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Abstract. The finite difference method is a widely used numerical technique for solving 

differential equations, particularly in boundary value problems (BVPs). However, 

traditional approaches often face challenges in addressing the uncertainties present in real-

world scenarios. This paper introduces an innovative method that combines the finite 

difference technique with real neutrosophic numbers, providing a more comprehensive 

framework for managing uncertainties. Real neutrosophic numbers enabling a more 

flexible representation of uncertain conditions in BVPs. By employing this approach, 

solutions that better capture the inherent uncertainties are achieved, leading to more reliable 

and accurate outcomes. The abstract covers the theoretical foundation, implementation, 

and potential applications of the proposed method across various scientific and engineering 

domains. 
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Abbreviation Meaning 

NSs   Neutrosophic set  

ℳ𝑚𝑛
𝑁𝐹𝑀  Set of all NFMs of order 𝑚 × 𝑛 

ℳ𝑛
𝑁𝐹𝑀  Set of all NFMs of order 𝑛 × 𝑛 

ℳ𝑚𝑛
𝐹𝑁𝑀  Set of all FNMs of order 𝑚 × 𝑛 

ℳ𝑛
𝐹𝑁𝑀  Set of all FNMs of order 𝑛 × 𝑛 

ℳ𝑚𝑛
ℝ   Set of all real matrices of order 𝑚 × 𝑛 

ℳ𝑛
ℝ  Set of all real matrices of order 𝑛 × 𝑛 
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1. Introduction 

After the establishment of fuzzy set (FS) theory, it became evident that while FS effectively 

addressed many problems involving non-random uncertainty, there were instances where 

it fell short. In 1983 [4], Atanassov introduced intuitionistic fuzzy sets (IFS) as an extension 

of FS. IFS introduces two parameters: membership value and non-membership value, 

which must sum up to less than or equal to 1. When these values sum exactly to 1 for all 

members, IFS reduces back to FS. Essentially, IFS is designed to handle situations where 

FS fails due to insufficient information or inability to provide a complete solution. 

However, even IFS may not suffice in cases involving incomplete, inconsistent, or 

indeterminate information. To address these more complex scenarios, Smarandache [40, 

41, 42, 43, 44] introduced neutrosophic sets (NSs). NSs are characterized by three 

parameters: truth membership function (𝑡), indeterminacy membership function (𝑖), and 

falsity membership function (𝑓 ). This concept expands upon IFS by accommodating 

situations where uncertainties extend beyond what IFS can effectively manage, offering a 

robust framework to handle such diverse and challenging problem. 

This theory has found extensive application across various fields [51], addressing 

indeterminate and inconsistent information in real-world scenarios. Neutrosophic sets (NS) 

generalize classical fuzzy sets, interval-valued fuzzy sets (FS), intuitionistic fuzzy sets 

(IFS), and other related concepts. Researchers have further extended NS into various 

branches, such as interval neutrosophic sets [47, 49], generalized neutrosophic soft sets [7], 

among others. 

Subsequently, there has been increased interest in NS, leading to the development 

of the Neutrosophic Fuzzy Number (NFN) along with corresponding matrices [11]. This 

extension builds upon FS and IFS frameworks. In 2010, Wang et al. [49] introduced the 

concept of single-valued neutrosophic sets (SVNS), where truth, indeterminacy, and falsity 

can be independently quantified. Such frameworks are particularly suited to model human 

reasoning processes, accommodating the imperfect knowledge individuals receive from 

external sources. For comprehensive details on neutrosophic sets, numbers, and matrices. 

This theory has been found extensive application in various fields 𝑐10𝑦𝑒14 for dealing 

with indeterminate and inconsistent information in the real world. The NS generalized the 

concept of classical fuzzy set, interval-valued FS, IFS and, so on. Taking into account the 

NS, several authors worked on its different branches, viz. interval neutrosophic set [47, 

49], generalized neutrosophic soft set [7], etc. After that, some others became more 

interested in NS and developed NFN together with its corresponding matrices [11]. 

The neutrosophic fuzzy logic is used to solve many decision-making problems and 

it is also used to many interesting problems on social networks. 

