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Abstracts. In real-world scenarios, both determinate and indeterminate information are 

present, making it essential to address indeterminate problems in optimization tasks. 

Neutrosophic numbers (NNs) are particularly effective in representing this mix of 

information. An NN, expressed as (𝑥 + 𝑦𝐼), includes a determinate component 𝑥 and an 

indeterminate component 𝑏𝐼, where 𝑥, 𝑦 ∈ ℝ, and 𝐼 symbolizes indeterminacy, with ℝ 

representing the set of all real numbers. 

This paper introduces the basic operations of NNs and a corresponding NF, which 

involves NNs and is termed simply as a NF. While few methods exist for solving 

neutrosophic linear programming problems (NLPPs), most focus on the three components 

truth, falsity, and neutrality within the coefficients. Here, we propose a novel approach for 

solving NLPPs where the coefficients in both the objective function and the constraints are 

modeled as NNs. 

To demonstrate the efficacy of our method, we present a numerical example along 

with an application in production planning, showcasing how NLPPs can be solved and 

applied in practice. Additionally, we explore the potential ranges for the optimal solution 

when the indeterminacy 𝐼 is defined as a possible interval that corresponds to real-world 

application requirements. This approach provides a more comprehensive framework for 

addressing uncertainty in optimization problems, particularly in contexts where 

indeterminate information cannot be ignored. 

Keywords: fuzzy number, neutrosophic number, fuzzy linear programming problem, 

neutrosophic linear programming problem 
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1. Introduction 

After the development of fuzzy set (FS) theory, it became a significant tool for addressing 

problems involving non-random uncertainty. However, researchers observed that FS 

theory was often inadequate in solving certain problems. This inadequacy became 

apparent, particularly when dealing with incomplete, inconsistent, or indeterminate 

information. 

To address these issues, Smarandache proposed the concept of Neutrosophic Sets 

(NSs), characterized by three key components: the truth membership function (𝑡), the 
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indeterminacy membership function (𝑖), and the falsity membership function (𝑓) [38, 39, 

40, 41, 42]. NS theory has found extensive application in various fields, proving especially 

effective in dealing with indeterminate and inconsistent information in real-world scenarios 

[48]. NSs generalize several existing concepts, including classical fuzzy sets, interval-

valued FS, and intuitionistic FS. In response to the introduction of NSs, several researchers 

have explored its various branches, such as interval neutrosophic sets [46]. 

Subsequently, interest in NSs grew, leading to the development of Neutrosophic 

Fuzzy Numbers (NFN) and their corresponding matrices [10]. In 2010, Wang et al. 

introduced the concept of a single-valued neutrosophic set (SVNS), where the three 

componentsâ€”truth, indeterminacy, and falsityâ€”are independent and can be expressed 

separately [46]. The SVNS framework closely aligns with human cognition, as it accounts 

for the imperfections in knowledge that people acquire from external information sources. 

For more detailed and systematic information on neutrosophic sets, numbers, and 

matrices, refer to [30, 31]. Some researchers have noted that NSs extend FS theory by 

introducing three distinct functions: the membership function, the indeterminacy function, 

and the non-membership function. Additionally, Smarandache introduced the concept of a 

neutrosophic number (NN), which extends the classical real number or serves as an 

alternative representation of an interval number. These NNs are particularly useful in 

handling various types of uncertainties. 

 

2. Neutrosophic number 

Smarandache first introduced the concept of a NN, which consists of two parts: the 

determinate part and the indeterminate part. A NN is typically represented as 𝑁 = 𝑥 + 𝑦𝐼, 

where 𝑥 and 𝑦 are real numbers, and 𝐼 represents indeterminacy, such that 𝐼2 = 𝐼, 𝐼 ⋅

0 = 0, and 
𝐼

𝐼
 is undefined. A NN is called a pure NN when 𝑥 = 0. 

For instance, consider the NN 𝑁 = 50 + 30𝐼 . If 𝐼  belongs to the interval 

[0,0.02], then 𝑁  is equivalent to being within the range [50,50.6] for 𝑁 ≥ 50. This 

indicates that the determinate part of 𝑁 is 50, while the indeterminate part, represented by 

30𝐼, accounts for the possibility that 𝑁 could be slightly larger than 50, depending on the 

value of 𝐼 within its specified interval. 

It’s important to note that while a NN might resemble a complex number in form, 

it differs significantly because 𝐼2 = 𝐼 rather than −1, as in the case of a complex number. 

