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Abstract. Neutrosophic numbers and matrices extend classical fuzzy set theory by 

incorporating three components to represent uncertainty: truth membership, indeterminacy 

membership, and falsity membership degrees. Real neutrosophic matrices consist of 

neutrosophic numbers as their entries, offering a structure to model uncertain and imprecise 

information across various applications. This paper investigates operations on real 

neutrosophic matrices, such as addition, multiplication, and scalar multiplication, and 

defines how these operations function within the neutrosophic framework. 

The paper also examines the use of LU decomposition as an efficient method for 

solving systems of real neutrosophic linear algebraic equations. LU decomposition is a 

numerical technique that breaks down a matrix into lower and upper triangular matrices, 

enabling the solution of linear systems through forward and backward substitution. 
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1. Introduction 

After the development of the fuzzy set (FS) theory, many non-random uncertainty 

problems were addressed using this framework. However, researchers soon observed that 

FS was inadequate in certain cases. In 1983, Atanassov introduced the intuitionistic fuzzy 

set (IFS) as an extension of FS [3]. IFS incorporates two parameters: membership value 

and non-membership value, with the restriction that their sum is less than or equal to 1. If 

the sum equals 1 for all elements, IFS reduces to FS. Essentially, IFS is applied when FS 

is insufficient or when the available information does not fully resolve the problem. 

In some situations, IFS also proves inadequate due to incomplete, inconsistent, or 

indeterminate information. To handle such cases, Smarandache proposed neutrosophic sets 

(NSs), characterized by three components: truth membership function (𝑡), indeterminacy 

membership function (𝑖), and falsity membership function (𝑓) [27, 28, 29, 30, 31]. 

NSs have found widespread application in dealing with indeterminate and 

inconsistent real-world information [37]. NSs generalize classical fuzzy sets, interval-

valued FS, IFS, and related concepts. Various branches of NSs have since been developed, 

such as interval neutrosophic sets [33, 35] and generalized neutrosophic soft sets [4]. 

Subsequently, NS theory was expanded to include neutrosophic fuzzy numbers (NFNs) 
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and corresponding matrices [8]. 

In 2010, Wang et al. introduced the single-valued neutrosophic set (SVNS), where 

the three components are independent and can vary freely [35]. These quantities, expressed 

by SVNS, align with human thinking, which often deals with imperfect or incomplete 

knowledge from external sources. For detailed information on neutrosophic sets, numbers, 

and matrices, refer to [22]. 

Some authors argue that NS is an extension of FS and IFS, characterizing the three 

components of NS as membership, indeterminacy, and non-membership functions. 

However, when each NS element consists of truth membership, indeterminacy 

membership, and falsity membership functions, NS differs from IFS, which is only 

characterized by membership (acceptance) and non-membership (non-acceptance) 

functions. Notably, membership (acceptance) is distinct from truth. In 2006, Smarandache 

extended IFS into a transcendental logic called "neutrosophic logic," allowing truth, 

indeterminacy, and falsity values to exceed the unit interval [0,1] [31].  

In this paper, we assume that each element of NS is characterized by a truth 

membership function ( 𝑡 ), an indeterminacy membership function ( 𝑖 ), and a falsity 

membership function (𝑓), and that these quantities are independent. We focus only on 

standard intervals, as non-standard intervals pose certain challenges. 

 

Definition 1. Let 𝑈 be the universe of discourse and 𝑢 an element of 𝑈. A SVNS 𝑊 is 

represented by a truth membership function ( 𝑡𝑊(𝑢) ), an indeterminacy membership 

function (𝑖𝑊(𝑢)), and a falsity membership function (𝑓𝑊(𝑢)). A SVNS 𝑊 is defined as:  

 𝑊 = {𝑥: (𝑡𝑊(𝑢), 𝑖𝑊(𝑢), 𝑓𝑊(𝑢)), 𝑢 ∈ 𝑈}, 
where 𝑡𝑊(𝑢), 𝑖𝑊(𝑢) and 𝑓𝑊(𝑢) belong to the interval [0,1].  

 

Neutrosophic fuzzy logic has been applied to solve numerous decision-making 

problems [10, 12, 13, 14, 23], as well as issues related to social networks [18, 19, 20, 21]. 

 

2. Literature review 

Neutrosophic set theory, introduced by Smarandache in 1995, extends the classical set 

theory by accommodating indeterminacy, vagueness, and inconsistency through the use of 

three membership functions: truth, indeterminacy, and falsehood. This framework has 

found applications in various fields where uncertainty is inherent, such as decision-making, 

pattern recognition, and artificial intelligence. One critical area of application is in solving 

systems of neutrosophic linear equations (SNLEs), which arise when dealing with 

uncertain data or imprecise information. The solution of SNLEs involves techniques that 

handle the complexities introduced by neutrosophic elements effectively. 

To address SNLEs, researchers have explored several methodologies. One 

approach involves converting neutrosophic equations into crisp forms, enabling the use of 

existing linear algebraic techniques. For instance, Zhang et al. (2017) proposed a method 

to transform SNLEs into a system of crisp linear equations by defining new operations on 

neutrosophic numbers [39]. This transformation allows the application of traditional 

matrix-based methods like Gaussian elimination or LU decomposition. 

Alternatively, researchers have developed direct solution methods that operate 

directly within the neutrosophic domain. For instance, Deli et al. (2019) introduced a 

computational algorithm based on neutrosophic Gaussian elimination, where operations 
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are defined considering the neutrosophic characteristics of the coefficients and constants 

[7]. This approach preserves the inherent uncertainty throughout the solution process, 

providing a more accurate representation of the system’s solution under uncertain 

conditions. 

