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Abstract. This thesis presents a novel approach for solving systems of real Neutrosophic 
linear equations using the Successive Over-Relaxation (SOR) method. Neutrosophic logic, 
which incorporates the elements of truth, indeterminacy, and falsity, provides a 
comprehensive framework for addressing data that is uncertain, inconsistent, and 
incomplete. By adopting the SOR method, an iterative technique traditionally used for 
solving linear equations, this research effectively handles the unique characteristics of 
Neutrosophic numbers. The modified SOR method is rigorously analyzed for convergence 
properties and its effectiveness is demonstrated through numerical experiments. The results 
indicate that the adapted SOR method is a robust and reliable tool for solving complex 
Neutrosophic linear equations, contributing significantly to the field of numerical methods 
and expanding the applicability of Neutrosophic logic in computational mathematics. 
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 Abbreviation   Meaning  ℳ�����  Set of all NFMs of order � × 	 ℳ����  Set of all NFMs of order 	 × 	 ℳ�����  Set of all FNMs of order � × 	 ℳ����  Set of all FNMs of order 	 × 	 ℳ��ℝ   Set of all real matrices of order � × 	 ℳ�ℝ  Set of all real matrices of order 	 × 	 ℳ��ℝ�   Set of all ReNM of order � × 	 ℳ�ℝ�  Set of all ReNM of order 	 × 	 

 
1. Fundamentals of neutrosophic sets and numbers 
1.1. Introduction 
After the development of the fuzzy set (FS) theory, many problems with non-random 
uncertainty are tackled using this theory. While solving these problems, the researchers 
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observed that there are many cases where FS is not sufficient to find the answer. In 1983 
[2], Atanassov introduced an intuitionistic fuzzy set (IFS), a very good extension of FS. A 
beautiful insight of IFS is that it incorporates two parameters known as membership value 
and non-membership value. There is a restriction on these values, their sum is less than or 
equal to 1. If the sum is exactly equal to 1 for all members, then there is nothing new in 
IFS, in this case, IFS becomes FS. Basically, IFS deals with the problems when FS fails to 
solve them or the available information is not sufficient to explain/solve the problem 
completely. 

Sometimes it is also seen that in some cases IFS is not sufficient to explain some 
problems due to incomplete, inconsistent and indeterminate information. To tackle such 
types of problems, Smarandache [39, 40, 41, 42, 43] proposed a new concept known as 
Neutrosophic sets (NSs) which is characterized by three quantities such as truth 
membership function (�), indeterminacy membership function () and falsity membership 
function (�). 

This theory has been found extensive application in various fields �10��14 for 
dealing with indeterminate and inconsistent information in the real world. The NS 
generalized the concept of classical fuzzy set, interval-valued FS, IFS and, so on. Taking 
into account the NS, several authors worked on its different branches, viz. interval 
neutrosophic set [46, 48], generalized neutrosophic soft set [5], etc. After that, some others 
became more interested in NS and developed NFN together with its corresponding matrices 
[9]. 

In 2010, Wang et al. [48] introduced the concept of a single-valued neutrosophic 
set (SVNS) in which all these three quantities are independent, i.e. these values can express 
independently. All these quantities described by the SVNS are closely related to human 
thinking due to the imperfection of knowledge that human receives or observes from 
external sources of information. For details and systematic information about neutrosophic 
sets, numbers and matrices see [29]. 

Some authors mentioned that NS is an extension of FS and IFS and they mentioned 
three quantities of NS as membership function, indeterminacy function and non-
membership function. For this representation, NS is an extension of IFS. But, when each 
element of NS consists of three quantities, viz. truth membership function (t), 
indeterminacy membership function (i) and falsity membership function (f), then it is not 
appropriate to say NS is an extension of IFS, because IFS is characterised by 
membership/acceptance and non-membership/non-acceptance functions only. Note that 
acceptance/membership value is not the same as truth value. To explain it, let us consider 
the statement "God is present everywhere". Somebody "accepts" this statement by their 
own faith or faith is coming from their ancestor or without deep thinking or with/without 
proof. Whereas to say the statement is "truth", needs some evidence or solid proof. So 
“truth” is a hard concept while “acceptance” is a soft idea. 

