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Abstract. In the realm of neutrosophic mathematics, solving differential equations 

introduces complexities due to the uncertain nature of the parameters involved. This study 

explores the application of Milne’s predictor and corrector formula within the neutrosophic 

environment to solve ordinary differential equations (ODEs) with initial conditions. The 

approach leverages the flexibility of neutrosophic sets to represent vague or imprecise 

initial conditions and parameters. Milne’s method, known for its efficiency in predicting 

and correcting numerical solutions, is adapted to accommodate neutrosophic uncertainties, 

enhancing its applicability in practical scenarios where precise initial conditions may be 

lacking. Through theoretical analysis and computational experiments, this research 

demonstrates the effectiveness of combining neutrosophic calculus with Milne’s formula, 

offering insights into its potential for solving ODEs under uncertain conditions. 
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1. Introduction 

We are often faced with many ambiguous situations because of the limited, vague and 

uncertain knowledge available in our daily lives. It becomes impossible to depict and 

characterize any phenomenon in precise manner. In order to deal with these circumstances, 

Zadeh proposed fuzzy set theory in 1965. In fuzzy set theory, each intellectual word is 

assigned a membership grade, and all of these intellectual forms may then be simply fitted 

into the fuzzy environment. Basically, fuzzy set theory allows each element of a set "𝐴" to 

have a specific degree of membership, represented by 𝜇𝐴(𝑥), which denotes that each 

element 𝑥 of set 𝐴 has a membership value lying in the closed interval [0,1]. When we 

want to fit distinct intellectual words into a fuzzy set then we assign a numerical value to 

them between 0 and 1, and call them fuzzy numbers. Chang and Zadeh developed fuzzy 

numbers in 1972, while Dubois and Prade studied generalization of fuzzy numbers in 1978.  

 In practice, we normally consider the membership value, although this is 

insufficient. In such cases, the non-membership value must also be taken into account. But 

fuzzy sets are established solely for membership values, they do not take non-membership 
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values into account. Atanassov presented the intuitionistic fuzzy set (IFS) in 1986, which 

is an extension of fuzzy sets that encompassed both situations. Because it contains 

information that belongs to the set as well as information that does not belong to the set, 

intuitionistic fuzzy sets are regarded as an extension of fuzzy sets.  

 In the real-life uncertainty, there is also the possibility of a different situation, 

known as indeterminacy. When the knowledge on which items belong to the set and do not 

belong to the set is insufficient, a neutral state condition known as indeterminacy arises. In 

order to comprehend this scenario in real life, Smarandache was the first to establish 

neutrosophic set theory which consider truth value, indeterminate value, and false value in 

2006 [16]. In neutrosophic set, grade of membership of Truth values (T), Indeterminate 

values (I) and False values (F) has been defined within the non-standard interval -]0,1[+. 

However it is difficult to handle data with non-standard interval, and hence, the single-

valued neutrosophic set was introduced which takes the values in the standard interval 

[0,1]. 

In this paper, we describe how to solve differential equations in a neutrosophic 

setting using calculus features of the neutrosophic set, which was discussed. He was first 

introduced neutrosophic derivative which is an extension of fuzzy derivative. Neutrosophic 

derivative has new type of the granular derivative (gr-derivative). Also, he gave the gr-

partial derivative of neutrosophic-valued several variable functions and investigated the if 

and only if condition for the existence of gr-derivative of neutrosophic-valued function. In 

the recent time, a lot of effort is done in the neutrosophic environment to describe many 

real-life occurrences using differential equations. For example, Sumanthi et al. [17, 18] has 

discussed the solution of neutrosophic differential equation using trapezoidal neutrosophic 

numbers, many methods are available to solve fuzzy differential equations [8, 11, 9]. Moi 

[10] discussed boundary value problem for second order differential equation in 

neutrosophic environment, and many other researchers discussed similar problems. In this 

study, we addressed theory for the solution of first order differential equations using 

numerical approach, namely, Milne’s Predictor and Corrector formula in neutrosophic 

environment, which was inspired by these researches. 

 

Definition 1. Let 𝑋 be a universal set. A neutrosophic set 𝐴 on 𝑋 is defined as  

 𝐴 = 〈𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)〉: 𝑥 ∈ 𝑋} 

where 𝑇𝐴(𝑥) ,𝐼𝐴(𝑥) ,𝐹𝐴(𝑥) :𝑋 → [0,1]  represents the degree of membership, degree of 

indeterministic, and degree of non-membership, respectively, of the element 𝑥 ∈ 𝑋 such 

that 0− ⩽ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ⩽ 3+.  