 

2. Neutrosophic number 

Samrandche first proposed a concept of neutrosophic number which consists of the 

determinant part and the indeterminate part. It is usually denoted by 𝑁 = 𝑎 + 𝑏𝐼, where 𝑎 

and 𝑏 are real numbers and 𝐼  is the indeterminacy such that 𝐼2 = 𝐼, 𝐼. 0 = 0 and 
𝐼

𝐼
 is 

undefined. We call 𝑁 = 𝑎 + 𝑏𝐼 as a pure neutrosophic number if 𝑎 = 0. 

For example, we consider a neutrosophic number 𝑁 = 5 + 3𝐼. If 𝐼 ∈ [0,0.02], 
then it is equivalent to 𝑁 ∈ [5,5.06] for 𝑁 ≥ 5. This means the determinant part is 5, 

whereas the indeterminacy part is 3𝐼 for 𝐼 ∈ [0,0.02], which means the possibility for 

number 𝑁 to be a little bigger than 5. 
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Note that this number looks like a complex number, but, see that here 𝐼2 = 𝐼, not 

−1 like a complex number. 

The three basic operators  defined on neutrosophic numbers 𝑃 = 𝑝1 + 𝑞1𝐼 and 

𝑄 = 𝑝2 + 𝑞2𝐼 are as follows: 

(i) 𝑃 + 𝑄 = (𝑝1 + 𝑝2) + (𝑞1 + 𝑞2)𝐼 
(ii) 𝑃 − 𝑄 = (𝑝1 − 𝑝2) + (𝑞1 − 𝑞2)𝐼 
(iii) 𝑃 × 𝑄 = 𝑝1𝑝2 + (𝑝1𝑞2 + 𝑞1𝑝2 + 𝑞1𝑞2)𝐼 
 In real neutrosophic algebra, we denote 𝐾 as the neutrosophic field over some 

neutrosophic vector spaces. We call the smallest field generated by 𝐾 ∪ 𝐼 or 𝐾(𝐼) to be 

the neutrosophic field for it involves the indeterminacy factor in it, where 𝐼 has the special 

property that 𝐼𝑛 = 𝐼, 𝐼 + 𝐼 = 𝐼 and if 𝑡 ∈ 𝐾 be some scalar then 𝑡. 𝐼 = 𝑡𝐼, 0. 𝐼 = 0. Thus, 

we generally denote neutrosophic field 𝐾(𝐼) generated by 𝐾 ∪ 𝐼, i.e. 𝐾(𝐼) = 〈𝐾 ∪ 𝐼〉. 
 

3. Real neutrosophic matrix 

Here we consider the neutrosophic matrix over real numbers based on the work of 

Smarandache [45]. So it is referred to as a real neutrosophic matrix and is abbreviated by 

RNM. For details of this matrix see [3]. 

The neutrosophic number over the field of real/complex numbers is defined in the 

form 𝑎 = 𝑎1 + 𝑏1𝐼, where 𝑎1, 𝑎2 are real or complex numbers and 𝐼 is the indeterminacy 

[21]. 

An RNM is defined as in FNM, i.e. of the form 𝑀 = 𝑀1 +𝑀2𝐼 where 𝑀1 and 

𝑀2 are real matrices. The set of real matrices of order 𝑚 × 𝑛 is denoted by ℳ𝑚𝑛
ℝ  and that 

of order 𝑛 × 𝑛 by ℳ𝑛
ℝ. The identity RNM of order 𝑛 × 𝑛 is denoted by 𝑈𝑛, all diagonal 

elements are 1 and all other elements are 0. 

The null and identity matrices of order 3 × 3 are  

 𝑂3 = (

0 0 0
0 0 0
0 0 0

) ,   𝑎𝑛𝑑   𝑈3 = (

1 0 0
0 1 0
0 0 1

). 

The basic operations on RNMs 𝑀 = 𝑀1 +𝑀2𝐼 and 𝑁 = 𝑁1 +𝑁2𝐼 are 

(i) 𝑀 +𝑁 = (𝑀1 +𝑁1) + (𝑀2 +𝑁2)𝐼 
(ii) 𝑀−𝑁 = (𝑀1 −𝑁1) + (𝑀2 −𝑁2)𝐼 
(iii) 𝑀𝑁 = (𝑀1𝑁1) + (𝑀2𝑁1 +𝑀1𝑁2 +𝑀2𝑁2)𝐼. In this case also, 𝐼𝑛 = 𝐼2 = 𝐼 

for any positive integer 𝑛. 