The three basic operations defined on NNs 𝑆 = 𝑠1 + 𝑠2𝐼 and 𝑇 = 𝑡1 + 𝑡2𝐼 are as 

follows: 

1. 𝑆 + 𝑇 = (𝑠1 + 𝑡1) + (𝑠2 + 𝑡2)𝐼 

2. 𝑆 − 𝑇 = (𝑠1 − 𝑡1) + (𝑠2 − 𝑡2)𝐼 

3. 𝑆 × 𝑇 = 𝑠1𝑡1 + (𝑠1𝑡2 + 𝑠2𝑡1 + 𝑠2𝑡2)𝐼 

In real neutrosophic algebra, we use 𝐾  to denote the neutrosophic field over 

certain neutrosophic vector spaces. The smallest field generated by 𝐾 ∪ 𝐼 , or 𝐾(𝐼), is 

referred to as the neutrosophic field, as it incorporates the indeterminacy factor 𝐼, which 

has the unique properties 𝐼𝑛 = 𝐼, 𝐼 + 𝐼 = 𝐼, and for any scalar 𝑡 ∈ 𝐾, 𝑡 ⋅ 𝐼 = 𝑡𝐼 and 0 ⋅
𝐼 = 0. Consequently, we generally denote the neutrosophic field generated by 𝐾 ∪ 𝐼 as 

𝐾(𝐼) = 〈𝐾 ∪ 𝐼〉. 
Therefore, across different algebraic fields, various types of neutrosophic fields 

can be defined, each generated by the field of a corresponding neutrosophic vector space. 
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3. Literature review 

Linear programming problems (LPPs) in fuzzy environments are typically categorized into 

two groups: symmetric and non-symmetric problems, as classified by Zimmermann [52]. 

Various models for fuzzy linear programming (FLP) problems were introduced by 

Lnuiguchui et al. [24]. Kumar et al. [22] extended this by introducing FLP problems with 

both equality and inequality constraints. 

Numerous authors have explored several properties of FLP problems and proposed 

various models for solving them. The foundational theory of fuzzy programming was first 

suggested by Tanaka et al. [45]. Wu [47] advanced the theory by introducing the concept 

of a non-dominated solution in multi-objective programming, which provided a more 

realistic approach for FLP problems. Researchers like Maleki et al. [26] have developed 

ranking functions to convert FLP problems into equivalent crisp LP models for solution. 

Zimmermann [51] introduced a method using multi-objective linear programming 

techniques to address FLP problems, leading to further advancements in the field. 

Subsequent contributions include new defuzzification techniques from Maleki et al. [26], 

Maleki [27], Liu [23], Jimenez et al. [18], and Nasseri [29], as well as methods utilizing 

Millenâ€™s transform by Peraei et al. [32]. Ebrahimnejad et al. [11] developed a novel 

primal-dual algorithm for FLP problems, and Saneifard and Saneifard [35] focused on 

defuzzifying fuzzy numbers using Mellinâ€™s transform. 

In the realm of intuitionistic FLP problem (IFLPP), Kabiraj et al. [19] device a 

method using the concept of Zimmermanâ€™s approach used for solving FLP problems. 

They further developed a technique using the (𝛼, 𝛽)-cut for IFLP problems, when the 

coefficients are triangular intuitionistic fuzzy numbers [20]. 

Bera and Mahapatra proposed the Big-M simplex method for NLPPs [6]. Das and 

Dash [9] developed a new ranking method for NLPPs with mixed constraints using 

triangular NNs. Nafei et al. [28] presented interval NLPPs with triangular interval NNs, 

employing a new ranking technique to transform interval NLPPs into crisp LPPs. 

Basumatary and Broumi [5] worked on interval-valued triangular NLPPs based on interval-

valued triangular numbers, and Abdelfattah [1] proposed a parametric approach for solving 

NLPPs. Sagayakavitha and Sudha [34] introduced a new approach for solving NLPPs with 

symmetric triangular NNs. Finally, Tamilarasi and Paulraj [44] developed an improved 

method for solving NLPPs using Mellinâ€™s transform. 

Despite the extensive research on LPPs, only one paper [49] addresses NNs. Most 

existing work on NLPPs focuses on the three types of neutrosophic parameters true, false, 

and neutral values. This paper proposes a new approach to solving NLPPs where the 

coefficients are represented as NNs, offering an innovative method for addressing these 

types of problems. 

