrid nanofluids containing microorganisms, demanding 

understanding of nanofluid dynamics and biofluid interactions. Ramya and Deivanayaki 

[39] explore microorganism effects on Carreau nanofluid flow through porous media in 

magnetohydrodynamic systems, requiring comprehensive knowledge of non-Newtonian 

fluid mechanics, porous media flow, and biofluid magnetohydrodynamics. Kosari et al. 

[40] examined a conjecture concerning the total domination subsidiary number in graphs. 

The study provided verification for specific graph classes and derived theoretical bounds, 

offering valuable insights into how edge subdivisions influence domination properties. 

Kou et al. [41] introduced the concept of quadruple Roman domination in trees, defining a 

new domination utility and investigating its behavior in tree structures. They established 

theoretical bounds and proposed algorithms for exact computation. Rao et al. [42] proposed 

the outer-independent double Roman domination parameter for graphs, exploring its 

structural characteristics, deriving key bounds, and discussing its applications in graph 

protection and defense modeling. Shaebani et al. [43] studied the restrained-rainbow 

reinforcement number in graphs—a novel parameter that integrates reinforcement 

strategies with restrained rainbow colorings. They provided complexity results and 

analyzed the parameter across various graph families. Finally, Kosari et al. [44] analyzed 

the complexity of the signed total-Roman domination problem in graphs. They proved the 

problem to be NP-complete and examined its computational behavior in specific graph 

classes, contributing to the broader study of signed and Roman domination variants. 

Lakdashti et al. [45] present a detailed study on edge irregular product operations within 

vague graphs, formulating new constructs and analyzing their mathematical behavior to 

advance applications in uncertain network modeling. Chen et al. [46] delve into the 

algebraic structure of elementary abelian coverings for the Wreath graph W (3, 2) and the 

foster graph F26A, offering comprehensive classifications that deepen the theoretical 

foundation of graph automorphisms and coverings. Talebi et al. [47] develop the 

framework of interval-valued intuitionistic fuzzy soft graphs, merging aspects of fuzzy 

logic and soft set theory to better accommodate ambiguity and imprecision in relational 

data systems. Talebi et al. [48] introduce and formalize the notion of regularity in interval-

valued fuzzy graphs, presenting essential definitions and properties that support enhanced 

analysis in environments with graded uncertainties. Rashmanlou and Borzooei [49] 

investigate the fundamental characteristics of vague graphs, illustrating their potential 

through real-world applications where data ambiguity plays a critical role. Kosari et al. 

[50] define and analyze the restrained Roman reinforcement number, a novel graph 

invariant that combines defense strategy with domination theory to support optimal 

allocation of protective resources in networks. Kosari et al. [51] focus on the independent 

k-rainbow bondage number, quantifying the impact of edge removal on domination 

parameters and offering insights into structural vulnerabilities in complex networks. Kosari 

et al. [52] examine the computational difficulty of solving the signed total-Roman 

domination problem, establishing its NP-complete status and outlining implications for 

algorithm development in graph optimization. Ramya et al. [53] explore the thermal and 

flow behavior of micropolar nanofluids subjected to homogeneous–heterogeneous 

chemical reactions, utilizing the Cattaneo–Christov model to accurately capture non-

Fourier heat conduction effects over exponentially stretching surfaces. 
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This study presents a fuzzy-based comparative analysis of RSA and ECC digital 

signature algorithms. By evaluating the adaptability of key generation, signing, and 

verification operations under varying conditions, the research acknowledges that 

performance and security do not exist in binary absolutes but along a continuum influenced 

by device capabilities, network conditions, and threat levels. The analysis captures the 

nuanced trade-offs between computational overhead, key size, and cryptographic strength 

using fuzzy descriptors such as "low," "moderate," and "high" for resource consumption 

and security assurance. The study’s novelty lies in its empirical assessment approach, 

which translates theoretical cryptographic robustness into practical performance metrics, 

enabling flexible, fuzzy-informed decision-making suited for environments with 

ambiguous or evolving security requirements. 