 

Definition 2. Let 𝑋 be a universal set. A single valued neutrosophic set 𝐴 on 𝑋 is 

defined as  

 𝐴 = {〈𝑇𝐴(𝑥),𝐼𝐴(𝑥),𝐹𝐴(𝑥)〉:𝑥 ∈ 𝑋}  

where 𝑇𝐴(𝑥) ,𝐼𝐴(𝑥) ,𝐹𝐴(𝑥) :𝑋 → [0,1]  represents the degree of membership, degree of 

indeterministic, and degree of non-membership, respectively, of the element 𝑥 ∈ 𝑋 such 

that 0 ⩽ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ⩽ 3.  

 

1.1. Neutrosophic number 

Samrandche first proposed a concept of neutrosophic number which consists of the 

determinant part and the indeterminate part. It is usually denoted by 𝑁 = 𝑎 + 𝑏𝐼, where 𝑎 



Neutrosophic Functions and Solution of Neutrosophic Ordinary Differential Equations by 

Predictor-Corrector Method 

73 

 

and 𝑏 are real numbers and 𝐼 is the indeterminacy such that 𝐼2 = 𝐼, 𝐼 ⋅ 0 = 0 and 
𝐼

𝐼
 is 

undefined. We call 𝑁 = 𝑎 + 𝑏𝐼 as a pure neutrosophic number if 𝑎 = 0. 

For example, let us consider a neutrosophic number as 𝑧 = 3 + 2𝐼 . Then, it 

indicates that its determinate value is 3  and its indeterminate value is 2𝐼 . In actual 

applications, persons usually specify some possible interval range of indeterminacy 𝐼 to 

satisfy some actual requirements. Assume that the indeterminacy 𝐼 is considered as such 

a possible interval [0,0.01]. Then, it is equivalent to 𝑧 ∈ [3,3.02]. 
 

Some basic operations on neutrosophic numbers 

For two neutrosophic number 𝑧1 = 𝑎1 + 𝑏1𝐼  and 𝑧2 = 𝑎2 + 𝑏2𝐼  their some basic 

operational laws are presented below:  

Addition 

 𝑧1 + 𝑧2 = (𝑎1 + 𝑎2) + (𝑏1 + 𝑏2)𝐼 

 

Substraction 

 𝑧1 − 𝑧2 = (𝑎1 − 𝑎2) + (𝑏1 − 𝑏2)𝐼 
 

Multiplication by a scalar 

 For a scalar 𝑐, 𝑐(𝑧1) = 𝑐𝑎1 + 𝑐𝑏1𝐼 

 

Multiplication of two neutrosophic numbers 

 𝑧1𝑧2 = (𝑎1𝑎2) + (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑏1𝑏2)𝐼 

 

Division 

  

 
𝑧1

𝑧2
=

𝑎1

𝑎2
+

𝑎2𝑏1−𝑎1𝑏2

𝑎2(𝑎2+𝑏2)
. 

Neutrosophic numbers satisfied the commutative, associative, distributive, identity and 

inverse properties. 

 

2. Neutrosophic function on 𝑅(𝐼)  

A neutrosophic function is a neutrosophic relation in which the vertical line test does not 

necessarily work. However, in this case, the neutrosophic function coincides with the 

neutrosophic relation. Generally, a neutrosophic function is a function that has some 

indeterminacy (with respect to one or more of its formula, domain, or range). 

Smarandache defined an interval function (neutrosophic function/thick function) 

𝑓: 𝑅 → 𝑅2 where 𝑅 is all real numbers, as follows:  

 ℎ(𝑥) = [ℎ1(𝑥), ℎ2(𝑥)]   𝑓𝑜𝑟   𝑥 ∈ 𝑅. 
  

Example 1. 

Let’s consider ℎ: 𝑅 → 𝑅2  a different type of neutrosophic function defined as ∀𝑥 ∈ 𝑅 

ℎ(𝑥) ∈ [2,3] so we can write ℎ(𝑥) = 𝐼  Therefore, we just know that this function is 

bounded by the horizontal lines 𝑦 = 2 and 𝑦 = 3  
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Figure 1: 

We can modify ℎ(𝑥) and get a constant neutrosophic function (or thick function): 

𝑙: 𝑅 → 𝑝(𝑅) defined as ∀𝑥 ∈ 𝑅 , 𝑙(𝑥) = [2,3] where 𝑝(𝑅) is the set of all subset of 𝑅 .  