In 2006, Samrandache [43] generalized the IFS to a transcendental logic, called 
“neutrosophic logic", where the unit interval [0,1] is exceeded, i.e. the percentage of truth, 
indeterminacy and falsity are approximated by non-standard subsets which may overlap 
and exceed the unit interval [0,1] in the sense of non-standard analysis; also the superior 
sums and inferior sum, 	��� = sup � + sup  + sup � ∈ ]"0, 3$[ may be as big as 3 or 3$ , while 	%&' = inf � + inf  + inf � ∈ ]"0, 3$[ may be as small as 0 or  "0. In NS, 
there is no restriction on �, , � other than they are subset of non-standard unit interval 
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]"0, 1$[. Thus  "0 ≤ inf � + inf  + inf � ≤ sup � + sup  + sup � ≤ 3$.  
Some propositions like paradoxes can be nicely characterized by NS, while IFS fails to 
describe it. 

Here, we assume that each elements of a NS is characterized by truth 
membership function  (� ), indeterminacy membership function  ( ) and falsity 
membership function  (�), and all these quantities are independent. Also, we consider 
only standard intervals, because there are some difficulties in non-standard intervals. 

 
2. Neutrosophic number 
Samrandche first proposed a concept of neutrosophic number which consists of the 
determinant part and the indeterminate part. It is usually denoted by - = . + /0, where . 

and / are real numbers and 0 is the indeterminacy such that 01 = 0, 0. 0 = 0 and 
22 is 

undefined. We call - = . + /0 as a pure neutrosophic number if . = 0. 
For example, we consider a neutrosophic number - = 7 + 20. If 0 ∈ [0,0.02], 

then it is equivalent to - ∈ [7,7.04] for - ≥ 7. This means the determinant part is 7, 
whereas the indeterminacy part is 20 for 0 ∈ [0,0.04], which means the possibility for 
number - to be a little bigger than 7. 

Note that this number looks like a complex number, but, see that here 01 = 0, not −1 like a complex number. 
The three basic operators  defined on neutrosophic numbers 7 = 89 + :90 and ; = 81 + :10 are as follows: 
(i) 7 + ; = (89 + 81) + (:9 + :1)0 
(ii) 7 − ; = (89 − 81) + (:9 − :1)0 
(iii) 7 × ; = 8981 + (89:1 + :981 + :9:1)0 
 In real neutrosophic algebra, we denote > as the neutrosophic field over some 

neutrosophic vector spaces. We call the smallest field generated by > ∪ 0 or >(0) to be 
the neutrosophic field for it involves the indeterminacy factor in it, where 0 has the special 
property that 0� = 0, 0 + 0 = 0 and if � ∈ > be some scalar then �. 0 = �0, 0. 0 = 0. Thus, 
we generally denote neutrosophic field >(0) generated by > ∪ 0, i.e. >(0) = 〈> ∪ 0〉. 

 
3. Methods for solving linear equations 
Classical Methods 
• Gaussian Elimination: A direct method for solving linear systems by transforming the 
matrix into an upper triangular form.  
• LU Decomposition: Factorizes a matrix as the product of a lower triangular matrix and 
an upper triangular matrix.  
• Iterative Methods:If the system of equations has a large number of variables, then the 
direct methods are not much suitable.  

In this case, the approximate numerical methods are used to determine the 
variables of the system. 

The approximate methods for solving system of linear equations make it possible 
to obtain the values of the roots of the system with the specified accuracy as the limit of 
the sequence of some vectors. The process of constructing such a sequence is known as the 
iterative process. Include Jacobi and Gauss-Seidel methods, which iteratively refine the 
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solution. 
The successive over-relaxation (SOR) is an iterative method that improves upon 

Gauss-Seidel by introducing a relaxation factor B to accelerate convergence. 
 

4. Real neutrosophic matrix (RNM) 
A neutrosophic matrix over real numbers is a generalization of classical matrices that 
allows for the representation of uncertain, indeterminate, and contradictory information. It 
extends the concept of classical matrices by incorporating three components:  truth-
membership, indeterminacy-membership, and falsity-membership.  

This matrix looks like a complex matrix, but see that here 0  represents 
indeterminacy, not complex  = √−1. Also, 0� = 0 for all positive integer 	, which is 
not true for complex numbers.  

In a neutrosophic matrix, each element can take on three values representing its 
degree of membership to truth, indeterminacy, and falsity, respectively. These values are 
typically denoted by D, 0, and E. 

Here we consider the neutrosophic matrix over real numbers based on the work of 
Smarandache. So it is referred to as a real neutrosophic matrix and is abbreviated by RNM. 
For details of this matrix see. 