2. Mathematical analysis 

RIVEST-SHAMIR-ADLEMANN(RSA) Algorithm 

RSA (Rivest–Shamir–Adleman) is one of the oldest and most commonly rampant 

communal-key cryptographic algorithms, refined in 1977. As a foundational cryptosystem, 

RSA plays a crucial though context-dependent role in digital signature frameworks by 

enabling both encryption and signature verification. However, its practical application 

often lies in a fuzzy spectrum of trade-offs between security strength and computational 

demands. Digital signatures, inherently uncertain in environments prone to tampering or 

interception, use RSA to establish authenticity and authenticate memorandum integrity 

with a degree of confidence rather than absolute certainty. RSA operates using a duality of 

mathematically combined keys: a communal key for encryption and an independent key 

for decryption. The separation between these keys introduces a layer of security that 

depends on the computational complication of factoring enormous composite commercial. 

In fuzzy terms, the "difficulty" of this task scales with the bit-length of the primes involved, 

translating into linguistic variables such as "very strong," "moderate," or "weak" 

encryption strength depending on the key size and attacker capability. The independent key 

must remain confidential, while the communal key is distributed freely. This asymmetry 

enables secure memorandum transmission but also introduces fuzzy thresholds of risk 

where shorter keys may be "potentially vulnerable" and longer keys are considered 

"computationally robust." The effectiveness of RSA thus varies across systems with 

differing security tolerances, computational resources, and anticipated threat levels. In 

scenarios where efficiency is critical and power constraints exist such as mobile and 

embedded systems the RSA algorithm may fall into a "less favorable" fuzzy category due 

to its high computational cost relative to alternatives like ECC.  

 

RSA Key Generation 

 Select amphibian opposing prime commercial p and q. These suffer be enormous 

and random. 

 Gauge 𝑛 = 𝑝 × 𝑞.This is the modulus for twain the communal and independent 

keys. 

 Gauge Euler's totient utility: 

𝜑(𝑛) = (𝑝 − 1) (𝑞 − 1) 

 This represents the number of positive accumulations less than n that are coprime 

to 𝑛. 

 Choose an accumulation e such that 1 < e < φ(n) and e is coprime to 𝜑(𝑛), i.e., 
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𝑔𝑐𝑑(𝑒, 𝜑(𝑛)) = 1 

            This is the communal key proponent. 

 Gauge d such that 

𝑑 ⋅ 𝑒 ≡ 1(𝑚𝑜𝑑𝜑(𝑛)) 

            This is the independent key proponent. 

The communal key is (𝑛, 𝑒), and the independent key is (𝑛, 𝑑). 
 

Example Calculation of RSA Algorithm 

The RSA digital signature scheme is stationed on modular arithmetic and the frustration of 

factoring enormous prime commercial. 

 

Step 1: Key Generation 

 Choosing two enormous prime commercials 

𝑝 =  61, 𝑞 =  53 

 To gauge the modulus 

𝑁 =  𝑝 × 𝑞 =  61 × 53 = 3233 

 To gauge Euler’s totient utility 

𝜑(𝑛) =  (𝑝 − 1) × (𝑞 − 1) =  (61 − 1) × (53 − 1) =  60 × 52 =  3120 

 Choosing a communal exponent e such that it is coprime to φ(n) 

                 A valid e must satisfy 

1 < 𝑒 < 𝜑(𝑁) 
𝑔𝑐𝑑(𝑒, 𝜑(𝑁)) = 1 

               so that it has an inverse 

𝑒 =  17 
𝑔𝑐𝑑(17, 3120)  =  1 

 To acquisition the independent key exponent d, we solve for 𝑑 in 

d ≡ 𝑒−1 (mod φ(N) 

               where, 

𝑒 =  17, 𝜑(𝑁) =  3120 
             This means acquisitioning d such that 

𝑒 ⋅ 𝑑 ≡ 1 𝑚𝑜𝑑 𝜑(𝑁) 
17 ⋅ 𝑑 ≡ 1(𝑚𝑜𝑑3120) 