Assumed that the order of RNMs is compatible with the appropriate operations. 

This matrix looks like a complex matrix, but see that here 𝐼  represents 

indeterminacy, not complex 𝑖 = √−1. Also, 𝐼𝑛 = 𝐼 for all positive integer 𝑛, which is 

not true for complex numbers. 

 

4. Solution of neutrosophic system of linear equations 

Let us consider a system of linear equations:  

 𝑃𝑌 = 𝑄,    i. e. ,    (𝑃1 + 𝑃2𝐼)(𝑌1 + 𝑌2𝐼) = (𝑄1 +𝑄2𝐼) (1) 

 where 𝑃1, 𝑃2 ∈ ℝ
𝑛×𝑛, 𝑌1, 𝑌2, 𝑄1, 𝑄2 ∈ ℝ

𝑛×1. 

The 𝑖, 𝑗-th element of 𝑃 is 𝑝𝑖𝑗 = 𝑝𝑖𝑗
(1)
+ 𝑝𝑖𝑗

(2)
𝐼, the 𝑗-th element of 𝑌 and 𝑄 are 
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𝑦𝑗 = 𝑦𝑗
(1)
+ 𝑦𝑗

(2)
𝐼 and 𝑞𝑗 = 𝑞𝑗

(1)
+ 𝑞𝑗

(2)
𝐼 respectively. 

Then the matrices 𝑃1 and 𝑃2 are:  

 𝑃1 = (𝑝𝑖𝑗
(1)
)
𝑛×𝑛

,    𝑃2 = (𝑝𝑖𝑗
(2))𝑛×𝑛 

and the vectors 𝑌1, 𝑌2, 𝑄1, 𝑄2 are:  

 𝑌1 =

(

 
 

𝑦1
(1)

𝑦2
(1)

⋮

𝑦𝑛
(1)
)

 
 
,    𝑌2 =

(

 
 

𝑦1
(2)

𝑦2
(2)

⋮

𝑦𝑛
(2)
)

 
 
,    𝑄1 =

(

 
 

𝑞1
(1)

𝑞2
(1)

⋮

𝑞𝑛
(1)
)

 
 
,    𝑄2 =

(

 
 

𝑞1
(2)

𝑞2
(2)

⋮

𝑞𝑛
(2)
)

 
 

 

From Eq. (1),  

 𝑃1𝑌1 + [(𝑃1 + 𝑃2)(𝑌1 + 𝑌2) − 𝑃1𝑌1]𝐼 = 𝑄1 + 𝑄2𝐼 (2) 

 That is,  

 𝑃1𝑌1 = 𝑄1 (3) 

  

(𝑃1 + 𝑃2)(𝑌1 + 𝑌2) − 𝑃1𝑌1 = 𝑄2    or    (𝑃1 + 𝑃2)(𝑌1 + 𝑌2) = 𝑄1 +𝑄2 (4) 

 

Eq. (3) gives the vector 𝑌1 and Eq. (4) gives 𝑌1 + 𝑌2. The final solution of Eq. (1) 

is: 

 

 𝑌 = 𝑌1 + 𝑌2𝐼 (5) 

 Notice that Eqs. (3) and (4) are systems of real equations. 

 

Example 1. Let us consider the neutrosophic system of equations:  

 (
2 + 4𝐼 3 − 𝐼
4 − 2𝐼 −5 + 7𝐼

)(
𝑦1
(1)
+ 𝑦1

(2)
𝐼

𝑦2
(1)
+ 𝑦2

(2)
𝐼
) = (

8 + 2𝐼
−6 + 12𝐼

) 

 

 

In this problem,  

 𝑃1 = (
2 3
4 −5

),    𝑃2 = (
4 −1
−2 7

) 

 

 𝑄1 = (
8
−6
),    𝑄2 = (

4
14
) 

 