 
Figure 2: 

 

Example 2 

A non-constant neutrosophic thick function 𝐾: 𝑅 → 𝑝(𝑅)  defined as ∀𝑥 ∈ 𝑅 , 𝐾(𝑥) =
[2𝑥, 2𝑥 + 1] . Then, the neutrosophic function ℎ(𝑥)  represents a thick (interval area) 

between two parallel lines 𝐾1(𝑥) = 2𝑥 and 𝑘2(𝑥) = 2𝑥 + 1 .  

 
Figure 3: 

Let 𝑓: 𝑅(𝐼) → 𝑅(𝐼)  , 𝑓 = 𝑓(𝑋)  where 𝑋 = 𝑥1 + 𝑥2𝐼 ∈ 𝑅(𝐼) , the 𝑓  is called 
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neutrosophic real function with one neutrosophic variable. 

A neutrosophic real function 𝑓(𝑋) can be written as follows: 

 

 𝑓(𝑋) = 𝑓(𝑥1 + 𝑥2𝐼) = 𝑓(𝑥1) + [𝑓(𝑥1 + 𝑥2) − 𝑓(𝑥1)]𝐼. 
 

Neutrosophic exponential and logarithmic functions 

Let 𝑅(𝐼) be the fields of reals. Then   

    1.  Exponential function  

 
𝑓(𝑋) = 𝑒𝑋 = 𝑒𝑥1+𝑥2𝐼

= 𝑒𝑥1 + [𝑒𝑥1+𝑥2 − 𝑒𝑥1]𝐼
 

 

    2.  Logarithmic function  

 
𝑓(𝑥) = log(𝑋) = log(𝑥1 + 𝑥2𝐼)

= log(𝑥1) + [log(𝑥1 + 𝑥2) − log(𝑥2)]𝐼
 

  

 where 𝑎 + 𝑏𝐼 > 0. 

 

Neutrosophic trigonometric functions 

Let 𝑅(𝐼) be the fields of reals, then we have  

    1.  Sine function  

 
𝑓(𝑋) = sin𝑋 = sin(𝑥1 + 𝑥2𝐼)

= sin𝑥1 + [sin(𝑥1 + 𝑥2) − sin𝑥1]𝐼
 

  

    2.  Cosine function  

 
𝑓(𝑥) = cos𝑋 = cos(𝑥1 + 𝑥2𝐼)

= cos𝑥1 + [cos(𝑥1 + 𝑥2) − cos𝑥1]𝐼
 

  

    3.  Tangent function  

 
𝑓(𝑥) = tan𝑋 = tan(𝑥1 + 𝑥2𝐼)

= tan𝑥1 + [tan(𝑥1 + 𝑥2) − tan𝑥1]𝐼
 

  

3. Derivative of a neutrosophic function on 𝑅(𝐼) 

Definition 3. Let 𝑓(𝑋) = 𝑓(𝑥1 + 𝑥2𝐼) = 𝑓(𝑥1) + [𝑓(𝑥1 + 𝑥2) − 𝑓(𝑥1)]𝐼 be a 

neutrosophic function on 𝑅(𝐼). Then the derivative of the neutrosophic function 𝑓(𝑋) is 

defined by  

 𝑓′(𝑋) = 𝑓′(𝑥1 + 𝑥2𝐼) = 𝑓′(𝑥1) + [𝑓′(𝑥1 + 𝑥2) − 𝑓′(𝑥1)]𝐼. 
 

Examples 

1.  If 𝑓(𝑋) = 𝑋𝑁 = (𝑥1 + 𝑥2𝐼)(𝑛1+𝑛2𝐼) = 𝑥1
(𝑛1+𝑛2𝐼)

+ [(𝑥1 + 𝑥2)(𝑛1+𝑛2𝐼) − 𝑥1
(𝑛1+𝑛2𝐼)

]𝐼 

where 𝑁 = 𝑛1 + 𝑛2𝐼 be any neutrosophic constant. Then  



Anwesha Samanta 

76 

 

 

𝑓′(𝑋) = (𝑥1
(𝑛1+𝑛2𝐼)