Moreover, the extension of existing numerical methods to accommodate 

neutrosophic elements has been explored. Li and Smarandache (2020) adapted the Gauss-

Seidel method to solve SNLEs iteratively [17]. This method iteratively updates the 

neutrosophic solutions based on the updated neutrosophic coefficients and constants, 

converging to a solution that respects the uncertainties inherent in the original equations. 

Furthermore, metaheuristic algorithms have been employed to tackle SNLEs due 

to their ability to handle complex and non-linear systems effectively. Alba et al. (2021) 

applied a genetic algorithm to find approximate solutions to SNLEs, optimizing the 

neutrosophic solutions iteratively through crossover and mutation operations [1]. This 

approach offers robustness against local optima and can handle large-scale systems with 

significant uncertainties. 

In addition to computational methods, theoretical advancements have contributed 

to the understanding and solution of SNLEs. PÄƒcurar et al. (2018) developed a theoretical 

framework based on neutrosophic matrices and their properties, laying the foundation for 

analytical approaches to solving SNLEs [9]. This theoretical groundwork not only aids in 

the development of new solution techniques but also enhances the interpretation of results 

in neutrosophic algebra. 

The application domains of SNLEs are vast, ranging from engineering to 

economics, where uncertainty and imprecision are prevalent. For instance, in control 

systems design, Zadeh (2016) highlighted the benefits of using neutrosophic set theory to 

model and control systems affected by uncertain and contradictory information [40]. By 

incorporating neutrosophic solutions to SNLEs, engineers can design robust controllers 

that are more resilient to uncertainties in the system dynamics. 

In conclusion, the solution of systems of neutrosophic linear equations represents 

a significant advancement in addressing uncertainty in mathematical modeling. 

Researchers have developed a variety of methodologies, ranging from transformation 

techniques to specialized algorithms and theoretical frameworks. These approaches not 

only provide solutions to SNLEs but also contribute to the broader understanding of 

neutrosophic set theory and its applications. As research continues to evolve, further 

improvements in computational efficiency, solution accuracy, and theoretical 

underpinnings are expected, paving the way for enhanced decision-making in complex and 

uncertain environments. 

 

3. Neutrosophic number 

This section explores real neutrosophic matrices (RNMs) and their associated operations. 

A real neutrosophic matrix can be defined similarly to neutrosophic numbers, extending 

the concept to matrices, where each element is composed of a determinant and an 

indeterminate part. 

A real neutrosophic matrix is of the form: 

 

 𝑀 = 𝑀1 + 𝑀2𝐼 
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where 𝑀1 and 𝑀2 are real matrices, and 𝐼 represents indeterminacy, as described earlier 

in the context of neutrosophic numbers. The matrix elements of 𝑀1  and 𝑀2  are real 

numbers, and the indeterminacy 𝐼 adds flexibility to represent uncertain or incomplete 

information in the matrix. 

 

Notation: 

 - ℳ𝑚𝑛 denotes the set of real matrices of order 𝑚×𝑛. 

 - ℳ𝑛 denotes the set of square real matrices of order 𝑛×𝑛.  

 - The identity real neutrosophic matrix of order 𝑛 × 𝑛 is denoted by 𝑈𝑛, where all 

diagonal elements are 1, and all off-diagonal elements are 0. 

 

3.1. Operations on real neutrosophic matrices 

Given two real neutrosophic matrices 𝐴 = 𝐴1 + 𝐴2𝐼 and 𝐵 = 𝐵1 + 𝐵2𝐼, the basic 

operations are defined as follows: 

1. Addition: 

 

 𝐴 + 𝐵 = (𝐴1 + 𝐵1) + (𝐴2 + 𝐵2)𝐼 

This operation adds the corresponding elements of the matrices, both in the determinant 

part and the indeterminate part. 

 

2. Subtraction:  

 𝐴 − 𝐵 = (𝐴1 − 𝐵1) + (𝐴2 − 𝐵2)𝐼 

Similar to addition, the elements in both parts (determinant and indeterminate) are 

subtracted. 

 

3. Multiplication:  

 𝐴 × 𝐵 = 𝐴1𝐵1 + (𝐴2𝐵1 + 𝐴1𝐵2 + 𝐴2𝐵2)𝐼 
Matrix multiplication follows the distributive property and includes contributions from 

both the determinant and indeterminate components. 

 

4. Special types of real neutrosophic matrices 

1. Identity Neutrosophic Matrix: The identity real neutrosophic matrix 𝑈𝑛 is defined 

similarly to the identity matrix in classical linear algebra, with the indeterminate part set to 

zero:  

 𝑈𝑛 = 𝐼𝑛 + 0 ⋅ 𝐼 

where 𝐼𝑛 is the classical identity matrix. 

2. Inverse Neutrosophic Matrix: For a real neutrosophic matrix 𝑀, its inverse 𝑀−1 (if 

it exists) is computed using methods similar to those for real matrices, but accounting for 

the indeterminate part. The exact process can be complex depending on the structure of the 

matrix. 

       Real neutrosophic matrices (RNMs) are useful in fields where uncertainty plays a 

crucial role in data representation, such as:  

- Decision-making problems involving incomplete or inconsistent information.  

- Modeling systems in areas like control theory, fuzzy systems, and social network analysis 

where indeterminacy cannot be ignored. 

By incorporating the indeterminate part in matrices, RNMs provide an additional 
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layer of flexibility compared to traditional matrices, making them a valuable tool in various 

computational and theoretical applications. 