 𝑌1 = (
𝑦1
(1)

𝑦2
(1)
),    𝑌2 = (

𝑦1
(2)

𝑦2
(2)
) 

The real system of equations are:  

 𝑃1𝑌1 = 𝑄1,    i. e. ,    (
2 3
4 −5

)(
𝑦1
(1)

𝑦2
(1)
) = (

8
−6
) 

and  

 (𝑃1 + 𝑃2)(𝑌1 + 𝑌2) = 𝑄1 + 𝑄2,    i. e. ,    (
6 2
2 2

)(
𝑦1
(1)
+ 𝑦1

(2)

𝑦2
(1)
+ 𝑦2

(2)
) = (

12
8
) 

The solution of these equations is:  
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 𝑌1 = (
1
2
) ,    and    𝑌1 + 𝑌2 = (

1
3
) 

Thus, the final solution is:  

 𝑌 = (
1 + 0𝐼
2 + 𝐼

) 

 

5. Neutrofication of finite difference method 

The finite difference method is a numerical technique used for solving differential 

equations by approximating derivatives with differences. When combined with a real 

neutrosophic matrix, it can provide a more flexible framework to handle uncertainties and 

indeterminacies in boundary value problems (BVPs). 

 

5.1. Finite difference in real setup 

In a real sense i.e., here we take independent variable(x) and the dependent variable (y) 

also a real. In this method,the derivatives y’ and y" are replaced by finite differences (either 

by forward or central) and generates a system of linear algebraic equations. the central 

difference formula are used to replace derivatives  

  𝑦′(𝑥𝑖) =
𝑦𝑖+1−𝑦𝑖1

2ℎ
+ 𝑂(ℎ2)𝑎𝑛𝑑  𝑦′'(𝑥𝑖) =

𝑦𝑖+1−2𝑦𝑖+𝑦𝑖−1

ℎ2
+ 𝑂(ℎ2) (6) 

 

the method to solve first order differential equation using finite difference method is 

nothing but the Euler’s method. The finite difference method is commonly used method to 

solve second order initial and boundary value problem.Here we solve the boundary value 

problem. 

 

5.2. Second order boundary value problem (BVP) 

Let us consider the linear second order differential equation  

   𝑦′' + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑟(𝑥),      𝑎 < 𝑥 < 𝑏 (7) 

 with boundary conditions y(a)=𝜆1 and y(b)=𝜆2. 

Let the interval [a,b] divided into 𝑛 subintervals with spacing ℎ. That is, 𝑥𝑖 =
𝑥𝑖−1 + ℎ, 𝑖 = 1,2, . . . , 𝑛 − 1. 

The equation (3.2) is satisfied by 𝑥 = 𝑥𝑖 . Then 

 

   𝑦′'𝑖 + 𝑝(𝑥𝑖)𝑦′𝑖 + 𝑞(𝑥𝑖)𝑦𝑖 = 𝑟(𝑥𝑖). (8) 

 

Now, 𝑦′'𝑖 and 𝑦′𝑖 are replaced by finite difference expressions 

 

  𝑦′(𝑥𝑖) =
𝑦𝑖+1−𝑦𝑖1

2ℎ
+ 𝑂(ℎ2)   𝑎𝑛𝑑     𝑦′'(𝑥𝑖) =

𝑦𝑖+1−2𝑦𝑖+𝑦𝑖−1

ℎ2
+ 𝑂(ℎ2) (9) 

 

Using these substitutions and drooping 𝑂(ℎ2), equation (8) becomes, 

 

 
𝑦𝑖+1−2𝑦𝑖+𝑦𝑖−1

ℎ2
+ 𝑝(𝑥𝑖)

𝑦𝑖+1−𝑦𝑖1
2ℎ

+ 𝑞(𝑥𝑖)𝑦𝑖 = 𝑟(𝑥𝑖); (10) 

 that is, 

 

  𝑦𝑖−1[2 − ℎ𝑝(𝑥𝑖)] + 𝑦𝑖[2ℎ
2𝑞(𝑥𝑖) − 4] + 𝑦𝑖+1[2 + ℎ𝑝(𝑥𝑖)] = 2ℎ

2𝑟(𝑥𝑖) (11) 
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6. Finite difference of second order BVP in neutrosophic setup 