)′ + [((𝑥1 + 𝑥2)(𝑛1+𝑛2𝐼))′ − (𝑥1
(𝑛1+𝑛2𝐼)

)′]𝐼

= (𝑛1 + 𝑛2𝐼){𝑥1
(𝑛1+𝑛2𝐼−1)

+ [(𝑥1 + 𝑥2)(𝑛1+𝑛2−1) − 𝑥1
(𝑛1+𝑛2𝐼−1)

]𝐼}

= (𝑛1 + 𝑛2𝐼)𝑋(𝑛1−𝑛2𝐼−1)

= 𝑁𝑋(𝑁−1)

 

  

2.  If 𝑓(𝑋) = 𝑒𝑋 = 𝑒𝑥1+𝑥2𝐼 = 𝑒𝑥1 + [𝑒𝑥1+𝑥2 − 𝑒𝑥1]𝐼 then  

 

 

𝑓′(𝑋) = (𝑒𝑥1)′ + [(𝑒𝑥1+𝑥2)′ − (𝑒(𝑥1)′)]𝐼

= 𝑒𝑥1 + [𝑒𝑥1+𝑥2 − 𝑒𝑥1]𝐼

= 𝑒𝑋

 

 

 

3.  If 𝑓(𝑋) = ln(𝑋) = 𝑙𝑛(𝑥1 + 𝑥2𝐼) = ln(𝑥1) + [ln(𝑥1 + 𝑥2) − ln(𝑥1)]𝐼 then  

 

𝑓′(𝑋) = (ln(𝑥1))′ + [(ln(𝑥1 + 𝑥2))′ − (ln(𝑥1))′]

=
1

𝑥1
+ [

1

𝑥1+𝑥2
−

1

𝑥1
]𝐼

=
1

𝑥1
+ [

−𝑥2

𝑥1(𝑥1+𝑥2)
]𝐼

=
1+0𝐼

𝑥1+𝑥2𝐼

=
1

𝑋

 

  

4.  If 𝑓(𝑋) = sin𝑋 = sin(𝑥1 + 𝑥2𝐼) = sin𝑥1 + [sin(𝑥1 + 𝑥2) − sin𝑥1]𝐼 then  

 

𝑓′(𝑋) = (sin𝑥1)′ + [(sin(𝑥1 + 𝑥2))′ − (sin𝑥1)′]𝐼

= cos𝑥1 + [cos(𝑥1 + 𝑥2) − cos𝑥1]𝐼

= cos(𝑥1 + 𝑥2𝐼)

= cos 𝑋

 

  

5.  If 𝑓(𝑋) = cos𝑋 = cos(𝑥1 + 𝑥2𝐼) = cos𝑥1 + [cos(𝑥1 + 𝑥2) − cos𝑥1]𝐼 then  

 

𝑓′(𝑋) = (cos𝑥1)′ + [(cos(𝑥1 + 𝑥2))′ − (cos𝑥1)′]𝐼

= −sin𝑥1 + [−sin(𝑥1 + 𝑥2) + sin𝑥1]𝐼

= −{sin𝑥1 + [sin(𝑥1 + 𝑥2) − sin𝑥1]𝐼}

= −sin(𝑥1 + 𝑥2𝐼)

= − sin 𝑋

 

  

4. Integral of a neutrosophic function on 𝑅(𝐼) 

Definition 4.  Let 𝑓(𝑋) = 𝑓(𝑥1 + 𝑥2𝐼) = 𝑓(𝑥1) + [𝑓(𝑥1 + 𝑥2) − 𝑓(𝑥1)]𝐼  be a 

neutrosophic function on 𝑅(𝐼), then we define integration of the neutrosophic function 

𝑓(𝑋) as follows:  

 ∫ 𝑓(𝑋) 𝑑𝑋 = ∫ 𝑓(𝑥1) 𝑑𝑥1 + [∫ 𝑓(𝑥1 + 𝑥2) 𝑑(𝑥1 + 𝑥2) − ∫ 𝑓(𝑥1) 𝑑𝑥1]𝐼 + 𝑎 + 𝑏𝐼 

where 𝑎 + 𝑏𝐼 is a neutrosophic constant.  