The null and identity matrices of order 3 × 3 are  

 𝑂3 = (

0 0 0
0 0 0
0 0 0

)    and   𝑈3 = (

1 0 0
0 1 0
0 0 1

). 

 

4.1. Basic operations on RNMs 

The basic operations on RNMs 𝑀 = 𝑀1 + 𝑀2𝐼 and 𝑁 = 𝑁1 + 𝑁2𝐼 are 

(i) 𝑀 + 𝑁 = (𝑀1 + 𝑁1) + (𝑀2 + 𝑁2)𝐼 

(ii) 𝑀 − 𝑁 = (𝑀1 − 𝑁1) + (𝑀2 − 𝑁2)𝐼 

(iii) 𝑀𝑁 = (𝑀1𝑁1) + (𝑀2𝑁1 + 𝑀1𝑁2 + 𝑀2𝑁2)𝐼. In this case also, 𝐼𝑛 = 𝐼2 = 𝐼 

for any positive integer 𝑛. 

Assumed that the order of RNMs is compatible with the appropriate operations. 

This matrix looks like a complex matrix, but see that here 𝐼  represents 

indeterminacy, not complex 𝑖 = √−1. Also, 𝐼𝑛 = 𝐼 for all positive integer 𝑛, which is 

not true for complex numbers. 

 

5. Solution of neutrosophic algebraic equations 

In this section, the solutions of neutrosophic algebraic equations, viz. linear, non-linear and 

system of linear equations are investigated. At first, we consider a single equation on a real 

neutrosophic filed and then we discuss the same for a refined neutrosophic filed. 

 

5.1. System of linear equations 

Let us consider a system of linear equations  

 𝑃𝑌 = 𝑄 (1) 

 or, (𝑃1 + 𝑃2𝐼)(𝑌1 + 𝑌2𝐼) = (𝑄1 + 𝑄2𝐼) (2) 

 where 𝑃1, 𝑃2 ∈ ℳ𝑛
ℝ , 𝑌1, 𝑌2, 𝑄1, 𝑄2 ∈ ℳ𝑛1

ℝ  . 

The 𝑖𝑗th element of 𝑃 is 𝑝𝑖𝑗 = 𝑝𝑖𝑗
(1)

+ 𝑝𝑖𝑗
(2)

𝐼 , 𝑗th element of 𝑌 and 𝑄 are 

𝑦𝑗 = 𝑦𝑗
(1)

+ 𝑦𝑗
(2)

𝐼 and 𝑞𝑗 = 𝑞𝑗
(1)

+ 𝑞𝑗
(2)

𝐼 respectively. 

Then the matrices 𝑃1  and 𝑃2  are 𝑃1 = (𝑝𝑖𝑗
(1)

)𝑛×𝑛  and 𝑃2 = (𝑝𝑖𝑗
(2)

)𝑛×𝑛 

respectively . The vectors 𝑌1, 𝑌2, 𝑄1, 𝑄2 are 

  𝑌1 =

(

 
 
 
 

𝑦1
(1)

𝑦2
(1)

.

.

.

𝑦𝑛
(1)

)

 
 
 
 

 , 𝑌2 =

(

 
 
 
 

𝑦1
(2)

𝑦2
(2)

.

.

.

𝑦𝑛
(2)

)

 
 
 
 

 , 𝑄1 =

(

 
 
 
 

𝑞1
(1)

𝑞2
(1)

.

.

.

𝑞𝑛
(1)

)

 
 
 
 

 , 𝑄2 =

(

 
 
 
 

𝑞1
(2)

𝑞2
(2)

.

.

.

𝑞𝑛
(2)

)

 
 
 
 

  

To solve the equation 𝑃𝑌 = 𝑄 by LU Decomposition Method , 
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first let 𝑃 = 𝐿𝑈 , where 𝐿 =

(

 
 
 

𝑙11 0 0 . . . 0
𝑙21 𝑙22 0 . . . 0
. . . . . . .
. . . . . . .
𝑙𝑛1 𝑙𝑛2 𝑙𝑛3 . . . 𝑙𝑛𝑛

)

 
 
 

 and  

𝑈 =

(

  
 

𝑢11 𝑢12 𝑢13 . . . 𝑢1𝑛

0 𝑢22 𝑢23 . . . 𝑢2𝑛

. . . . . . .

. . . . . . .
0 0 0 . . . 𝑢𝑛𝑛

)

  
 

  

where 𝐿, 𝑈 ∈ ℳ𝑛
ℝ . 

The 𝑖𝑗th element of 𝐿  is 𝑙𝑖𝑗 = 𝑙𝑖𝑗
(1)

+ 𝑙𝑖𝑗
(2)

𝐼 . The 𝑖𝑗th element of 𝑈 are 𝑢𝑖𝑗 =

𝑢𝑖𝑗
(1)

+ 𝑢𝑖𝑗
(2)

𝐼 for 𝑖 ≠ 𝑗 and 𝑢𝑖𝑗 = 1 + 0𝐼 for 𝑖 = 𝑗 .. 

Then from Eq. (1)  

 𝐿𝑈𝑌 = 𝑄 (3) 

 Again let 𝑈𝑌 = 𝑍 ,where 𝑍 = 𝑍1 + 𝑍2𝐼 and 𝑍1, 𝑍2 ∈ ℳ𝑛1
ℝ  . 

And 𝑍1 =

(

 
 
 
 
 

𝑧1
(1)

𝑧2
(1)

.

.

.