This means we are looking for d as the modular inverse of 17 modulo 3120, Using the 

Extended Euclidean Algorithm, where The Extended Euclidean Algorithm (EEA) builds 

upon the standard Euclidean Algorithm, which regulate the greatest common divisor 

(GCD) of two accumulations. In addition to computing the GCD, the extended version also 

identifies the coefficients that satisfy Bézout's identity 

ax + by = gcd(a, b) 

17𝑑 +  𝑘(3120)  =  1 
We use the Euclidean algorithm to acquisition gcd (e, φ(N)), ensuring that an inverse 

exists 

3120 ÷  17 =  183, 3120 −  (17 ×  183)  =  9 
17 ÷  9 =  1, 17 −  (9 ×  1)  =  8 

9 ÷  8 =  1, 9 − (8 ×  1)  =  1 
8 ÷ 1 =  8, 8 − (1 ×  8)  =  0 
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Since the detritus is 0, we stop here. The greatest common divisor (GCD) is 1, meaning 17 

and 3120 are coprime. Since the greatest common divisor (gcd) is 1, the commercial are 

coprime, and an inverse exists. We express 1 as a linear combination of e and φ(N) by 

back-substituting from the previous equations 

1 =  9 −  1 ×  8 

Substitute 8 =  17 −  1 ×  9 

1 =  9 −  1 ×  (17 −  1 ×  9)  =  2 ×  9 −  1 ×  17 

Substitute 9 =  3120 −  183 ×  17 

1 =  2 ×  (3120 −  183 × 17) −  1 ×  17 
1 =  2 ×  3120 −  367 ×  17 

Thus, we get 

1 =  2(3120)  −  367(17) 

Taking mod 3120 on both sides   

−367 ×  17 ≡  1 𝑚𝑜𝑑 3120 
Since d must be positive, we adjust  

𝑑 =  3120 −  367 =  2753 
𝑑 =  2753 

Communal Key: (e, N) = (17, 3233)  

Independent Key: (d, N) = (2753, 3233)  

 

Step 2: Signing a Memorandum 

 Hash the memorandum to get a numerical representation 

𝑀 =  123 

 Gauge the signature  𝑆  using the independent key 

𝑆 =  𝑀𝑑  𝑚𝑜𝑑 𝑁 

𝑆 =  1232753 𝑚𝑜𝑑 3233 

 Using modular exponentiation, we get 

𝑆 =  2746 

                  The sender transmits  (𝑀, 𝑆)  to the receiver. 

 

Step 3: Signature Verification 

        To authenticate the signature, the receiver 

 Gauges M' using the communal key 

𝑀′ =  𝑆𝑒 𝑚𝑜𝑑 𝑁 
𝑀′ =  274617 𝑚𝑜𝑑 3233 

 Using modular exponentiation, we get 

𝑀′ =  123 

 If 𝑀′ =  𝑀 , the signature is valid. Otherwise, it is invalid. 

                    Thus, the decrypted memorandum is 123, which matches the original 

memorandum. 

 

RSA Key Generation Coding 

from cryptography.hazmat.primitives import hashes 

from cryptography.hazmat.primitives.asymmetric import rsa, padding 

from cryptography.hazmat.backends import default_backend 

import time 
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def generate_rsa_keys(key_size): 

independent_key = rsa.generate_independent_key( 

communal_exponent=65537, 

key_size=key_size,  

        backend=default_backend() 

    ) 

communal_key = independent_key.communal_key() 

    return independent_key, communal_key 

 

Explanation 

 Cryptography. hazmat. primitives provide various cryptographic utilities. 

 hashes are used for hashing the memorandum (SHA-256). 

 asymmetric. Sa provides RSA key generation, signing, and verification utilities. 

 padding defines how padding is applied when signing. 