In the above equation (11) we apply neutrosophic number, 

Let, 𝑝(𝑥𝑖) = (𝑝1 + 𝑝2𝐼)𝑥𝑖, 𝑞(𝑥𝑖) = 𝑞1 + 𝑞2𝐼 + 𝑥𝑖, 𝑟(𝑥𝑖) = 𝑟1 + 𝑟2𝐼𝑥𝑖. 
where 𝑝1,𝑝2,𝑞1,𝑞2,𝑟1,𝑟2 are real or complex number and 𝐼 represent the indeterminacy. 

 

Then,  

𝑦𝑖−1[2 − ℎ(𝑝1 + 𝑝2𝐼)𝑥𝑖] + 𝑦𝑖[2ℎ
2(𝑞1 + 𝑞2𝐼 + 𝑥𝑖) − 4] + 𝑦𝑖+1[2 + ℎ(𝑝1 + 𝑝2𝐼)𝑥𝑖] =

2ℎ2(𝑟1 + 𝑟2𝐼𝑥𝑖)                                                       (12) 

 

Again let,  

 2 − ℎ(𝑝1 + 𝑝2𝐼)𝑥𝑖 = 𝐶𝑖;     
 2ℎ2(𝑞1 + 𝑞2𝐼 + 𝑥𝑖) − 4 = 𝐴𝑖;     
 2 + ℎ(𝑝1 + 𝑝2𝐼)𝑥𝑖 = 𝐵𝑖;     
 2ℎ2(𝑟1 + 𝑟2𝐼𝑥𝑖) = 𝐷𝑖, 

 

With these notations the equations (12) is simplified to 

 

 𝐶𝑖𝑦𝑖−1 + 𝐴𝑖𝑦𝑖 + 𝐵𝑖𝑦𝑖 + 1 = 𝐷𝑖, (13) 

 for 𝑖 = 1,2, . . . , 𝑛 − 1. 
The boundary conditions then are y(a)=𝜆1 and y(b)=𝜆2. 

For 𝑖 = 1,2, . . . , 𝑛 − 1 equation (13) reduces to 

𝐶1𝑦0 + 𝐴1𝑦1 + 𝐵1𝑦2 = 𝐷1,    𝑜𝑟, 𝐴1𝑦1 + 𝐵1𝑦2 = 𝐷1 (as 𝑦0 = 𝜆1) 

and 𝐶𝑛−1𝑦𝑛−2 + 𝐴𝑛−1𝑦𝑛−1 = 𝐷𝑛−1 − 𝐵𝑛−1𝜆2. (as 𝑦𝑛 = 𝜆2) 

The equation (13) can be written as 

 

 𝐴𝑦 = 𝑏 (14) 

 where 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑛−1]
𝑡 

𝑏 = 2ℎ2[(𝑟1 + 𝑟2𝑥1𝐼) − 𝐶1𝜆1/(2ℎ
2), (𝑟1 + 𝑟2𝑥2𝐼), . . . , (𝑟1 + 𝑟2𝑥𝑛−2, (𝑟1 + 𝑟2𝑥𝑛−1

− 𝐵𝑛−1𝜆2/(2ℎ
2)]𝑡 

and  

 𝐀 =

(

 
 

𝐴1 𝐵1 0 0 ⋯ 0 0
𝐶2 𝐴2 𝐵2 0 ⋯ 0 0
0 𝐶3 𝐴3 𝐵3 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 𝐶𝑛−1 𝐴𝑛−1)

 
 

 (15) 

 

Equation (14) is a system of equation which can be solved by the neutrosophic 

algebraic equations . The solution of this system i.e., the values of 𝑦𝑖 for 𝑖 = 1,2, . . . , 𝑛 −
1 constitutes the the solution of the BVP. The solution like of the form, 

𝑦𝑖 = 𝑦𝑖 + 𝑦𝑖𝐼 

The above result is illustrated by the following example. 