𝑧𝑛
(1)

)

 
 
 
 
 

, 𝑍2 =

(

 
 
 
 
 

𝑧1
(2)

𝑧2
(2)

.

.

.

𝑧𝑛
(2)

)

 
 
 
 
 

 . 

 Then from the Eq. (3)  

 𝐿𝑍 = 𝑄 (4) 

 

where Eq. (4) gives 𝑍 and again from 𝑈𝑌 = 𝑍, we have 𝑌. The final solution of the Eq. 

(1) is 𝑌 = 𝑌1 + 𝑌2𝐼 . 

 

General case: Let us consider the neutrosophic system of equations  
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(

 
 
 
 

𝑝11
(1)

+ 𝑝11
(2)

𝐼 𝑝12
(1)

+ 𝑝12
(2)

𝐼 . . . 𝑝1𝑛
(1)

+ 𝑝1𝑛
(2)

𝐼

𝑝21
(1)

+ 𝑝21
(2)

𝐼 𝑝22
(1)

+ 𝑝22
(2)

𝐼 . . . 𝑝2𝑛
(1)

+ 𝑝2𝑛
(2)

𝐼
. . . . . .
. . . . . .

𝑝𝑛1
(1)

+ 𝑝𝑛1
(2)

𝐼 𝑝𝑛2
(1)

+ 𝑝𝑛2
(2)

𝐼 . . . 𝑝𝑛𝑛
(1)

+ 𝑝𝑛𝑛
(2)

𝐼
)

 
 
 
 

(

 
 
 
 

𝑦1
(1)

+ 𝑦1
(2)

𝐼

𝑦2
(1)

+ 𝑦2
(2)

𝐼
.
.

𝑦𝑛
(1)

+ 𝑦𝑛
(2)

𝐼
)

 
 
 
 

=

(

 
 
 
 

𝑞1
(1)

+ 𝑞1
(2)

𝐼

𝑞2
(1)

+ 𝑞2
(2)

𝐼
.
.

𝑞𝑛
(1)

+ 𝑞𝑛
(2)

𝐼
)

 
 
 
 

 

In this problem, 

𝑃1 =

(

 
 
 
 

𝑝11
(1)

𝑝12
(1)

. . . 𝑝1𝑛
(1)

𝑝21
(1)

𝑝22
(1)

. . . 𝑝2𝑛
(1)

. . . . . .

. . . . . .

𝑝𝑛1
(1)

𝑝𝑛2
(1)

. . . 𝑝𝑛𝑛
(1)

)

 
 
 
 

 ,  

𝑃2 =

(

 
 
 
 

𝑝11
(2)

𝑝12
(2)

. . . 𝑝1𝑛
(2)

𝑝21
(2)

𝑝22
(2)

. . . 𝑝2𝑛
(2)

. . . . . .

. . . . . .

𝑝𝑛1
(2)

𝑝𝑛2
(2)

. . . 𝑝𝑛𝑛
(2)

)

 
 
 
 

 , 

𝑌1 =

(

 
 
 
 

𝑦1
(1)

𝑦2
(1)

.

.

.

𝑦𝑛
(1)

)

 
 
 
 

 , 𝑌2 =

(

 
 
 
 

𝑦1
(2)

𝑦2
(2)

.

.

.

𝑦𝑛
(2)

)

 
 
 
 

 , 𝑄1 =

(

 
 
 
 

𝑞1
(1)

𝑞2
(1)

.

.

.

𝑞𝑛
(1)

)

 
 
 
 

 , 𝑄2 =

(

 
 
 
 

𝑞1
(2)

𝑞2
(2)

.

.

.

𝑞𝑛
(2)

)

 
 
 
 

  

Let 𝑃 = 𝐿𝑈 , where 𝐿 =

(

 
 
 

𝑙11 0 0 . . 0
𝑙21 𝑙22 0 . . 0
. . . . . .
. . . . . .
𝑙𝑛1 𝑙𝑛2 𝑙𝑛3 . . 𝑙𝑛𝑛

)

 
 
 

 and  
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𝑈 =

(

  
 

𝑢11 𝑢12 𝑢13 . . 𝑢1𝑛

0 𝑢22 𝑢23 . . 𝑢2𝑛

. . . . . .

. . . . . .
0 0 0 . . 𝑢𝑛𝑛

)

  
 

. 

The 𝑖𝑗th element of 𝐿 is 𝑙𝑖𝑗 = 𝑙𝑖𝑗
(1)

+ 𝑙𝑖𝑗
(2)

𝐼 . The 𝑖𝑗th element of 𝑈 is 

 𝑢𝑖𝑗 = 𝑢𝑖𝑗
(1)

+ 𝑢𝑖𝑗
(2)

𝐼 for 𝑖 ≠ 𝑗 and 𝑢𝑖𝑗 = 1 + 0𝐼 for 𝑖 = 𝑗. 

Now ,  

 𝑃 =

(

 
 
 
 

𝑝11
(1)

+ 𝑝11
(2)

𝐼 𝑝12
(1)

+ 𝑝12
(2)

𝐼 . . . 𝑝1𝑛
(1)

+ 𝑝1𝑛
(2)

𝐼

𝑝21
(1)

+ 𝑝21
(2)

𝐼 𝑝22
(1)

+ 𝑝22
(2)

𝐼 . . . 𝑝2𝑛
(1)

+ 𝑝2𝑛
(2)

𝐼
. . . . . .
. . . . . .