The neutrosophic number over the field of real/complex numbers is defined in the 
form . = .9 + /90 , where .9, .1  are real or complex numbers and 0  is the 
indeterminacy. 

An RNM is defined as in FNM, i.e. of the form F = F9 + F10 where F9 and F1 are real matrices. The set of real matrices of order � × 	 is denoted by ℳ��ℝ  and that 
of order 	 × 	 by ℳ�ℝ. The identity RNM of order 	 × 	 is denoted by G�, all diagonal 
elements are 1 and all other elements are 0. The null and identity matrix of order 3 × 3 are  

HI = J0 0 00 0 00 0 0K and GI = J1 0 00 1 00 0 1K 
 

5. Basic operation on real neutrosophic matrices 
If F = F9 + F10 and - = -9 + -10 are two Real Neutrosophic Matrices. Then  
Addition: 
The addition define as: F + - = (F9 + -9) + (F1 + -1)0  
Subtraction: 
The subtraction define as: F − - = (F9 − -9) + (F1 − -1)0  
Multiplication: 
The multiplication define as: F- = (F9-9) + (F1-9 + F9-1 + F1-1)0.  
In this case, 0� = 01 = 0, for any positive integer 	 

 
Division: 
For division F/- = (F9 + F10)/(-9 + -10) 
Let (F9 + F10)/(-9 + -10) = M + 0N (F9 + F10) = (-9 + -10)(M + 0N) 
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(F9 + F10) = M-9 + (M-1 + N-9 + N-1)0 
Comparing both sides, F9 = M-9M = F9/-9 
and,                       F1 = M-1 + N-9 + N-1 F1 = (F9/-9)-1 + N-9 + N-1 F1 − (F9/-9)-1 = N(-9 + -1) N = (F1 − (F9/-9)-1)/(-9 + -1) 

Therefore M + 0N = �O�O + ��"POQ�QO�O$�� 0  

 

So, F/- = �O�O + ���O"�O���O(�O$��) 0 
 

Inverse  
Let F = F9 + F10  be a real neutrosophic matrix and F9, F1 ∈ ℳ�ℝ . Then F  is 
invertible if and only if F9 and F9 + F1 are invertible and this inverse of F is given by  

 F("9) = F9("9) + [(F9 + F1)("9) − F9("9)]0. 
 
6. Neutrosophic linear equations 
Neutrosophic linear equations involve variables that are characterized by truth, 
indeterminacy, and falsity components. These equations extend the classical linear 
equations into the neutrosophic set domain, which allows for the handling of uncertainty, 
indeterminacy, and incompleteness. 

A system of Neutrosophic linear equations can be written as MR = S, where M is 
an 	 × 	 Neutrosophic matrix, and R and S are Neutrosophic vectors. 

 
6.1. Solving procedure of real neutrosophic linear equations  
Let us consider a system of linear equations  

 MT = N     (1)  
i.e. (M9 + M10) (T9 + T10) = (N9 + N10)  

where M9, M1 ∈ ℳ�ℝ and  T9, T1, N9, N1 ∈ ℳ�9ℝ . 
The U th element of M  is .VW(9) + .VW(1)0 , U th element of T  and N  are XW=XW(9)+XW(1)I and /W=/W(9)+/W(1)I respectively. 

Then the matrices M9  and M1  are M9 = (.VW(9))�×�  and M1 = (.VW(1))�×� 
respectively. The vectors T9, T1, N9, N1 are  

T9 =
⎣⎢⎢
⎢⎡X9(9)
X1(9)⋮X�(9)⎦⎥⎥

⎥⎤,    T1 =
⎣⎢⎢
⎢⎡X9(1)
X1(1)⋮X�(1)⎦⎥⎥

⎥⎤,   N9 =
⎣⎢⎢
⎢⎡/9(9)
/1(9)⋮/�(9)⎦⎥⎥

⎥⎤,   N1 =
⎣⎢⎢
⎢⎡/9(1)
/1(1)⋮/�(1)⎦⎥⎥

⎥⎤
 

From equation (1), 
 M9T9 + [(M9 + M1)(T9 + T1) − M9T9]0 = N9 + N10 

That is, 



Priyanka Khamrai 

62 
 

M9T9 = N9          (2)  (M9 + M1)(T9 + T1) − M9T9 = N1 or, (M9 + M1)(T9 + T1) = N9 + N1           (3) 
Equation (2), gives the vector T9  and equation (3) give T9 + T1 . The final 

solution of the equation (1) is T = T9 + T10. 
Notice that the equations (4.3) and (4.4) are the system of real equations. 
 