 

4. Neutrosophic functions 

Smarandache defined an interval function, also referred to as a neutrosophic function (NF) 

or thick function, denoted by 

 

 𝑔(𝑦): ℝ → ℝ2, 
where ℝ represents all real numbers. This function is given by 

 

 𝑔(𝑦) = [𝑔1(𝑦), 𝑔2(𝑦)]for𝑦 ∈ ℝ. 
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In addition to this, he also defined open interval functions 𝑔(𝑦) = (𝑔1(𝑦), 𝑔2(𝑦)) and 

semi-open/semi-closed interval functions 𝑔(𝑦) = [𝑔1(𝑦), 𝑔2(𝑦))  and 𝑔(𝑦) =
(𝑔1(𝑦), 𝑔2(𝑦)] for any 𝑦 ∈ ℝ. 

For instance, consider the NF 

 

 𝑔(𝑦) = [10𝑦, 10𝑦 + 2]for𝑦 ∈ ℝ. 
Here, 𝑔(𝑦) represents a thick (interval) area between the two parallel lines 𝑔1(𝑦) = 10𝑦 

and 𝑔2(𝑦) = 10𝑦 + 2. Specifically, when 𝑦 = 5, 𝑔(5) = [50,52] represents an interval 

value. However, Smarandache’s NF does not accommodate NNs, which are useful for 

expressing determinate and indeterminate information in cases of incomplete, uncertain, 

and indeterminate problems. Therefore, we introduce the concept of NFs to formulate a 

neutrosophic linear programming problem (NLPP) model in such indeterminate contexts. 

We define a NF as follows: 

 

Definition 1. A NF with 𝑛 variables (unknowns) is defined by 

 

 𝑓(𝑌, 𝐼): 𝑍𝑛 → 𝑍, 
 where 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛]𝑇 is an 𝑛-dimensional vector with 𝑌 ∈ 𝑍𝑛 , and 𝐼 represents 

indeterminacy. If 𝑓(𝑌, 𝐼) is a linear function, it is termed a linear NF. Conversely, if 

𝑓(𝑌, 𝐼) is nonlinear, it is termed a neutrosophic nonlinear function.  

 

This article focuses solely on linear NFs. 

For example, a linear NF with a two variables 𝑦1 and 𝑦2 is given by 

 𝑓(𝑌, 𝐼) = (3 + 𝐼)𝑦1 + (4 + 3𝐼)𝑦2 + 6 for 𝑋 ∈ 𝑍2. 

Here, the NF comprises two variables 𝑦1 and 𝑦2, and two NNs (coefficients) 3 + 𝐼 and 

4 + 3𝐼. In practical situations, we can specify a range for the indeterminacy 𝐼 ∈ [𝐼𝐿 , 𝐼𝑈] 
corresponding to actual requirements. For instance, if 𝐼 is within the range [0,1], the linear 

NF becomes 

 

 𝑓(𝑌, 𝐼) = [3,4]𝑦1 + [4,7]𝑦2 + 6 for 𝐼 ∈ [0,1]. 

Thus, a function with interval coefficients can be expressed as a function with neutrosophic 

coefficients, and vice versa. 

 

5. Neutrosphic linear programming problem 

In classical mathematical programming, coefficients and variables in both the objective 

function and constraints are usually considered as precise, determinate values. However, 

practical problems often involve both determinate and indeterminate information, 

necessitating methods to address these indeterminate aspects. This section introduces a 

method for solving Neutrosophic Linear Programming Problems (NLPP) to handle such 

cases. 

 

Definition 2. An NLPP is categorized as a general maximum-type problem if it meets the 

following conditions: 

a) The objective function is linear with NNs as coefficients and it’s value is to be 

maximized.  
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b) All decision variables are either positive or zero.  

c) The constraints are expressed as 𝑎𝑖1𝑦1 + 𝑎𝑖2𝑦2 + ⋯ + 𝑎𝑖𝑛𝑦𝑛 ≤ 𝑏𝑖, where 𝑦𝑗 (for 

𝑗 = 1,2, … , 𝑛) are decision variables and 𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑛 are NNs.  

  

For example, a NLPP with two decision variables 𝑦1 and 𝑦2 is given below.  

 𝑀𝑎𝑥  𝑓(𝑌, 𝐼) = (3 + 2𝐼)𝑦1 + (5 + 7𝐼)𝑦2                             (1) 
              𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜,   (1 + 0𝐼)𝑦1 + (1 + 2𝐼)𝑦2 ≤ 1 

 (2 + 0𝐼)𝑦1 + (3 + 𝐼)𝑦2 ≤ 1 

 𝑦𝑖 ≥ 0, 𝑖 = 1,2. 
 where 𝑦1 and 𝑦2 are two decision variables and 𝐼 is indeterminacy. 