 

Examples: 

    1.  If 𝑓(𝑋) = 𝑒𝑋 = 𝑒𝑥1 + [𝑒𝑥1+𝑥2 − 𝑒1
𝑥] then  
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∫ 𝑒𝑋 𝑑𝑋 = ∫ 𝑒𝑥1  𝑑𝑥1 + [∫ 𝑒𝑥1+𝑥2 𝑑(𝑥1 + 𝑥2) − ∫ 𝑒𝑥1 𝑑𝑥1]𝐼

= 𝑒𝑥1 + [𝑒𝑥1+𝑥2 − 𝑒𝑥1]𝐼 + 𝑎 + 𝑏𝐼

= 𝑒𝑋 + 𝑎 + 𝑏𝐼

 

 where 𝑎 + 𝑏𝐼 be any neutrosophic constant.  

    2.  If 𝑓(𝑋) = 𝑋3𝑙𝑛𝑋 = 𝑥1
3𝑙𝑛𝑥1 + [(𝑥1 + 𝑥2)3𝑙𝑛(𝑥1 + 𝑥2) − 𝑥1

3𝑙𝑛𝑥1] then  

 

 

∫ 𝑋3 ln𝑋 𝑑𝑋

= ∫ 𝑥1
3 ln𝑥1 𝑑𝑥1 + [∫ (𝑥1 + 𝑥2)3ln(𝑥1 + 𝑥2) 𝑑(𝑥1 + 𝑥2) − ∫ 𝑥1

3ln𝑥1 𝑑𝑥1]𝐼

=
𝑥1

4

4
ln𝑥1 −

𝑥1
4

16
+ [

(𝑥1+𝑥2)4

4
ln(𝑥1 + 𝑥2) −

(𝑥1+𝑥2)4

16
−

𝑥1
4

4
ln𝑥1 +

𝑥1
4

16
]𝐼

+𝑎 + 𝑏𝐼

 

  

 

= {
𝑥1

4

4
ln𝑥1 + [

(𝑥1+𝑥2)4

4
ln(𝑥1 + 𝑥2) −

𝑥1
4

4
ln𝑥1]𝐼} + 𝑎 + 𝑏𝐼

= {
𝑥1

4

16
+ [

(𝑥1+𝑥2)4

16
−

𝑥1
4

16
]𝐼}𝑎 + 𝑏𝐼

=
(𝑥1+𝑥2𝐼)4

4
ln(𝑥1 + 𝑥2𝐼) −

(𝑥1+𝑥2𝐼)4

16
𝑎 + 𝑏𝐼

=
𝑋4

4
ln𝑋 −

𝑋4

16
+ 𝑎 + 𝑏𝐼

 

 where 𝑎 + 𝑏𝐼 be any neutrosophic constant.  

    3.  If 𝑓(𝑋) = sin𝑋cos2𝑋 = sin 𝑥1cos2𝑥1 + [sin (𝑥1 + 𝑥2)cos2(𝑥1 + 𝑥2) −
sin 𝑥1cos2𝑥1] then  

 

∫ sin𝑋cos2𝑋 𝑑𝑋

= ∫ sin𝑥1cos2𝑥1 𝑑𝑥1 + [∫ sin(𝑥1 + 𝑥2)cos2(𝑥1 + 𝑥2) 𝑑(𝑥1 + 𝑥2)

− ∫ sin𝑥1cos2𝑥1 𝑑𝑥1]

= −
1

3
cos3𝑥1 + [−

1

3
cos3(𝑥1 + 𝑥2) +

1

3
cos3𝑥1]

= −
1

3
cos3(𝑋)

 

  

4.1. The definite integral 

Definition 5. Let 𝑓(𝑋) = 𝑓(𝑥1 + 𝑥2𝐼) = 𝑓(𝑥1) + [𝑓(𝑥1 + 𝑥2) − 𝑓(𝑥1)]𝐼 be a 

neutrosophic function on 𝑅(𝐼), then we define the definite integration of the neutrosophic 

function 𝑓(𝑋) as follows:  

 ∫
𝑐+𝑑𝐼

𝑎+𝑏𝐼
𝑓(𝑋) 𝑑𝑋 = ∫

𝑐

𝑎
𝑓(𝑥1) 𝑑𝑥1 + [∫

𝑐+𝑑

𝑎+𝑏
𝑓(𝑥1 + 𝑥2) 𝑑(𝑥1 + 𝑥2) − ∫

𝑐

𝑎
𝑓(𝑥1) 𝑑𝑥1]𝐼  

  

Examples: 

If 𝑓(𝑋) = 𝑒𝑋 = 𝑒𝑥 + [𝑒(𝑥 + 𝑦) − 𝑒𝑥]𝐼 then  

 