6.2. Some important results on neutrosophic linear equations 
If M9 and M9 + M1 are two non-singular matrices then check the behavior of M1. 

If M9 and M9 + M1 are two non-singular matrices then M1 may or may be non-

singular. For example, M9 = `1 00 1a, M9 + M1 = `3 11 3a. 
Here M9 and M9 + M1 are non-singular. Then M1 = `2 11 2a is also non-singular. 

Again, M9 = `4 00 3a, M9 + M1 = `2 00 3a. 
Here M9 and M9 + M1 are non-singular. Then M1 = `(−2) 00 0a is singular. 

Theorem 1. If M9  and M9 + M1  are two non-singular matrices then the solution of 
neutrosophic linear equations is unique.    

 
7. Successive Over-Relaxation (SOR) method 
Algorithm description of the classical SOR method 
The equation  

 ∑�Wc9 .VWXW = /V                         (4) 
 

The SOR method refines the solution iteratively using the equation:  XV(d$9) = (1 − B)XV(d) + efgg h/V − ∑V"9Wc9 .VWXW(d$9) − ∑�WcV$9 .VWXW(d)i (5) 

 
Initialize the initial guess vector X(j), relaxation factor B. 
Iterate until convergence. For each  update (XV(d$9)) using the SOR formula. 
Check for convergence: if |X(d$9) − X(d)| ≤ l, stop. 
Extend this iterative scheme to handle Neutrosophic numbers. This involves 

performing Neutrosophic operations for each iteration step. 
 

7.1. Adaption to real neutrosophic systems 
To adapt the SOR method for neutrosophic systems, we modify the iterative process to 
handle neutrosophic components. The adapted iteration is given by:  XV(d$9) = (1 − B)XV(d) + efgg h/V − ∑V"9Wc9 .VWXW(d$9) − ∑�WcV$9 .VWXW(d)i (6) 

 where XV(d) is the -th component of the neutrosophic solution vector at iteration (k). .VW 
are elements of the neutrosophic matrix M. /V are the components of the neutrosophic 
vector N. where each operation respects the neutrosophic nature of the variables. 

Since the equations are a system of real equations, we apply the classical SOR 
method to solving them. 
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8. Relaxation factor B 
The relaxation factor B used in iterative methods for solving linear equations, including 
neutrosophic linear equations (NLEs), is typically a real number. This is because B serves 
as a scalar multiplier that adjusts the iterative updates to control the convergence behavior 
of the method, not the nature of the neutrosophic components. 

 
Neutrosophic relaxation factor : 
If the relaxation factor B  in an iterative method for solving NLEs were to be a 
neutrosophic number, several potential problems and complexities could arise. 

 
Convergence Criteria: 
• Standard convergence criteria are based on norms and distances that are well-defined for 
real numbers. Defining similar criteria for Neutrosophic numbers is non-trivial.  
• The convergence behavior could become unpredictable because the indeterminacy 
component could lead to ambiguous convergence conditions.  
 
Stability issues: 
• The stability of iterative methods might be compromised. The indeterminacy component 
can introduce fluctuations in the updates, making it difficult to ensure stable convergence.  
• Over-relaxation might amplify not just the truth component but also the indeterminacy 
and falsity components, potentially leading to divergent behavior.  

 So interpreting the relaxation factor itself as a Neutrosophic number would be 
challenging. 

 
Properties of relaxation factor B 

• A real number.  
• Used to accelerate the convergence of iterative methods.  
• Typically falls within the range (0 < B ≤ 2).  
 