Like crisp LPP, to convert the constraints into equalities, slack variables are 

introduced. By adding these slack variables, such as 𝑦3 and 𝑦4, the original constraints 

can be transformed into equalities or slack equations. Consequently, the constraints are 

redefined in this modified form to facilitate further analysis and solution of the 

Neutrosophic Linear Programming Problem (NLPP). This approach ensures that all 

constraints are handled consistently within the optimization framework. 

 

 𝑦1 + (1 + 2𝐼)𝑦2 + 𝑦3 + 0𝑦4 = 1 

 2𝑦1 + (3 + 𝐼)𝑦2 + 0𝑦3 + 𝑦4 = 1 

 𝑦𝑖 ≥ 0, 𝑖 = 1,2,3,4 
 The adjusted objective function is given by  

 

 𝑀𝑎𝑥 𝑓(𝑌, 𝐼) = (3 + 2𝐼)𝑦1 + (5 + 7𝐼) + (0 + 0𝐼)𝑦3 + (0 + 0𝐼)𝑦4 

 

 The standard form of the given NLPP is 

 

 𝑀𝑎𝑥 𝑓(𝑌, 𝐼) = (3 + 2𝐼)𝑦1 + (5 + 7𝐼)𝑦2 + 0 × 𝑦3 + 0 × 𝑦4           (2) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝑦1 + (1 + 2𝐼)𝑦2 + 𝑦3 + 0 × 𝑦4 = 1 

 2𝑦1 + (3 + 𝐼)𝑦2 + 0 × 𝑦3 + 𝑦4 = 1 

 𝑦𝑖 ≥ 0, 𝑖 = 1,2,3,4 
 

In solving Neutrosophic Linear Programming Problems (NLPPs), slack variables 

are always non-negative. For an NLPP with two variables, these slack variables remain 

non-negative at the corner points of the feasible region. If a slack variable turns negative, 

it suggests an error in the formulation or solution process. It’s important to note that slack 

variables are tools to facilitate the resolution of NLPPs. Generally, an NLPP with 𝑛 

variables (𝑦1, 𝑦2, … , 𝑦𝑛) is structured as follows: 

 

  𝑀𝑎𝑥   𝑧 = ∑𝑛

𝑗=1 𝑐𝑗𝑦𝑗                                                     (3) 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜 ∑𝑛
𝑗=1 𝑎𝑖𝑗𝑦𝑗 ≤    𝑜𝑟   =    𝑜𝑟   ≥ 𝑏𝑖, 𝑖 = 1,2, … , 𝑚 

 𝑦𝑗(≥ 0)   𝑎𝑟𝑒  𝑡ℎ𝑒  𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑣𝑎𝑟𝑖𝑏𝑎𝑙𝑒𝑠 . 

 

When 𝑐𝑗, 𝑏𝑖, or 𝑎𝑖𝑗 are interval numbers of the form [𝑝𝑖 , 𝑞𝑖] = {𝑦𝑖: 𝑝𝑖 ≤ 𝑦𝑖 ≤ 𝑞𝑖} 3, one 

can solve the problem using existing methods. These methods produce a set of solutions 

that are of the interval type. Alternatively, a set of interval numbers can be converted into 
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NNs, which allows the application of techniques designed for handling neutrosophic data. 

This conversion facilitates solving problems involving indeterminate and uncertain 

information. 

Any interval number can be written as a NNs. For example, [𝑝𝑖 , 𝑞𝑖] = [𝑝𝑖 , 𝑝𝑖] +
(𝑞𝑖 − 𝑝𝑖)𝐼 where 𝐼 = [0,1]. That is, [𝑝𝑖 , 𝑞𝑖] = 𝑝𝑖 + ℎ𝑖𝐼, ℎ𝑖 = 𝑞𝑖 − 𝑝𝑖, then length of the 

interval. Similarly, a set of interval numbers [3,5], [8,15], [2,16] can be written as [3,5] =
[3,3] + 2[0,1] = 3 + 2𝐼, where 𝐼 = [0,1] and [3,3] = 3, a degenerate number. Similarly, 

[8,15] = 8 + 7𝐼, [2,16] = 2 + 14𝐼, etc. 

In uncertain domain, an LPP can be represented in the following form: 

  

a) The cost vector is uncertain and the other coefficients and variables remain 

certain.  

b) The coefficients 𝑎𝑖𝑗 are uncertain and other remains certain.  

c) The right hand vector is uncertain and other remains certain.  

d) All coefficients are uncertain, but variables are certain.  

e) All coefficients and variables are uncertain.  

 

Here, we address the scenario where the coefficients are NNs of the form 𝑎 + 𝑏𝐼. 