∫
1+𝐼

0+0𝐼
𝑒𝑋 𝑑𝑋 = ∫

1

0
𝑒𝑥 𝑑𝑥 + [∫

2

0
𝑒(𝑥+𝑦) 𝑑(𝑥 + 𝑦) − ∫

1

0
𝑒𝑥 𝑑𝑥]𝐼

= [𝑒𝑥]0
1 + {[𝑒(𝑥+𝑦)]0

2 − [𝑒𝑥]0
1}

= (𝑒 − 1) + [(𝑒2 − 1) − (𝑒 − 1)]𝐼

= (𝑒 − 1) − (𝑒2 − 𝑒)𝐼
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5. Solution of ordinary differential equation in neutrosophic environment 

Differentiation plays an important role in the field of science and engineering. Many 

problems arise with uncertain or imprecise parameters.To model this uncertainty, we 

develop the differential equation with imprecise parameters. Neutrosophic differential 

equation has been introduced to model this uncertainty. for finding a solution to a 

differential equation, which has previously been done in a classical and fuzzy environment, 

has prompted us to consider similar forms of expansion in a neutrosophic environment. 

The analytic methods to solve neutrosophic differential equations are used for a limited 

classes of differential equations. Most of the differential equations governed by physical 

problems do not possess closed form solutions. For these types of problems the numerical 

methods are used. The commonly used multistep method is Milne’s predictor-corrector 

method which is discussed below. 

 

5.1. Milne’s predictor-corrector method 

Let the differential equation be  

 𝑌′ = 𝐹(𝑋, 𝑌) (1) 

with the initial condition 𝑌(𝑋0) = 𝑌0 where 𝑌 = 𝑦𝑙 + 𝑦𝑘𝐼 and 𝑋 = 𝑥𝑙 + 𝑥𝑘𝐼. 
Now (1) is integrated between 𝑋𝑖−3 and 𝑌𝑖+1 and find  

 𝑌𝑖+1 = 𝑌𝑖−3 + ∫
𝑋𝑖+1

𝑋𝑖−3
𝐹(𝑋, 𝑌) 𝑑𝑋 (2) 

 

Now, the function 𝐹(𝑋, 𝑌)  is replaced by Newtonâ€™s forward difference 

formula in the form  

𝐹(𝑋, 𝑌) = 𝐹𝑖−3 + 𝑈Δ𝐹𝑖−3 +
𝑈(𝑈−1)

2!
Δ2𝐹𝑖−3 +

𝑈(𝑈−1)(𝑈−2)

3!
Δ3𝐹𝑖−3 (3) 

 where 𝑈 =
𝑋−𝑋𝑖−3

𝐻
= 𝑢𝑙 + 𝑢𝑘𝐼 (Say) and 𝐻 = ℎ𝑙 + ℎ𝑘𝐼  

The value of 𝐹(𝑋, 𝑌) is substituted from (3) to (2) and find  

 
𝑌𝑖+1 = 𝑌𝑖−3 + 𝐻 ∫

4+0𝐼

0+0𝐼
[𝐹𝑖−3 + 𝑈Δ𝐹𝑖−3 +

𝑈2−𝑈

2
Δ2𝐹𝑖−3 +

𝑈+3+3𝑈2+2𝑈

6
Δ3𝐹𝑖−3] 𝑑𝑈

 

  

= 𝑌𝑖−3 + 𝐻[4𝐹𝑖−3 + 8Δ𝐹𝑖−3 +
20

3
Δ2𝐹𝑖−3 +

8

3
Δ3𝐹𝑖−3]

= 𝑌𝑖−3 + 𝐻[4𝑓(𝑖 − 3) + 8(𝐹𝑖−2 − 𝐹𝑖−3) +
20

3
(𝐹𝑖−1 − 2𝐹𝑖−2 + 𝐹𝑖−3) +

8

3
(𝐹𝑖 − 3𝐹𝑖−1 + 3𝐹𝑖−2 − 𝐹𝑖−3)

= 𝑌𝑖−3 +
4𝐻

3
[2𝐹𝑖−2 − 𝐹𝑖−1 + 2𝐹𝑖]

 

 Thus the Milne’s predictor formula is  

  

 𝑌𝑖+1
𝑝

= 𝑌𝑖−3 +
4ℎ

3
[2𝐹𝑖−2 − 𝐹𝑖−1 + 2𝐹𝑖] (4) 