6.1. Illustration 

Let, 𝑝1 = 3,𝑝2 = 2,𝑞1 = −5,𝑞2 = 3,𝑟1 = 4,𝑟2 = 1.5 i.e., 

𝑝(𝑥𝑖) = (3 + 2𝐼)𝑥𝑖 , 𝑞(𝑥𝑖) = −5 + 3𝐼 + 𝑥𝑖, 𝑟(𝑥𝑖) = 4 + 1.5𝐼𝑥𝑖. 
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with the boundary condition 𝑦(0) = 0, 𝑦(1) = 0. 
Here 𝑛ℎ = 1. The difference scheme is  

  𝑦𝑖−1[2 − ℎ(3 + 2𝐼)𝑥𝑖] + 𝑦𝑖[2ℎ
2(−5 + 3𝐼 + 𝑥𝑖) − 4] + 𝑦𝑖+1[2 + ℎ(3 + 2𝐼)𝑥𝑖] =

2ℎ2(4 + 1.5𝐼𝑥𝑖)  (16) 

 

For 𝑖 = 1,2,3. 
 𝐴1 = 2ℎ

2(−5 + 3𝐼 + 𝑥1) − 4, 
 𝐴2 = 2ℎ

2(−5 + 3𝐼 + 𝑥2) − 4, 
 𝐴3 = 2ℎ

2(−5 + 3𝐼 + 𝑥3) − 4, 
 𝐵1 = 2 + ℎ(3 + 2𝐼)𝑥1, 
 𝐵2 = 2 + ℎ(3 + 2𝐼)𝑥2, 
 𝐶1 = 2 − ℎ(3 + 2𝐼)𝑥1, 
 𝐶2 = 2 − ℎ(3 + 2𝐼)𝑥2, 
 𝐶3 = 2 − ℎ(3 + 2𝐼)𝑥3, 
 𝐷1 = 2ℎ

2(4 + 1.5𝐼𝑥1), 
 𝐷2 = 2ℎ

2(4 + 1.5𝐼𝑥2), 
 𝐷3 = 2ℎ

2(4 + 1.5𝐼𝑥3). 
 

Let 𝑛 = 2. Then ℎ = 0.5, 𝑥0 = 0, 𝑥1 = 0.5, 𝑥2 = 1, 𝑦0 = 0, 𝑦2 = 0. 

The difference scheme is 

  𝑦0[2 − ℎ(3 + 2𝐼)𝑥1] + 𝑦1[2ℎ
2(−5 + 3𝐼 + 𝑥1) − 4] + 𝑦2[2 + ℎ(3 + 2𝐼)𝑥1]

= 2ℎ2(4 + 1.5𝐼𝑥1) 
or, 𝑦1[2(0.5)

2(−5 + 3𝐼 + 0.5) − 4] = 2(0.5)2(4 + (1.5)𝐼(0.5)) 
or, 𝑦1 = −0.64 + (−0.2809375)𝐼 
i. e., 𝑦(0.5) = −0.64 + (−0.2809375)𝐼 

 

Let n=4.Then ℎ = 0.25, 𝑥0 = 0, 𝑥1 = 0.25, 𝑥2 = 0.50, 

 𝑥3 = 0.75,𝑥4 = 1.0,𝑦0 = 0,𝑦4 = 0. 

This system of equations becomes  

   𝑦0[2 − ℎ(3 + 2𝐼)𝑥1] + 𝑦1[2ℎ
2(−5 + 3𝐼 + 𝑥1) − 4] + 𝑦2[2 + ℎ(3 + 2𝐼)𝑥1] =

2ℎ2(4 + 1.5𝐼𝑥1)  𝑦1[2 − ℎ(3 + 2𝐼)𝑥2] + 𝑦2[2ℎ
2(−5 + 3𝐼 + 𝑥2) − 4] + 𝑦3[2 + ℎ(3 +

2𝐼)𝑥2] = 2ℎ
2(4 + 1.5𝐼𝑥2)  𝑦2[2 − ℎ(3 + 2𝐼)𝑥3] + 𝑦3[2ℎ

2(−5 + 3𝐼 + 𝑥3) − 4] +
𝑦4[2 + ℎ(3 + 2𝐼)𝑥3] = 2ℎ

2(4 + 1.5𝐼𝑥3) 
 