If 𝐼  is considered as 0, there is no uncertainty, and the problem is termed 

"underachievement." Conversely, when 𝐼  is set to 1, representing full uncertainty, the 

problem is referred to as "overachievement." In this context, the underachievement and 

overachievement of the NF 𝑓(𝑌, 𝐼)  are denoted by 𝑓(𝑌, 𝐼 = 0)  and 𝑓(𝑌, 𝐼 = 1) , 

respectively. 

 

5.1. Example 1 

Let us consider a NLPP  

 𝑀𝑎𝑥 𝑓(𝑌, 𝐼) = (3 + 2𝐼)𝑦1 + (5 + 7𝐼)𝑦2 + 0𝑦3 + 0𝑦4            (4) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝑦1 + (1 + 2𝐼)𝑦2 + 𝑦3 + 0𝑦4 = 1 

 2𝑦1 + 3𝑦2 + 0𝑦3 + 𝑦4 = 1 

 𝑦𝑖 ≥ 0, 𝑖 = 1,2,3,4 
  

The under achivement NLPP is given by  

 𝑀𝑎𝑥 𝑓(𝑌, 𝐼 = 0) = 3𝑦1 + 5𝑦2 + 0𝑦3 + 0𝑦4 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,   𝑦1 + 𝑦2 + 𝑦3            = 1 

 2𝑦1 + 3𝑦2         + 𝑦4 = 1 

 𝑦𝑖 ≥ 0, 𝑖 = 1,2,3,4 
 

The optimal solution is 𝑓𝑚𝑎𝑥 =
5

3
, for 𝑦1 = 0, 𝑦2 =

1

3
. 

The over achievement NLPP is given by  

 𝑀𝑎𝑥 𝑓(𝑌, 𝐼 = 1) = 5𝑦1 + 12𝑦2 + 0𝑦3 + 0𝑦4 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,   𝑦1 + 3𝑦2 + 𝑦3            = 1 

 2𝑦1 + 3𝑦2         + 𝑦4 = 1 

 𝑦𝑖 ≥ 0, 𝑖 = 1,2,3,4 
 

The optimal solution is 𝑓𝑚𝑎𝑥 = 4, for 𝑦1 = 0, 𝑦2 =
1

3
. 



Solving Linear Programming Problems with Neutrosophic Coefficients 

49 

 

Now, we solve the NLPP (4) by using direct simplex method. The successive simplex 

tables are shown below:  

   

     c   (3+2I)   (5+7I)   0   0    

𝑐𝐵   𝑦𝐵   b   𝑎1   𝑎2   𝑎3   𝑎4   Min 

ratio 

  𝑦3   1   1   1+2I   1   0   
1

(1+2𝐼)
  

  𝑦4   1   2   (3)   0   1   
1

3
→  

  𝑧𝑗 − 𝑐𝑗     −3 − 2𝐼   −5 − 7𝐼 ↑   0   0    

  𝑦3   
2

3
(1 − 𝐼)   

1−4𝐼

3
   0   1   −

1+2𝐼

3
    

+7I   𝑦2 1

3
 

2

3
 

1 0 1

3
    

  𝑧𝑗 − 𝑐𝑗   
5+7𝐼

3
   

1+8𝐼

3
   0   0   

5+7𝐼

3
    

 

Since all 𝑧𝑗 − 𝑐𝑗 ≥ 0, so the problem becomes in its optimal stage. 

Hence, the optimal solution is 𝑓𝑚𝑎𝑥 =
5+7𝐼

3
 , for 𝑦1 = 0, 𝑦2 =

1

3
. 

Now, if the indeterminacy value is 0, we get the optimal value which is same as 

the under achievement (𝑓𝑚𝑎𝑥 =
5

3
) and if the indeterminacy value is 1, i.e. 𝐼 = 1 we see 

the optimal value is equal to over achievement value (𝑓𝑚𝑎𝑥 = 4). 

Notice that, both the under and over achievement values are same as the solution 

obtained by applying simplex method directly to an NLPP. So, the direct arithmetic can be 

used to solve the NLPP. But, the computation with nuetrosophic number is little bit 

complicated and need some theories for optimality. 

Further, since 𝐼 = [0,1], let 𝜃 ∈ [0,1] be a parameter, so the solution of the NLPP 

(4) is 
5

3
+

7

3
𝜃, 𝜃 ∈ [0,1]. It means the solution lies between 

5

3
 and 4. 