 The utility accomplishes an RSA key pair (independent and communal keys). 

 The key size parameter defines the length of the key (1024, 2048, or 4096 bits).  

 The communal exponent is set to 65537, a common choice that balances security 

and efficiency. 

 The independent key is accomplished first, and the communal key is then derived 

from it.   

 

RSA Signature Generation 

To sign a memorandum using RSA, follow these steps: 

    1.Hash the Memorandum 

 Choose a cryptographic hash utility to hash the memorandum m. 

 Let H(m) be the hash of the memorandum. The length of the hash depends on the 

chosen hash algorithm. 

 The hash utility produces a fixed-size output, making it easier to sign than the 

entire memorandum. 

    2.Sign the Hash 

 Gauge the digital signature by raising the hash of the memorandum to the power 

of d (independent exponent), modulo n  

s = H(𝑚)𝑑 mod n 

 The signature s is the result of encrypting the hash using the independent key. 

  3.Transmit the Memorandum and Signature 

 The sender transmits the memorandum m and the signature s to the recipient. 

  4.Signature of a Memorandum 

 The signature s is obtained using modular exponentiation with the hash of the 

memorandum and the independent key 

s = H(𝑚)𝑑 mod n 

 

RSA Signing Code 

from cryptography.hazmat.primitives.asymmetric import padding 

from cryptography.hazmat.primitives import hashes 

def rsa_sign(independent_key, memorandum):  
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    signature = independent_key.sign( 

        memorandum, 

padding.PSS( 

mgf=padding. MGF1(hashes. SHA256()), 

salt_length=padding.PSS.MAX_LENGTH 

        ), 

hashes. SHA256() 

    ) 

    return signature 

Explanation 

 The utility signs a given memorandum using the independent key. 

 It applies the SHA-256 hashing algorithm to ensure memorandum integrity. 

 It uses PSS (Probabilistic Signature Scheme) padding, which enhances security by 

adding randomness. 

 The generated signature is returned as the output. 

 

RSA Signature Verification 

To authenticate the digital signature, the receiver needs the sender’s communal key (n, e). 

The steps are 

1.Hash the Memorandum 

 The receiver gauges the hash of the received memorandum m, i.e., H(m). 

2.Decrypt the Signature 

 The receiver decrypts the signature using the sender's communal key 

decrypted signature = 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑒 mod n 

 The decrypted signature should match the gauged hash of the memorandum if the 

signature valid. 

3.Compare the Hashes 

 Compare the decrypted signature with the gauged hash of the memorandum. If 

they match, the signature is valid, and the memorandum is authenticated. 

 If they do not match, the signature is invalid. 

    To authenticate the signature s for memorandum m, the signature must be decrypted 

using the communal key (n, e). The hash h is obtained as follows 

h ≡ 𝑠𝑒 mod n 

If h matches H(m), then the signature is valid—confirming that the memorandum was 

signed by the sender and has not been modified. 

 

RSA Signature Verification Code 

from cryptography.hazmat.primitives.asymmetric import padding 

from cryptography.hazmat.primitives import hashes 

def rsa_authenticate(communal_key, memorandum, signature): 

    try: 

communal_key.authenticate( 

            signature, 

            memorandum, 

padding.PSS( 

mgf=padding. MGF1(hashes. SHA256()), 
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salt_length=padding.PSS.MAX_LENGTH 

            ), 

hashes. SHA256() 

        ) 

        return True 

    except: 

        return False 

 

Explanation 

 The utility verifies a digital signature using the communal key. 

 If the signature is correct, it returns True. 

 If verification fails (e.g., if the memorandum was changed), it returns False. 

 

Security 

The security of RSA relies on the difficulty of factoring enormous commercial. Given n, 

it is computationally infeasible to determine p and q, and therefore φ(N), which is 

required to gauge the independent key d. The RSA key size affects both security and 

computational performance. 