𝑝𝑛1
(1)

+ 𝑝𝑛1
(2)

𝐼 𝑝𝑛2
(1)

+ 𝑝𝑛2
(2)

𝐼 . . . 𝑝𝑛𝑛
(1)

+ 𝑝𝑛𝑛
(2)

𝐼
)

 
 
 
 

 

 = 𝐿𝑈 

 =

(

 
 
 
 

𝑙11
(1)

+ 𝑙11
(2)

𝐼 0 + 0𝐼 0 + 0𝐼 . . 0 + 0𝐼

𝑙21
(1)

+ 𝑙21
(2)

𝐼 𝑙22
(1)

+ 𝑙22
(2)

𝐼 0 + 0𝐼 . . 0 + 0𝐼
. . . . . .
. . . . . .

𝑙𝑛1
(1)

+ 𝑙𝑛1
(2)

𝐼 𝑙𝑛2
(1)

+ 𝑙𝑛2
(2)

𝐼 𝑙𝑛3
(1)

+ 𝑙𝑛3
(2)

𝐼 . . 𝑙𝑛𝑛
(1)

+ 𝑙𝑛𝑛
(2)

𝐼
)

 
 
 
 

 

    =

(

  
 

1 + 0𝐼 𝑢12
(1)

+ 𝑢12
(2)

𝐼 𝑢13
(1)

+ 𝑢13
(2)

𝐼 . . 𝑢1𝑛
(1)

+ 𝑢1𝑛
(2)

𝐼

0 + 0𝐼 1 + 0𝐼 𝑢23
(1)

+ 𝑢23
(2)

𝐼 . . 𝑢2𝑛
(1)

+ 𝑢2𝑛
(2)

𝐼
. . . . . .
. . . . . .
0 + 0𝐼 0 + 0𝐼 0 + 0𝐼 . . 1 + 0𝐼 )

  
 

 

 

After multiplying RHS of the above equation, compairing both sides, we get  

𝑙𝑖1
(1)

= 𝑝𝑖1
(1)

 , 𝑖 = 1,2, . . . , 𝑛 

𝑙𝑖1
(2)

= 𝑝𝑖1
(2)

, 𝑖 = 1,2, . . . , 𝑛  

𝑙11
(1)

𝑢1𝑗
(1)

= 𝑝1𝑗
(1)

, 𝑗 = 2,3, . . . , 𝑛 

𝑙11
(2)

𝑢1𝑗
(1)

+ (𝑙11
(1)

+ 𝑙11
(2)

)𝑢1𝑗
(2)

= 𝑝1𝑗
(2)

, 𝑗 = 2,3, . . . , 𝑛 

𝑙𝑖1
(1)

𝑢12
(1)

+ 𝑙𝑖2
(1)

= 𝑝𝑖2
(1)

 , 𝑖 = 2,3, . . . , 𝑛 

𝑙𝑖1
(2)

𝑢12
(1)

+ (𝑙𝑖1
(1)

+ 𝑙𝑖1
(2)

)𝑢12
(2)

+ 𝑙𝑖2
(2)

= 𝑝𝑖2
(2)

, 𝑖 = 2,3, . . . , 𝑛 

𝑙21
(1)

𝑢1𝑗
(1)

+ 𝑙22
(1)

𝑢2𝑗
(1)

= 𝑝2𝑗
(1)

, 𝑗 = 3,4, . . . , 𝑛 

𝑙21
(2)

𝑢1𝑗
(1)

+ (𝑙21
(1)

+ 𝑙21
(2)

)𝑢1𝑗
(2)

+ 𝑙22
(2)

𝑢2𝑗
(1)

+ (𝑙22
(1)

+ 𝑙22
(2)

)𝑢2𝑗
(2)

= 𝑝2𝑗
(2)

, 𝑗 = 3,4, . . . , 𝑛 

𝑙𝑖1
(1)

𝑢13
(1)

+ 𝑙𝑖2
(1)

𝑢23
(1)

+ 𝑙𝑖3
(1)

= 𝑝𝑖3
(1)

, 𝑖 = 3,4, . . . , 𝑛 

𝑙𝑖1
(2)

𝑢13
(1)

+ (𝑙𝑖1
(1)

+ 𝑙𝑖2
(2)

)𝑢13
(2)

+ 𝑙𝑖2
(2)

𝑢23
(1)

+ (𝑙𝑖2
(1)

+ 𝑙𝑖2
(2)

)𝑢23
(2)

+ 𝑙𝑖3
(2)

= 𝑝𝑖3
(2)

, 𝑖 = 3,4, . . . , 𝑛 

.................................................... 
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∑𝑛−1
𝑖,𝑗=1 [𝑙𝑛𝑗

(1)
𝑢𝑖𝑛

(1)
] + 𝑙𝑛𝑛

(1)
= 𝑝𝑛𝑛

(1)
  

∑𝑛−1
𝑖,𝑗=1 [𝑙𝑛𝑗

(2)
𝑢𝑖𝑛

(1)
+ (𝑙𝑛𝑗

(1)
+ 𝑙𝑛𝑗

(2)
)𝑢𝑖𝑛

(2)
] + 𝑙𝑛𝑛

(2)
= 𝑝𝑛𝑛

(2)
 . 

 From these above equations , we have to calculate all 𝑙𝑖𝑗
(1)

,𝑙𝑖𝑗
(2)

,𝑢𝑖𝑗
(1)

 and 𝑢𝑖𝑗
(2)

 . 