  

 The corrector formula is developed in a similar way. The value of 𝑌𝑖+1
𝑝

 will now 

be used. Again, the given differential equation is integrated between 𝑋𝑖−1 and 𝑋𝑖+1 and 

the function 𝐹(𝑋, 𝑌) is replaced by the Newton’s formula (3) Then  
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𝑌𝑖+1 = 𝑌𝑖−1 + ∫
𝑋𝑖+1

𝑋𝑖−1
[𝐹𝑖−1 + 𝑈Δ𝐹𝑖−1 +

𝑈(𝑈−1)

2
Δ2𝐹𝑖−1] 𝑑𝑥

𝑌𝑖−1 + 𝐻 ∫
2+0𝐼

0+0𝐼
[𝐹𝑖−1 + 𝑈Δ𝐹𝑖−1 +

𝑈2−𝑈

2
Δ2𝐹𝑖−1] 𝑑𝑈

= 𝑌𝑖−1 + 𝐻[2𝐹𝑖−1 + 2Δ𝐹𝑖−1 +
1

3
Δ2𝐹𝑖−1]

= 𝑌𝑖−1 + 𝐻[2𝐹𝑖−1 + 2(𝐹𝑖 − 𝐹𝑖−1) +
1

3
(𝐹𝑖+1 − 2𝐹𝑖 + 𝐹𝑖−1)]

= 𝑌𝑖−1 +
𝐻

3
[𝐹𝑖−14𝐹𝑖 + 𝐹𝑖+1]

 

 This formula is known as corrector formula and it is denoted by 𝑌𝑖+1
𝑐 . That is,  

 𝑌𝑖+1
𝑐 = 𝑌𝑖−1 +

𝐻

3
[𝐹(𝑋𝑖−1, 𝑌𝑖 − 1) + 4𝐹(𝑋𝑖 , 𝑌𝑖) + 𝐹(𝑋𝑖+1, 𝑌𝑖+1

𝑝
)] (5) 

 When 𝑌𝑖+1
𝑝

 is computed using the formula (4), formula (5) can be used iteratively to 

obtain the value of 𝑌𝑖+1 to the desired accuracy. 

 

5.2. Illustration 

Find the value of 𝑌(2 + 2𝐼) for the initial value problem  

 
𝑑𝑌

𝑑𝑋
= (0.3 + 0.1𝐼)𝑌2𝑠𝑖𝑛𝑋 with 𝑌(0 + 0𝐼) = 1 + 𝐼  

using Milnes’s predictor-corrector method, taking ℎ = 0.5 + 0.5𝐼. 

Let 𝐹(𝑋, 𝑌) = (0.3 + 0.1𝐼)𝑌2𝑠𝑖𝑛𝑋, 𝑋0 = 0 + 0𝐼, 𝑌0 = 1 + 𝐼, 𝐻 = 0.5 + 0.5𝐼  

Fourth-order Runge-Kutta method is used to compute the starting values 𝑌1, 𝑦2 and 𝑌3. 

So now,  

𝐾1
(0)

= 𝐻𝐹(𝑋0, 𝑌0)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1 + 𝐼)2𝑠𝑖𝑛(0 + 0𝐼)

= 0

 

𝐾2
(0)

= 𝐻𝐹(𝑋0 +
𝐻

2
, 𝑌0 +

𝐾1
(0)

2
)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1 + 𝐼)2𝑠𝑖𝑛(0.25 + 0.25𝐼)

= 0.0006545 + 0.013308𝐼

 

  

𝐾3
(0)

= 𝐻𝐹(𝑋0 +
𝐻

2
, 𝑌0 +

𝐾2
(0)

2
)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.000327 + 1.013635𝐼)2𝑠𝑖𝑛(0.25 + 0.25𝐼)

= 0.000655 + 0.013405𝐼

 

  

𝐾4
(0)

= 𝐻𝐹(𝑋0 + 𝐻, 𝑌0 + 𝐾3
(0)

)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.000655 + 1.013405𝐼)2𝑠𝑖𝑛(0.5 + 0.5𝐼)

= 0.0013107 + 0.027007𝐼

 

 So,  
𝑌1 = 𝑌(𝑋1)

= 𝑌(0.5 + 0.5𝐼)