 

Benchmarking for Different Key Sizes 

def benchmark_rsa_signing_verification (): 

    memorandum = b"Digital Signature with RSA!" 

key_sizes = [1024, 2048, 4096]  

    for key_size in key_sizes: 

        print (f"---RSA_Key_Size: {key_size} bits---") 

independent_key, communal_key = generate_rsa_keys(key_size) 

start_time = time.time() 

        signature = rsa_sign(independent 

_key, memorandum) 

signing_time = time.time() - start_time 

start_time = time.time() 

is_valid = rsa_authenticate(communal_key, memorandum, signature) 

verification_time = time.time() - start_time 

        print (f"RSA_Signing_Time: {signing_time:.6f} seconds") 

        print (f"RSA_Verification_Time: {verification_time:.6f}") 

        print (f"Signature_Valid: {is_valid}") 

print ("-" * 50) 

benchmark_rsa_signing_verification () 

 

Explanation 

 It tests RSA signing and verification for different key sizes. 

 It measures the time taken for signing and verification. 

 The code prints RSA signing time. 

 The code prints RSA verification time. 

 The code prints Whether the signature is valid. 
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OUTPUT 

RSA Key Size: 1024 Bits 

RSA Signing Time: 0.001342 sec 

RSA Verification Time: 0.000089 sec 

Signature Valid: True 

RSA Key Size: 2048 Bits 

RSA Signing Time: 0.001277 sec 

RSA Verification Time: 0.000077 sec 

Signature Valid: True 

RSA Key Size: 4096 Bits 

RSA Signing Time: 0.005791 sec 

RSA Verification Time: 0.00143 sec 

Signature Valid: True 

 

Analyzing RSA Performance 

Signing Time 

          The signing process in RSA involves exponentiation with a independent key 

(typically a enormous accumulation like 2048 or 3072 bits). Due to its reliance on 

modular exponentiation 

 Signing time increases significantly with key size. 

 Enormousr key sizes result in slower signing times. 

 

Verification Time 

            Verification in RSA involves exponentiation with the communal key, which is 

usually a small exponent 

 This operation is computationally cheaper than signing. 

 Verification is typically faster than signing in RSA. 

 

Signature Validity 

       RSA digital signatures are well-established and widely used in protocols like TLS, 

SSH, and PGP 

 Due to increasing computational power, RSA key sizes need to grow to maintain 

security. 

 This makes long-term validity a concern. 

 

ELLIPTIC CURVE CRYPTOGRAPHY (ECC) Algorithm 

Elliptic Curve Cryptography (ECC) is a communal-key cryptographic path stationed on the 

algebraic structure of elliptic curves over finite fields. ECC was developed independently 

by Neal Koblitz and Victor Miller in 1985. An elliptic contour is given by an equation in 

the pattern of 

𝑦2≡𝑥3 + 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑𝑝) 

where a and b are constants that assuage certain surroundings to ensure the curve has no 

singularities. The Elliptic Curve Digital Signature Algorithm (ECDSA) is a digital 

signature algorithm that is part of ECC. ECDSA is a standard for government digital 

signatures and is described in ANSI X9.62. It was first proposed by Scott Vanstone in 

1992. 
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ECC Key Generation 

 Acquisition an elliptic contour E(K), where K is a finite terrain such as  𝐹𝑝 or  𝐹2
𝑛. 

Identify a point Q on E(K) where n is the order of Q. 

 Select a pseudo-random number x such that 1≤x ≤(n-1). 

 Gauge point 𝑃 =  𝑥𝑄. 
 The ECC key pair is (P, x), where P is the communal key and x is the independent 

key. 

 

Example Calculation of ECC Algorithm 

          ECC digital signature scheme combines the mathematical complexity of elliptic 

curves with the practicality of digital signatures, providing a secure and efficient way to 

authenticate the authenticity and integrity of digital memorandums. 