 

5.2. Example 2 

Let us consider a NLPP whose cost coefficients and basis vectors are real NNs, 

 

 𝑀𝑎𝑥 𝑓(𝑌, 𝐼) = (9 + 𝐼)𝑦1 + 10𝑦2 + (6 + 𝐼)𝑦3                         (5) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝑦1 + 𝑦2 + 2𝑦3 ≤ 2 + 2𝐼 

 2𝑦1 + 3𝑦2 + 4𝑦3 ≤ 3 + 3𝐼 

 6𝑦1 + 6𝑦2 + 2𝑦3 ≤ 8 + 5𝐼 

 𝑦𝑖 ≥ 0, 𝑖 = 1,2,3, 𝐼 ∈ [0,1] 
 

Introducing three slack variables 𝑦4, 𝑦5 and 𝑦6 to the L.H.S. of the first, second, 

and third constraints respectively, we get the converted constrains as  

 𝑦1 + 𝑦2 + 2𝑦3 + 𝑦4 

 2𝑦1 + 3𝑦2 + 4𝑦3 + 𝑦5 = 3 + 3𝐼 

 6𝑦1 + 6𝑦2 + 2𝑦3 + 𝑦6 = 8 + 5𝐼 
  

The standard form of NLPP is given by  
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𝑀𝑎𝑥 𝑓(𝑌, 𝐼) = (9 + 𝐼)𝑦1 + 10𝑦2 + (6 + 𝐼)𝑦3                                 (6) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 , 𝑦1 + 𝑦2 + 2𝑦3 + 𝑦4 = 2 + 2𝐼 

 2𝑦1 + 3𝑦2 + 4𝑦3 + 𝑦5 = 3 + 3𝐼 

 6𝑦1 + 6𝑦2 + 2𝑦3 + 𝑦6 = 8 + 5𝐼 
The successive simplex tables of the NLPP are given below:  

 

     c   (9+I)   10   (6+I)   0   0   0    

𝑐𝐵   𝑦𝐵   b   𝑎1   𝑎2   𝑎3   𝑎4   𝑎5   𝑎6   Min ratio 

  𝑦4   2+2I   1   1   2   1   0   0   (2 + 2𝐼)  

  𝑦5   3+3I   2   (3)   4   0   1   0   1 + 𝐼 →  

  𝑦6   8+5I   6   6   2   0   0   1   
(8+5𝐼)

6
  

  𝑧𝑗 − 𝑐𝑗     −9 − 𝐼   −10 ↑   −6 − 𝐼   0   0  0    

  𝑦4   (1 + 𝐼)   
1

3
 0  2

3
   1   −

1

3
   0  (3 + 3𝐼)  

  𝑦2   (1 + 𝐼)   
2

3
 1  4

3
   0   

1

3
   0  

(3+3𝐼)

2
  

  𝑦6   (2 − 𝐼)   (2)  0  -6 0 -2 1 (2 − 𝐼)

2
→ 

  𝑧𝑗 − 𝑐𝑗     
−7−3𝐼

3
 0   

22−3𝐼

3
   0   

10

3
   0   

 

 

     c   (9+I)   10   (6+I)   0   0   0    

𝑐𝐵   𝑦𝐵   b   𝑎1   𝑎2   𝑎3   𝑎4   𝑎5   𝑎6   Min 

ratio 

  𝑦4   
(4+7𝐼)

6
   0   0   

5

3
   1   0   −

1

6
   

(4+7𝐼)

10
  

  𝑦2   
1+4𝐼

3
   0   1   (

10

3
)   0   1   −

1

3
   

1+4𝐼

10
→  

9 + 𝐼   𝑦1   
2−𝐼

2
   1   0   -3   0   -1   

1

2
    

  𝑧𝑗 − 𝑐𝑗     0   0   
1−12𝐼

3
↑   0   1 − 𝐼   

7+3𝐼

6
    

  𝑦4   
(1+𝐼)

2
   0  −

1

2
  0   1   −

1

2
   0   

6 + 𝐼   𝑦3   
1+4𝐼

10
 0  3

10
   1  0   

3

10
   −

1

10
    

9 + 𝐼   𝑦1   
13+7𝐼

10
   1   

9

10
  0 0 −

1

10
   

1

5
    

  𝑧𝑗 − 𝑐𝑗   
123+112𝐼

10
   0   

−1+12𝐼

10
  0   0  

9+2𝐼

10
   

12+𝐼

10
    

  

Since all 𝑧𝑗 − 𝑐𝑗 ≥ 0, so the problem becomes of its optimal stage. Note that 

maximum value of 𝐼 is 1. So, (−1 + 12𝐼)/10 is positive. 

Hence the optimal solution is 𝑓𝑚𝑎𝑥 =
123+112𝐼

10
, for 𝑦1 =

13+7𝐼

10
, 𝑦2 = 0, 𝑦3 =

1+4𝐼

10
. 