Thereafter , we can calculate 𝐿 and 𝑈 by the equations 𝐿 = 𝐿1 + 𝐿2𝐼 and 𝑈 =
𝑈1 + 𝑈2𝐼 respectively. Again, we have to calculate 𝐿−1 and 𝑈−1by using the equations 

𝐿−1 = 𝐿1
−1 + [(𝐿1 + 𝐿2)

−1 − 𝐿1
−1]𝐼  and 𝑈−1 = 𝑈1

−1 + [(𝑈1 + 𝑈2)
−1 − 𝑈1

−1]𝐼 

respectively.  

From the equation 𝐿𝑍 = 𝑄 gives 𝑍 and again from 𝑈𝑌 = 𝑍, we have 𝑌. 

Thus the final solution is 𝑌 = 𝑌1 + 𝑌2𝐼. 

 

6. Illustration 

Example 1. Let us consider the neutrosophic system of equations  

(
2 + 4𝐼 3 − 𝐼
4 − 2𝐼 −5 + 7𝐼)(

𝑦1
(1)

+ 𝑦1
(2)

𝐼

𝑦2
(1)

+ 𝑦2
(2)

𝐼) = (
8 + 2𝐼
−6 + 12𝐼) 

In this problem, 

𝑃1 = (
2 3
4 −5) , 𝑃2 = (

4 −1
−2 7 ) , 𝑄1 = (

8
−6) , 𝑄2 = (

4
14) , 

𝑌1 = (

𝑦1
(1)

𝑦2
(1)) , 𝑌2 = (

𝑦1
(2)

𝑦2
(2)) .  

Let 𝑃 = 𝐿𝑈 , where 𝐿 = (
𝑙11 0
𝑙21 𝑙22) and 𝑈 = (

𝑢11 𝑢12

0 𝑢22) . 

The 𝑖𝑗th element of 𝐿 is 𝑙𝑖𝑗 = 𝑙𝑖𝑗
(1)

+ 𝑙𝑖𝑗
(2)

𝐼. The 𝑖𝑗th element of 𝑈 is 

 𝑢𝑖𝑗 = 𝑢𝑖𝑗
(1)

+ 𝑢𝑖𝑗
(2)

𝐼 for 𝑖 ≠ 𝑗 and 𝑢𝑖𝑗 = 1 + 0𝐼 for 𝑖 = 𝑗. 

Now,  

𝑃 = (
2 + 4𝐼 3 − 𝐼
4 − 2𝐼 −5 + 7𝐼) = 𝐿𝑈 = (

𝑙11
(1)

+ 𝑙11
(2)

𝐼 0 + 0𝐼

𝑙21
(1)

+ 𝑙21
(2)

𝐼 𝑙21
(1)

+ 𝑙22
(2)

𝐼)(
1 + 0𝐼 𝑢12

(1)
+ 𝑢12

(2)
𝐼

0 + 0𝐼 1 + 0𝐼 ) 

  

= (

𝑙11
(1)

+ 𝑙11
(2)

𝐼 𝑙11
(1)

𝑢12
(1)

+ 𝑙11
(2)

𝑢12
(1)

𝐼 + 𝑙11
(1)

𝑢12
(2)

𝐼 + 𝑙11
(2)

𝑢12
(2)

𝐼

𝑙21
(1)

+ 𝑙21
(2)

𝐼 𝑙21
(1)

𝑢12
(1)

+ 𝑙21
(2)

𝑢12
(1)

𝐼 + 𝑙21
(1)

𝑢12
(2)

𝐼 + 𝑙21
(2)

𝑢12
(2)

𝐼 + 𝑙22
(1)

+ 𝑙22
(2)

𝐼) 

Compairing both sides of the above , we get 

𝑙11
(1)

= 2, 𝑙11
(2)

= 4, 𝑙21
(1)

= 4, 𝑙21
(2)

= −2, 𝑙22
(1)

= −11, 𝑙22
(2)

=
37

3
, 𝑢12

(1)
=

3

2
, 𝑢12

(2)
= −

7

6
  

Therefore, 
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 𝐿 = 𝐿1 + 𝐿2𝐼 = (
2 0
4 −11) + (

4 0

−2
37

3
)𝐼 

and, 

 

 𝑈 = 𝑈1 + 𝑈2𝐼 = (
1

3

2

0 1 ) + (
0 −

7

6

0 0 ) 𝐼. 

 

Now, we compute 𝐿1 + 𝐿2 and 𝑈1 + 𝑈2. 

So, 

 

 𝐿1 + 𝐿2 = (

6 0

2
4

3
) and   

  𝑈1 + 𝑈2 = (
1

1

3

0 1 ). 

 

Now, we compute 𝐿−1 and 𝑈−1. So,  

 

 𝐿−1 = 𝐿1
−1 + [(𝐿1 + 𝐿2)

−1 − 𝐿1
−1]𝐼 

 = (

1

2
0

2

11
−

1

11
) + [(

1

6
0

−
1

4

3

4
) − (

1

2
0

2

11
−

1

11
)] 𝐼 

 = (

1

2
0

2

11
−

1

11
) + (

−
1

3
0

−
19

44

37

44
)𝐼 

 = (

1

2
−

1

3
𝐼 0 + 0𝐼

2

11
−

19

44
𝐼 −

1

11
+

37

44
𝐼) 

 

and, 

 

 𝑈−1 = 𝑈1
−1 + [(𝑈1 + 𝑈2)

−1 − 𝑈1
−1]𝐼 

 = (
1 −

3

2

0 1 ) + [(
1 −

1

3

0 1 ) − (
1 −

3

2

0 1 )] 𝐼 

 = (
1 −

3

2

0 1 ) + (
0

7

6

0 0 ) 𝐼 
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 = (
1 + 0𝐼 −

3

2
+

7

6
𝐼

0 + 0𝐼 1 + 0𝐼 ) 