9. Numerical Example 
Solve the following Neutrosophic system of equations  (4 + 0)T9 + T1 + TI = 2 + 30  (1 + 0)T9 + 6T1 + (2 − 0)TI = 1 + 20 2T9 + T1 + (8 − 0)TI = 3 + 0 

By SOR method taken B=1.01 Rewrite the given equations as 

{(4 + 0) (1 + 00) 1 + 00(1 + 0) (6 + 00) (2 − 0)(2 + 00) (1 + 00) (8 − 0)| JT9T1TIK = J2 + 301 + 203 + 0 K 
 
 
 
That is  
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{(4 + 0) (1 + 00) 1 + 00(1 + 0) (6 + 00) (2 − 0)(2 + 00) (1 + 00) (8 − 0)| }X9(9) + X9(1)0X1(9) + X1(1)0XI(9) + XI(1)0~ = J2 + 301 + 203 + 0 K 
Then 

M9 = J4 1 11 6 22 1 8K, M1 = J1 0 01 0 −10 0 −1K, T9 = }X9(9)
X1(9)
XI(9)~, T1 = }X9(1)

X1(1)
XI(1)~, N9 = J213K, N1 = J321K. 

The real system of equations are  
 M9T9 = N9 (7) 
 (M9 + M1)(T9 + T1) = N9 + N1 (8) 

 
The iteration scheme for SOR method is 

 X9(d$9) = (1 − B)X9(d) + efOO h/9 − .91X1(d) − .9IXI(d)i 

  X1(d$9) = (1 − B)X1(d) + ef�� h/1 − .19X9(d$9) − .1IXI(d)i 

  XI(d$9) = (1 − B)XI(d) + ef�� h/I − .I9X9(d$9) − .I1X1(d$9)i 

 Solution of equation (7)  

 J4 1 11 6 22 1 8K }X9(9)
X1(9)
XI(9)~ = J213K                     (9) 

Using SOR method 

 X9(9)(d$9) = (1 − 1.01)X9(9)(d) + j.j9� h2 − X1(9)(d) − XI(9)(d)i 

  X1(9)(d$9) = (1 − 1.01)X1(9)(d) + 9.j9� h1 − X9(9)(d$9) − 2XI(9)(d)i 

  XI(9)(d$9) = (1 − 1.01)XI(9)(d) + 9.j9� h3 − 2X9(9)(d$9) − X1(9)(d$9)i 

 

Let X9(9)(j) = X1(9)(j) = XI(9)(j) = 0. 
The detailed calculations are shown in the following table  

  
 k X9(9) X1(9) XI(9)  
1  0.50500 0.08332 0.24072  
2 0.41813 0.01607 0.26874  
3 0.42890 0.00550 0.26707  
4 0.43189 0.00566 0.26631  
5 0.43201 0.00590 0.26626  
6 0.43196 0.00592 0.26627  
7 0.43195 0.00592 0.26627  

Therefore the required solution is  

 X9(9) = 0.43195, X1(9) = 0.00592, XI(9) = 0.26627 (10) 
 Solution of equation (8)  
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 (M9 + M1)(T9 + T1) = N9 + N1 

i.e. J5 1 12 6 22 1 7K }X9(9) + X9(1)
X1(9) + X1(1)
XI(9) + XI(1)~ = J534K 
 

 Let  

 X9(9) + X9(1) = �9, X1(9) + X1(1) = �1, XI(9) + XI(1) = �I 
 

Then the equation becomes  

 J5 1 12 6 22 1 7K J�9�1�IK = J534K 
       Using SOR method 

 

 �9(d$9) = (1 − 1.01)�9(d) + j.j9� h5 − �1(d) − �I(d)i 

 

 �1(d$9) = (1 − 1.01)�1(d) + 9.j9� h3 − 2�9(d$9) − �I(d)i 

 

 �I(d$9) = (1 − 1.01)�I(d) + 9.j9� h4 − 2�9(d$9) − �1(d$9)i 

  

Let �9(j) = �1(j) = �I(j) = 0. 
The detailed calculations are shown in the following table  

 k �9 �1 �I 
1 1.01000  0.16497 0.26188  
2 0.91368 0.15166 0.28898  
3 0.91185 0.14785 0.28979  
4 0.91248 0.14754 0.28964  
5 0.91256 0.14754 0.28962  
6 0.91257 0.14754 0.28962  

Therefore, the required solution is  
 �9 = 0.91257, �1 = 0.14754, �I = 0.28962 

i.e  

 X9(9) + X9(1) = 0.91257,   X1(9) + X1(1) = 0.14754, XI(9) + XI(1) = 0.28962 
Using (9),  

 X9(1) = 0.48062, X1(1) = 0.14162,   XI(1) = 0.02335 (11) 
Therefore the required final solution of the given system is 

JT9T1TIK = }X9(9) + X9(1)0X1(9) + X1(1)0XI(9) + XI(1)0~ = J0.43195 + 0.4806200.00592 + 0.1416200.26627 + 0.023350K 
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9.1. Verification of the solution 
We checked the solution satisfied the equation  