This system is finally simplified to  

  𝑦1(−4.59375 + 0.375𝐼) + 𝑦2(2.1875 + 0.125𝐼) = 0.5 + 0.046875𝐼 
  𝑦1(1.625 − 0.25𝐼) + 𝑦2(−4.5625 + 0.375𝐼) + 𝑦3(2.375 + 0.25𝐼) = 0.5 + 0.09375𝐼 
  𝑦2(1.4375 + 0.375𝐼) + 𝑦3(−4.53125 + 0.375𝐼) = 0.5 + 0.1406𝐼 
 

These equations can be written as  

 𝑀𝑋 = 𝑏 (17) 

 

or, (𝑀1 +𝑀2𝐼)(𝑋1 + 𝑋2𝐼) = (𝑏1 + 𝑏2𝐼). 
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Here, M1 = (
−4.59375 2.1875 0
1.625 −4.5625 2.375
0 1.4375 −4.53125

) ;     

M2 = (
0.375 0.125 0
−0.25 0.375 0.25
0 0.375 0.375

) 

X1 = (

𝑦1
(1)

𝑦2
(1)

𝑦3
(1)

) ;  X2 = (

𝑦1
(2)

𝑦2
(2)

𝑦3
(2)

) ;   b1 = (
0.5
0.5
0.5
) ;  b2 = (

0.046875
0.09375
0.1406

) ; 

And 𝑦1 = 𝑦1
(1)
+ 𝑦1

(2)
𝐼;  𝑦2 = 𝑦2

(1)
+ 𝑦2

(2)
𝐼;  𝑦3 = 𝑦3

(1)
+ 𝑦3

(2)
𝐼; 

The real system of equation are 

𝑀1𝑋1 = 𝑏1, i.e. (
−4.59375 2.1875 0
1.625 −4.5625 2.375
0 1.4375 −4.53125

)(

𝑦1
(1)

𝑦2
(1)

𝑦3
(1)

) = (
0.5
0.5
0.5
) ; 

and 

(𝑀1 +𝑀2)(𝑋1 + 𝑋2) = (𝑏1 + 𝑏2). 

i.e.,  (
−4.21875 2.3125 0
1.375 −4.1875 2.625
0 1.333 −4.15625

)(

𝑦1
(1)
+ 𝑦1

(2)

𝑦2
(1)
+ 𝑦2

(2)

𝑦3
(1)
+ 𝑦3

(2)

) = (
0.546875
0.59375
0.6406

). 

The solution of these equation are 

𝑋1 = (

𝑦1
(1)

𝑦2
(1)

𝑦3
(1)

) = (
−0.2257618
−0.27009623
−0.179543

), 

and   𝑋1 + 𝑋2 = (

𝑦1
(1)
+ 𝑦1

(2)

𝑦2
(1)
+ 𝑦2

(2)

𝑦3
(1)
+ 𝑦3

(2)

) = (
−0.32487991
−0.40267961
−0.28954742

). 

The solution are 

𝑦1 = (−0.2257618) + (−0.09911811)𝐼, 
𝑦2 = (−0.27009623) + (−0.13258338)𝐼,

            𝑦3 = (−0.179543) + (−0.11000442)𝐼. 
The solution of the system is   

𝑦1 = 𝑦(0.25) = (−0.2257618) + (−0.09911811)𝐼. 
        𝑦2 = 𝑦(0.50) = (−0.27009623) + (−0.13258338)𝐼. 
        𝑦3 = 𝑦(0.75) = (−0.179543) + (−0.11000442)𝐼. 

This is also the solution of the differential equation. 

 

7. Conclusion 

In this project study, finite difference method has been real neutrosophified.In the present 

study efforts have been made to neutrosophif the finite difference method using 

netrosophic number and real neutrosophic matrix and also solutions are made for 
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neutrosophic method. The combination of the finite difference method with a real 

neutrosophic matrix provides a powerful tool for solving BVPs under uncertainty. This 

approach allows for a more nuanced representation of the problem, accommodating 

degrees of truth, indeterminacy, and falsity. By applying these methods, one can obtain 

solutions that better reflect the inherent uncertainties in real-world problems. 
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