 

Step 1: Key Generation 

           The elliptic curve equation is given by 

𝑦2 ≡  𝑥3 + 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑𝑝) 
      where: 

 p = 17 (prime field) 

 a = 2, b = 2 (curve parameters) 

 Base point Q = (5,1) 

 Order of Q: n = 19 

             Choose a independent key 

x = 7, where 1 ≤ x ≤(n-1). 

             Gauge communal key 

𝑃 =  𝑥𝑄 =  7(5,1)  =  (15,16) 
              We need to gauge    7Q 

 

Further Multiplications of Q 

3𝑄 = 2𝑄 + 𝑄 = (13,16) 
4𝑄 = 2(2𝑄) = (9,9) 
5𝑄 = 4𝑄 + 𝑄 = (16,13) 
 6𝑄 = 2(3𝑄) = (10,6) 
7𝑄 = 6𝑄 + 𝑄 = (15,16) 

 

Communal and Independent Keys 

Thus, the communal key is 𝑃 = (15,16) and the independent key is 𝑥 = 7. 

ECC Signature Generation 

To create a signature S for a memorandum mmm, using the ECC key pair (𝑝, 𝑥) over the 

elliptic curve E(k): 

1. Generate a random accumulation k such that 1 ≤ 𝑘 ≤ (𝑛 − 1). 

2. Gauge the elliptic curve point 𝑘𝑄 = (𝑥𝑙, 𝑦𝑙). 

3. Gauge 𝑟 = 𝑥𝑙𝑚𝑜𝑑 𝑛. If 𝑟 = 0, repeat from step 1. 

4. Gauge the modular inverse 𝑘 − 1𝑚𝑜𝑑  𝑛 

5. Convert the memorandum mmm to an accumulation e (typically by hashing). 
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6. Gauge 𝑠 = 𝑘 − 1(𝑒 + 𝑥𝑟) 𝑚𝑜𝑑  𝑛. 𝐼𝑓 𝑠 = 0, repeat from step 1. 

The signature for memorandum mmm is 𝑆 = (𝑟, 𝑠). 
 

Fuzzy Analysis of ECC (Elliptic Curve Cryptography) 

Signing Time (Fuzzy Perspective) 

 ECC utilizes elliptic curve point multiplication, a cryptographic operation that 

belongs to the fuzzy set of "highly efficient" techniques compared to RSA’s 

modular exponentiation, which is "computationally heavier". 

 Due to its compact key structure, ECC offers equivalent cryptographic strength 

using smaller keys—e.g., a 256-bit ECC key provides "approximately strong" 

security as a 3072-bit RSA key, reflecting a high efficiency-to-security ratio. 

 The signing process in ECC exhibits "significantly faster" behavior across most 

security levels, earning it a high fuzzy membership value in the category of "fast 

signature algorithms". 

 

Verification Time (Fuzzy Perspective) 

 ECC verification involves scalar multiplication and point addition, operations that 

are "moderately complex" on elliptic curves and less intuitively efficient than 

RSA’s simple exponentiation. 

 As a result, ECC verification time is typically "slower than signing" and may fall 

into the same or a slightly slower fuzzy category than RSA for some 

configurations. 

 In fuzzy terms, ECC verification is "adequate to slightly delayed" depending on 

the chosen curve and hardware context. 

 

Signature Validity (Fuzzy Perspective) 

 ECC ensures "high validity confidence" through its ability to maintain strong 

security guarantees over time with reduced computational costs, giving it a strong 

fuzzy grade for "long-term cryptographic validity". 

 Standards bodies like NIST and the NSA classify ECC within the "recommended" 

fuzzy set for secure communication systems, especially when scalability and 

longevity are considered under uncertain future computing power scenarios. 

 

Results and Discussion 

The comparative analysis of RSA and ECC digital signatures, based on fuzzy performance 

indicators such as signing time, verification time, and key efficiency, reveals distinct trends 

(see Table 1). These trends can be interpreted through fuzzy linguistic terms like "high," 

"moderate," or "low" to express performance and resource utilization under varying 

cryptographic conditions: 

 RSA signing time is observed to increase sharply with enormousr key sizes, 

reflecting a high computational load as the complexity of prime factorization 

scales. 