Here, also the solutions for under and over achievement problems are respectively 

𝑓𝑚𝑎𝑥 =
123

10
 and 𝑓𝑚𝑎𝑥 =

235

10
. 

Now, we check the solution of under achievement and over achievement directly. 

For the under achivement we choose 𝐼 = 0 so the NLPP is  
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 𝑀𝑎𝑥 𝑓(𝑌, 𝐼 = 0) = 9𝑦1 + 10𝑦2 + 6𝑦3                               (7) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝑦1 + 𝑦2 + 2𝑦3 + 𝑦4     = 2 

 2𝑦1 + 3𝑦2 + 4𝑦3     + 𝑦5     = 3 

 6𝑦1 + 6𝑦2 + 2𝑦3     + 𝑦6 = 8 

 𝑦𝑖 ≥ 0, 𝑖 = 1,2,3,4,5,6 
 

The solution of this problem (under achievement) is 

 𝑓𝑚𝑎𝑥 = 12.3 for 𝑦1 = 1, 𝑦2 = 0.3 and 𝑦3 = 0. 

For the over achievement we choose 𝐼 = 1 so the NLPP is  

 𝑀𝑎𝑥 𝑓(𝑌, 𝐼 = 1) = 10𝑦1 + 10𝑦2 + 7𝑦3                                 (8) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, 𝑦1 + 𝑦2 + 2𝑦3 + 𝑦4     = 4 

 2𝑦1 + 3𝑦2 + 4𝑦3     + 𝑦5     = 6 

 6𝑦1 + 6𝑦2 + 2𝑦3     + 𝑦6 = 13 

 𝑦𝑖 ≥ 0, 𝑖 = 1,2,3,4,5,6 
 

The solution of this problem is 𝑓𝑚𝑎𝑥 = 23.5 for 𝑦1 = 2, 𝑦2 = 0 and 𝑦3 =
1

2
. 

Thus, we conclude that the optimal solution is 𝑓𝑚𝑎𝑥 =
123+112𝐼

10
, for 

 𝑦1 =
13+7𝐼

10
, 𝑦2 = 0, 𝑦3 =

1+4𝐼

10
. 

 

5.3. An application 

Three metals, viz. iron, copper, and zinc are used to produce three commodities: A, B, and 

C. For one unit of A, the requirements are 40 + 5𝐼 kg of iron, 32 kg of copper, and 6 +
4𝐼 kg of zinc. For one unit of B, the needs are 70 kg of iron, 14 + 6𝐼 kg of copper, and 

9 + 𝐼 kg of zinc. To produce one unit of C, 40 + 𝐼 kg of iron, 18 + 2𝐼 kg of copper, and 

8 + 2𝐼 kg of zinc are required. The total available amounts are 1 metric ton of iron, 5 

quintals of copper, and 2 quintals of zinc. The profits per unit for A, B, and C are Rs. 

300 + 50𝐼, Rs. 200, and Rs. 100 + 20𝐼, respectively, with the indeterminacy 𝐼 ranging 

within [0,1]. The goal is to maximize the total profit 𝑧, which represents the objective 

function. The details of the required quantities are summarized in the following table: 

   

    Iron   Copper   Zinc 

Total  1000kg 500kg 200kg 

A  (40 + 5𝐼)kg  32 kg (6 + 4𝐼)kg 

B  70 kg  (14 + 6𝐼)kg  (9 + 𝐼)kg 

C   (40 + 𝐼)kg  (18 + 2𝐼)kg (8 + 2𝐼)kg 

 

To get the maximum profit, let 𝑦1 units of A, 𝑦2 units of B and 𝑦3 units of C are 

to be produced. 

Then total quantity of iron needed is  

 {(40 + 5𝐼)𝑦1 + 70𝑦2 + (40 + 𝐼)𝑦3} kg.  

 

Similarly, total quantity of copper needed is  

 {32𝑦1 + (14 + 6𝐼)𝑦2 + (18 + 2𝐼)𝑦3} kg.  

 Zinc  
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 {(6 + 4𝐼)𝑦1 + (9 + 𝐼)𝑦2 + (8 + 2𝐼)𝑦3} kg.  

 and from the condition of the NLPP  

 (40 + 5𝐼)𝑦1 + 70𝑦2 + (40 + 𝐼)𝑦3 ≤ 1000 

 32𝑦1 + (14 + 6𝐼)𝑦2 + (18 + 2𝐼)𝑦3 ≤ 500 

 (6 + 4𝐼)𝑦1 + (9 + 𝐼)𝑦2 + (8 + 2𝐼)𝑦3 ≤ 200 

 The objective function  

 𝑧 = (300 + 50𝐼)𝑦1 + 200𝑦2 + (100 + 20𝐼)𝑦3  

 which is to be maximizes. Hence, the NLPP can be formulated as, 

 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒, 𝑧 = (300 + 50𝐼)𝑦1 + 200𝑦2 + (100 + 20𝐼)𝑦3 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, (40 + 5𝐼)𝑦1 + 70𝑦2 + (40 + 𝐼)𝑦3 ≤ 1000 