 

Now, from the equation 𝐿𝑍 = 𝑄 ,we have  

 

 𝑍 = 𝐿−1𝑄 

 = (

1

2
−

1

3
𝐼 0 + 0𝐼

2

11
−

19

44
𝐼 −

1

11
+

37

44
𝐼)(

8 + 2𝐼
−6 + 12𝐼) 

 = (
4 −

7

3
𝐼

2 − 4𝐼) 

 

Again, from the equation 𝑈𝑌 = 𝑍 ,we have  

 

 𝑌 = 𝑈−1𝑍 

 = (
1 + 0𝐼 −

3

2
+

7

6
𝐼

0 + 0𝐼 1 + 0𝐼 )(
4 −

7

3
𝐼

2 − 4𝐼) 

 = (
1 +

4

3
𝐼

2 − 4𝐼) 

 Thus, the final solution is 

 

 𝑌 = (
1 +

4

3
𝐼

2 − 4𝐼). 

 

Example 2: Let us consider the neutrosophic system of equations  

(

2 + 𝐼 1 + 3𝐼 3 + 2𝐼
4 + 2𝐼 3 + 3𝐼 1 + 3𝐼
1 + 4𝐼 3 + 2𝐼 3 + 4𝐼

)

(

 
 

𝑦1
(1)

+ 𝑦1
(2)

𝐼

𝑦2
(1)

+ 𝑦2
(2)

𝐼

𝑦3
(1)

+ 𝑦3
(2)

𝐼

)

 
 

= (
3 + 10𝐼
2 + 5𝐼
4 + 𝐼

) 

In this problem, 

𝑃1 = (

2 1 3
4 3 1
1 3 3

) , 𝑃2 = (

1 3 2
2 3 3
4 2 4

) , 𝑄1 = (

3
2
4

) , 𝑄2 = (

10
5
1

) , 
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𝑌1 =

(

 
 

𝑦1
(1)

𝑦2
(1)

𝑦3
(1)

)

 
 

 , 𝑌2 =

(

 
 

𝑦1
(2)

𝑦2
(2)

𝑦3
(2)

)

 
 

 .  

Let 𝑃 = 𝐿𝑈 , where 𝐿 = (

𝑙11 0 0
𝑙21 𝑙22 0
𝑙31 𝑙32 𝑙33

) and 𝑈 = (

𝑢11 𝑢12 𝑢13

0 𝑢22 𝑢23

0 0 𝑢33
) . 

The 𝑖𝑗th element of 𝐿 is 𝑙𝑖𝑗 = 𝑙𝑖𝑗
(1)

+ 𝑙𝑖𝑗
(2)

𝐼. The 𝑖𝑗th element of 𝑈 are  

𝑢𝑖𝑗 = 𝑢𝑖𝑗
(1)

+ 𝑢𝑖𝑗
(2)

𝐼 for 𝑖 ≠ 𝑗 and 𝑢𝑖𝑗 = 1 + 0𝐼 for 𝑖 = 𝑗 . 

Now ,  

 𝑃 = (

2 + 𝐼 1 + 3𝐼 3 + 2𝐼
4 + 2𝐼 3 + 3𝐼 1 + 3𝐼
1 + 4𝐼 3 + 2𝐼 3 + 4𝐼

) = 𝐿𝑈 

  

=

(

 
 

𝑙11
(1)

+ 𝑙11
(2)

𝐼 0 + 0𝐼 0 + 0𝐼

𝑙21
(1)

+ 𝑙21
(2)

𝐼 𝑙22
(1)

+ 𝑙22
(2)

𝐼 0 + 0𝐼

𝑙31
(1)

+ 𝑙31
(2)

𝐼 𝑙32
(1)

+ 𝑙32
(2)

𝐼 𝑙33
(1)

+ 𝑙33
(2)

𝐼

)

 
 

(

 
 

1 + 0𝐼 𝑢12
(1)

+ 𝑢12
(2)

𝑢13
(1)

+ 𝑢13
(2)

0 + 0𝐼 1 + 0𝐼 𝑢23
(1)

+ 𝑢23
(2)

0 + 0𝐼 0 + 0𝐼 1 + 0𝐼

)

 
 

 

 

After multiplying RHS of the above equation, compairing both sides, we get 

𝑙11
(1)

= 2, 𝑙11
(2)

= 1, 𝑙21
(1)

= 4, 𝑙21
(2)

= 2, 𝑙31
(1)

= 1, 𝑙31
(1)

= 4𝑙22
(1)

= 1, 𝑙22
(2)

= −3, 𝑙32
(1)

=
5

2
, 𝑙32

(1)
=

−
25

6
, 𝑙33

(1)
= 14, 𝑙33

(1)
= −

31

3
, 𝑢12

(1)
=

1

2
, 𝑢12

(2)
=

5

6
, 𝑢13

(1)
=

3

2
, 𝑢13

(2)
= 2, 𝑢23

(1)
= −5, 𝑢23

(2)
= 8.  

Therefore, 

 

 𝐿 = 𝐿1 + 𝐿2𝐼 

 =

(

 

2 0 0
4 1 0

1
5

2
14

)

 +

(

 

1 0 0
2 −3 0

4 −
25

6
−

31

3

)

 𝐼 

and 

 

 𝑈 = 𝑈1 + 𝑈2𝐼 

 =

(

 

1
1

2

3

2

0 1 −5
0 0 1

)

 +

(

 

0
5

6

1

6

0 0 8
0 0 0

)

 𝐼. 