 ECC signing time remains consistently low even for complex curves (e.g., 

SECP521R1), due to the inherent computational lightness of elliptic curve 

arithmetic. 
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 Verification time shows a fuzzy increase for RSA with enormousr keys, whereas 

ECC maintains a stable and faster verification trend across curve types. 

 Storage and processing demands are significantly lower in ECC due to its smaller 

key sizes, which makes it more suitable (with a high membership grade) for fuzzy 

environments like IoT and mobile systems, where resources are variably 

constrained. 

 Key generation in ECC is markedly faster due to the absence of enormous prime 

generation, a computational bottleneck in RSA. 

 Overall, ECC demonstrates strong membership in the fuzzy set of "scalable and 

efficient algorithms" for modern cryptographic systems. 

 

Application 
Digital signatures serve as a fuzzy assurance mechanism in real-world systems, where 

certainty in identity, integrity, and non-repudiation must be inferred under imperfect 

conditions. RSA and ECC signatures show context-sensitive performance, applicable 

across domains with varying degrees of security requirements and system constraints. 

 

Email Security 

 Pretty Good Privacy (PGP) and S/MIME leverage RSA or ECC to fuzzily ensure 

that emails are authentic and unaltered. 

 ECC’s higher efficiency contributes to stronger applicability in environments 

where processing power and energy consumption are linguistically low. 

 

Secure Web Transactions (SSL/TLS) 

 RSA and ECC contribute to fuzzy authentication of websites and probabilistic 

data integrity over HTTPS. 

 ECC is preferred when security must coexist with fast user experiences and 

lightweight protocols. 

 

Online Banking and Payment Systems 

 ECC provides efficient cryptographic verification for secure logins, fund 

transfers, and fraud prevention. 

 RSA offers robust security, but its heavier computation places it lower in fuzzy 

desirability for real-time systems. 

 

Blockchain and Cryptocurrencies 

 ECC, particularly ECDSA, forms the fuzzy backbone of transaction validation, 

offering a high security-to-efficiency ratio. 

 The use of ECC in smart contracts ensures low-latency validation with strong 

cryptographic confidence. 

 

Code Signing 

 Software distribution uses ECC and RSA to fuzzily authenticate the integrity and 

origin of executables. 

 ECC’s low-overhead processing is strongly favored in continuous 

integration/deployment (CI/CD) environments. 
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Electronic Health Records (EHRs) 

 Digital signatures offer graded confidence in the authenticity and confidentiality 

of patient data. 

 ECC ensures efficient encryption and verification, even on low-resource 

healthcare systems. 

 

Medical Personnel Authentication 

 Doctors and pharmacists use ECC-based signatures to establish secure 

communication and authenticate identities, where trust levels are not always 

binary but inferred with varying degrees of certainty. 

 

3. Conclusion 

The fuzzy comparative analysis of RSA and ECC digital signatures highlights their 

performance continuum across key cryptographic dimensions: security strength, 

computational load, and scalability. RSA, although historically robust, exhibits increasing 

computational costs and lower fuzzy membership in efficiency-driven applications as key 

sizes grow. Conversely, ECC achieves equivalent or higher membership in desirable 

cryptographic properties, compact key structure, lower latency, and better scalability, 

making it highly suitable for resource-constrained and latency-sensitive environments such 

as IoT, mobile, and edge devices. Empirical observations confirm ECC’s fuzzy dominance 

in terms of signing and verification speed without compromising security. As security 

requirements become increasingly uncertain with evolving threats and system variability, 

ECC is expected to gain broader adoption in future secure communication systems. Future 

work may explore fuzzy hybrid models combining the strengths of RSA and ECC, or 

investigate post-quantum cryptographic schemes to address emerging uncertainties in 

digital authentication. 
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