 32𝑦1 + (14 + 6𝐼)𝑦2 + (18 + 2𝐼)𝑦3 ≤ 500 

 (6 + 4𝐼)𝑦1 + (9 + 𝐼)𝑦2 + (8 + 2𝐼)𝑦3 ≤ 200 

 𝑦𝑗 ≥ 0, 𝑗 = 1,2,3, 𝐼 ∈ [0,1] 

 

Introducing three slack variables 𝑦4, 𝑦5 and 𝑦6 to the L.H.S. of the first, second, 

and third constraints respectively, we get the standered converted NLPP form as  

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒, 𝑧 = (300 + 50𝐼)𝑦1 + 200𝑦2 + (100 + 20𝐼)𝑦3 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜, (40 + 5𝐼)𝑦1 + 70𝑦2 + (40 + 𝐼)𝑦3 + 𝑦4 = 1000 

 32𝑦1 + (14 + 6𝐼)𝑦2 + (18 + 2𝐼)𝑦3 + 𝑦5 = 500 

 (6 + 4𝐼)𝑦1 + (9 + 𝐼)𝑦2 + (8 + 2𝐼)𝑦3 + 𝑦6 = 200 

 𝑦𝑗 ≥ 0, 𝑗 = 1,2,3,4,5,6, 𝐼 ∈ [0,1] 

 

By similar solution method of Example-1 and Example-2, we can solve the above 

NLPP problem. 

Clearly, the basic solution in the NLPP contain the indeterminate result (usually 

NNs, but not always). Theoretically, 𝐼 is any subinterval of the unit interval [0,1], but 

practically 𝐼 is considered as 𝐼 = [0,1]. 
The optimal value for the under achievement is 𝑧𝑚𝑎𝑥 = 5178.571,  for 𝑦1 =

12.5, 𝑦2 = 7.142857 and 𝑦3 = 0. 

The optimal value for over achievement is 𝑧𝑚𝑎𝑥 = 5468.75,  for 𝑦1 =
15.625, 𝑦2 = 0 and 𝑦3 = 0. 

Thus, the solution is 𝑧(𝑌, 𝐼) = [5178.57,5468.75] for 𝐼 ∈ [0,1]. 
When the indeterminacy 𝐼 is set to 𝐼 = 0, the NLPP simplifies to a traditional 

LPP. In this scenario, the optimal solution is 𝑦1
∗ = 12.5, 𝑦2

∗ = 7.14, and 𝑦3
∗ = 0, with the 

maximum objective function value being 𝑥(𝑌∗, 𝐼) = 5178.57. This shows that traditional 

linear programming is a special case of NLPP. Thus, the NLPP method is more versatile 

and applicable than traditional linear programming methods, particularly for problems 

involving indeterminate conditions. 

In terms of NNs, the optimal solution is 𝑧𝑚𝑎𝑥 = 5178.57 + 290.18𝜃, 𝜃 ∈ [0,1]. 
 

6. Conclusion 

This paper introduces basic operations of NNs and the concept of NFs, and then develops 

a method for Neutrosophic Linear Programming Problems (NLPP) to address optimization 

issues under indeterminate conditions. A numerical example demonstrates the application 
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of this NLPP method, which is subsequently used to solve a production planning problem. 

The key benefits of the proposed NLPP method include: (1) It provides 

neutrosophic optimal solutions (often represented by NNs, though not exclusively), which 

can indicate possible ranges for decision variables and the neutrosophic objective function 

when the indeterminacy 𝐼  is defined within a specific interval range corresponding to 

practical requirements. This capability overcomes the limitations of traditional uncertain 

linear programming methods, which typically yield only unique crisp optimal solutions; 

and (2) The NLPP method extends traditional linear programming techniques, offering a 

more general and practical approach for solving problems in indeterminate environments. 

Thus, this study enriches existing methods in uncertain linear programming and 

offers a novel approach to handle indeterminate optimization challenges. The paper’s 

contributions highlight that traditional uncertain linear programming methods fall short in 

managing NLPPs under indeterminate conditions. Future research will aim to expand the 

NLPP framework to address neutrosophic nonlinear programming problems and explore 

its applications in diverse fields such as engineering, management, and design. 
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