 {(4 + 0) (1 + 00) 1 + 00(1 + 0) (6 + 00) (2 − 0)(2 + 00) (1 + 00) (8 − 0)| JT9T1TIK = J2 + 301 + 203 + 0 K (12) 

 Now 

{(4 + 0) (1 + 00) 1 + 00(1 + 0) (6 + 00) (2 − 0)(2 + 00) (1 + 00) (8 − 0)| JT9T1TIK 
= {(4 + 0) (1 + 00) 1 + 00(1 + 0) (6 + 00) (2 − 0)(2 + 00) (1 + 00) (8 − 0)| J0.43195 + 0.4806200.00592 + 0.1416200.26627 + 0.023350K 

= {(4 + 0)(0.43195 + 0.480620) + (0.00592 + 0.141620) + (0.26627 + 0.023350)(1 + 0)(0.43195 + 0.480620) + 6(0.00592 + 0.141620) + (2 − 0)(0.26627 + 0.023350)2(0.43195 + 0.480620) + (0.00592 + 0.141620) + (8 − 0)(0.26627 + 0.023350) |  

=J1.99999 + 3.000002I1.00001 + 1.99969I2.99998 + 1.00004I K 
=J2 + 301 + 203 + 0 K 

 ��������� ��� ���� �� ���������� ������ �:  
In this example, we choose B=2.0. 

Solution of equation (9)  
 

 J4 1 11 6 22 1 8K }X9(9)
X1(9)
XI(9)~ = J213K 

Let  

 X9(9) = X9, X1(9) = X1, XI(9) = XI 
 

Using SOR method 
 

 X9(d$9) = (1 − 2.10)X9(d) + 1.9j� h2 − X1(d) − XI(d)i 

  

 X1(d$9) = (1 − 2.10)X1(d) + 1.9j� h1 − X9(d$9) − 2XI(d)i 

  

 XI(d$9) = (1 − 2.10)XI(d) + 1.9j� h3 − 2X9(d$9) − X1(d$9)i 

 

Let X9(j) = X1(j) = XI(j) = 0. 
 
The detailed calculations are shown in the following table  
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 k X9 X1 XI 
1  1.5000 -0.01750 0.24084  
2 -0.22226 0.27845 0.56616  
3 0.85106 -0.65048 -0.11134  
4 0.51379 0.96364 0.38728  
5 -0.22439  -0.90255 0.71622  
6 1.39466 0.35332 -0.82529  
7 -0.23634 0.62176 1.65618  

 
Therefore, the solution does not exist for this value of relaxation factor B. 

 
10. Conclusion 
Summary of findings 
This research focused on adapting the Successive Over-Relaxation (SOR) method for 
solving Neutrosophic linear equations. Neutrosophic logic, which introduces the concepts 
of truth, indeterminacy, and falsity, provides a more flexible framework for handling 
uncertainty compared to traditional binary logic. The modified SOR method was shown to 
be effective in handling the complexities of Neutrosophic linear equations. Through 
theoretical analysis and numerical experiments, the research validated that the modified 
SOR method converges under certain conditions and offers reliable solutions where 
traditional methods fall short. 

 
Implications 
The broader implications of this research are significant for computational mathematics 
and engineering. The modified SOR method can be applied in various industries where 
uncertainty and indeterminacy are prevalent, such as artificial intelligence, decision-
making, and data analysis. By providing a robust approach to solving Neutrosophic linear 
equations, this research opens up new possibilities for modeling and solving real-world 
problems characterized by incomplete or inconsistent information. The method’s ability to 
handle uncertainty more effectively can lead to better decision-making processes and more 
accurate data analysis. 

 
Future work 
Future research could explore several avenues to enhance the findings of this study. One 
potential area is the development of hybrid methods that combine the modified SOR 
method with other numerical techniques to improve convergence rates and accuracy 
further. Additionally, applying the method to larger and more complex Neutrosophic 
systems could provide deeper insights into its scalability and efficiency. Research could 
also focus on extending the approach to other equations and mathematical models, thereby 
broadening its applicability across different fields. 

This conclusion synthesises the key outcomes of the research, underscores its 
significance, and proposes directions for future exploration, ensuring a comprehensive 
wrap-up of the study’s contributions and potential. 
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