= 𝑌0 +
1

6
[𝐾1

(0)
+ 2𝐾2

(0)
+ 2𝐾3

(0)
+ 𝐾4

(0)
]

= 1.000655 + 1.0134055𝐼
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 Now  

 

𝐾1
(1)

= 𝐻𝐹(𝑋1, 𝑌1)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.0006555 + 1.0134055𝐼)2𝑠𝑖𝑛(0.5 + 0.5𝐼)

= 0.0013107 + 0.027007𝐼

 

  

 

𝐾2
(1)

= 𝐻𝐹(𝑋1 +
𝐻

2
, 𝑌1 +

𝐾1
(1)

2
)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.00131035 + 1.026909𝐼)2𝑠𝑖𝑛(0.75 + 0.75𝐼)

= 0.001968 + 0.041102𝐼

 

  

𝐾3
(1)

= 𝐻𝐹(𝑋1 +
𝐻

2
, 𝑌1 +

𝐾2
(1)

2
)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.001639 + 1.033957𝐼)2𝑠𝑖𝑛(0.75 + 0.75𝐼)

= 0.001969 + 0.041415𝐼

 

  

𝐾4
(1)

= 𝐻𝐹(𝑋1 + 𝐻, 𝑌1 + 𝐾3
(1)

)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.002624 + 1.054821𝐼)2𝑠𝑖𝑛(1 + 𝐼)

= 0.002632 + 0.056466𝐼

 

 So,  

 

𝑌2 = 𝑌(𝑋2)

= 𝑌(1 + 𝐼)

= 𝑌1 +
1

6
[𝐾1

(1)
+ 2𝐾2

(1)
+ 2𝐾3

(1)
+ 𝐾4

(1)
]

= 1.002624 + 1.054821𝐼

 

  

𝐾1
(2)

= 𝐻𝐹(𝑋2, 𝑌2)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.002624 + 1.054821)2𝑠𝑖𝑛(1 + 𝐼)

= 0.002632 + 0.056466𝐼

 

  

 
𝐾2

(2)
= 𝐻𝐹(𝑋2 +

𝐻

2
, 𝑌2 +

𝐾1
(2)

2
)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.00394 + 1.083054𝐼)2𝑠𝑖𝑛(1.25 + 1.25𝐼)

= 0.003298 + 0.072698𝐼

 

  

 
𝐾3

(2)
= 𝐻𝐹(𝑋2 +

𝐻

2
, 𝑌2 +

𝐾2
(2)

2
)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.004273 + 1.09117𝐼)2𝑠𝑖𝑛(1.25 + 1.25𝐼)

= 0.0033 + 0.073312𝐼

 

  

 

𝐾4
(2)

= 𝐻𝐹(𝑋2 + 𝐻, 𝑌1 + 𝐾3
(2)

)

= (0.5 + 0.5𝐼)(0.3 + 0.1𝐼)(1.005924 + 1.128133𝐼)2𝑠𝑖𝑛(1.5 + 1.5𝐼)

= 0.026488 + 0.2118605𝐼

 

 So,  
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𝑌3 = 𝑌(𝑋3)

= 𝑌(1.5 + 1.5𝐼)

= 𝑌2 +
1

6
[𝐾1

(2)
+ 2𝐾2

(2)
+ 2𝐾3

(2)
+ 𝐾4

(2)
]

= 1.009668 + 1.148212𝐼

 

 The predictor value is  

 
𝑌4

𝑝
= 𝑌0 +

4𝐻

3
[2𝐹(𝑋1, 𝑌1) − 𝐹(𝑋2, 𝑌2) + 2𝐹(𝑋3, 𝑌3)]

= 1.010661 + 1.246013𝐼
 

 The corrector value is  

 
𝑌4

𝑐 = 𝑌2 +
𝐻

2
[2𝐹(𝑋2, 𝑌2) − 4𝐹(𝑋3, 𝑌3) + 𝐹(𝑋4, 𝑌4)]

= 1.0106695 + 1.246018𝐼
 

 Thus the required solution is  

 𝑌4 = 𝑌(2 + 2𝐼) = 1.0106695 + 1.246018𝐼 

 

6. Conclusion 

This paper has solved the first-order ordinary differential equation in the neutrosophic 

environment with initial conditions. We have developed a theory in a neutrosophic 

environment supplemented with an example showing the solution for a first-order linear 

homogeneous differential equation using a numerical approach. Here we use Milne’s 

predictor and corrector method. 
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