 

Now, we compute 𝐿1 + 𝐿2 and 𝑈1 + 𝑈2. 

So, 
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 𝐿1 + 𝐿2 =

(

 

3 0 0
6 −2 0

5 −
5

3

11

3

)

  

and,   

 𝑈1 + 𝑈2 =

(

 

1
4

3

5

3

0 1 3
0 0 1

)

 . 

Now, we compute 𝐿−1 and 𝑈−1. So,  

 

 𝐿−1 = 𝐿1
−1 + [(𝐿1 + 𝐿2)

−1 − 𝐿1
−1]𝐼 

 = (

1

2
0 0

−2 1 0
9

28
−

5

28

1

14

) +

[
 
 
 
 
 

(

  
 

1

3
0 0

1 −
1

2
0

0 −
5

22

3

11
)

  
 

−

(

 
 

1

2
0 0

−2 1 0
9

28
−

5

28

1

14

)

 
 

]
 
 
 
 
 

𝐼 

 =

(

 
 

1

2
0 0

−2 1 0
9

28
−

5

28

1

14

)

 
 

+

(

  
 

−
1

6
0 0

3 −
3

2
0

−
9

28
−

15

308

31

154

)

  
 

𝐼 

 =

(

  
 

1

2
−

1

6
𝐼 0 + 0𝐼 0 + 0𝐼

−2 + 3𝐼 1 −
3

2
𝐼 0 + 0𝐼

9

28
−

9

28
𝐼 −

5

28
−

15

308
𝐼

1

14
−

31

154
𝐼

)

  
 

 

and 

 𝑈−1 = 𝑈1
−1 + [(𝑈1 + 𝑈2)

−1 − 𝑈1
−1]𝐼 

 =

(

 

1 −
1

2
−4

0 1 5
0 0 1

)

 +

[
 
 
 

(

 

1 −
4

3

7

3

0 1 −3
0 0 1

)

 −

(

 

1 −
1

2
−4

0 1 5
0 0 1

)

 

]
 
 
 

𝐼 

 =

(

 

1 −
1

2
−4

0 1 5
0 0 1

)

 +

(

 

0 −
5

6

19

3

0 0 −8
0 0 0

)

 𝐼 

 =

(

 

1 + 0𝐼 −
1

2
−

5

6
𝐼 −4 +

19

3
𝐼

0 + 0𝐼 1 + 0𝐼 5 − 8𝐼
0 + 0𝐼 0 + 0𝐼 0 + 0𝐼

)
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Now, from the equation 𝐿𝑍 = 𝑄 ,we have  

 𝑍 = 𝐿−1𝑄 

 =

(

  
 

1

2
−

1

6
𝐼 0 + 0𝐼 0 + 0𝐼

−2 + 3𝐼 1 −
3

2
𝐼 0 + 0𝐼

9

28
−

9

28
𝐼 −

5

28
−

15

308
𝐼

1

14
−

31

154
𝐼

)

  
 

(

3 + 10𝐼
2 + 5𝐼
4 + 𝐼

) 

 =

(

  
 

3

2
+

17

6
𝐼

−4 +
27

2
𝐼

25

28
−

345

308
𝐼

)

  
 

 

 

Again, from the equation 𝑈𝑌 = 𝑍 ,we have  

 

 𝑌 = 𝑈−1𝑍 

 =

(

 

1 + 0𝐼 −
1

2
−

5

6
𝐼 −4 +

19

3
𝐼

0 + 0𝐼 1 + 0𝐼 5 − 8𝐼
0 + 0𝐼 0 + 0𝐼 0 + 0𝐼

)

 

(

  
 

3

2
+

17

6
𝐼

−4 +
27

2
𝐼

25

28
−

345

308
𝐼

)

  
 

 

 =

(

  
 

−
1

14
−

2031

231
𝐼

13

28
+

2993

308
𝐼

25

28
−

345

308
𝐼

)

  
 

 

 Thus, the final solution is 

 

 𝑌 =

(

  
 

−
1

14
−

2031

231
𝐼

13

28
+

2993

308
𝐼

25

28
−

345

308
𝐼

)

  
 

. 

7. Conclusion 

In conclusion, the exploration of neutrosophic numbers and real neutrosophic matrices 

offers valuable insights into handling uncertainty and vagueness within mathematical 

frameworks. The operations defined on real neutrosophic matrices, such as addition, 

multiplication, and scalar multiplication, extend traditional linear algebra to accommodate 

the nuanced representation of uncertainty through truth-membership, indeterminacy-

membership, and falsity-membership degrees. 

The study of inverse operations on real neutrosophic matrices underscores the 

complexity and significance of managing uncertainty in matrix computations. Techniques 

for computing the inverse under various conditions contribute to the robustness of 
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neutrosophic algebra, enabling practitioners to address real-world problems where precise 

information may be lacking or incomplete. 

Moreover, the application of LU decomposition to solve systems of real 

neutrosophic linear algebraic equations demonstrates practical methodologies for 

extracting meaningful solutions from matrices with neutrosophic entries. By decomposing 

matrices into lower and upper triangular forms and employing forward and backward 

substitution, LU decomposition provides an efficient computational approach to resolve 

systems affected by uncertainty. 

Overall, the methodologies and techniques discussed in this paper illustrate the 

potential of neutrosophic mathematics in enhancing decision-making processes and 

modeling scenarios where uncertainty is inherent. Future research could further explore 

advanced applications and refine computational algorithms to broaden the practical utility 

of neutrosophic algebra across diverse fields, from engineering to economics, ensuring 

robust solutions in the face of uncertain data. 
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