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Abstract. Neutrosophic sets and numbers are extensions of classical set theory and real 

numbers, respectively, introduced by Florentin Smarandache in 1995 to address 

indeterminate, vague, or imprecise information. Neutrosophic numbers are defined by 

three components: truth-membership, indeterminacy-membership, and falsity-membership 

degrees, each ranging from 0 to 1. These components encapsulate the degrees of truth, 

indeterminacy, and falsity associated with a statement or quantity. 

Real neutrosophic numbers are a subset of neutrosophic numbers where the truth-

membership degree is 1. This simplifies calculations and interpretations, making them 

closer to classical real numbers while still accounting for indeterminacy and falsity. The 

Gauss elimination method, when applied to neutrosophic linear equations, involves solving 

systems of linear equations where the coefficients and constants are represented as real 

neutrosophic numbers. Adapting traditional Gaussian elimination incorporates the 

uncertainties and indeterminacies inherent in neutrosophic data, ensuring more robust 

solutions in uncertain contexts. Overall, neutrosophic sets and numbers, along with their 

operations and applications such as solving neutrosophic linear equations offer a versatile 

framework for managing incomplete, imprecise, or contradictory information, making 

them highly valuable in decision-making and computational sciences. 
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1. Introduction 

Atanassov’s Intuitionistic Fuzzy Set (IFS) extends the concept of Fuzzy Sets (FS) by 

introducing additional parameters to better capture uncertainty. While FS primarily relies 

on a membership function to indicate the degree of an element belonging to a set, IFS 

incorporates two parameters: a membership degree and a non-membership degree. These 

parameters must satisfy the condition that their sum is less than or equal to 1. Numerous 

studies have been conducted on fuzzy and neutrosophic matrix theories (see references). 

This extension is especially useful in cases where traditional fuzzy sets cannot fully 

address uncertainty. Intuitionistic Fuzzy Sets provide a more refined approach, allowing 

both membership and non-membership (or hesitation) to be explicitly represented. When 

the sum of the membership and non-membership degrees equals 1 for all elements, the IFS 

reduces to a classic fuzzy set. 

http://www.researchmathsci.org/
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In essence, Intuitionistic Fuzzy Sets are employed when fuzzy sets are insufficient 

to model uncertainty or when additional information is needed beyond what traditional 

fuzzy sets can provide. This makes IFS a valuable tool in fields where uncertainty must be 

handled effectively. 

Neutrosophic Sets (NS), introduced by Smarandache, take this advancement 

further by addressing even more complex forms of uncertainty. NS are defined by three 

parameters: a truth membership function (t), an indeterminacy membership function (i), 

and a falsity membership function (f), which represent the degrees of truth, indeterminacy, 

and falsity. 

The strength of Neutrosophic Sets lies in their ability to manage information that 

is not only uncertain but also incomplete and inconsistent. This makes them particularly 

useful in real-world situations where traditional fuzzy sets or IFS fall short due to the nature 

of the available information. 

Neutrosophic Sets generalize several existing frameworks, including classical 

fuzzy sets, interval-valued fuzzy sets, and IFS. Over time, researchers have extended NS 

into various branches, such as interval neutrosophic sets and generalized neutrosophic soft 

sets, each addressing specific types of uncertainty in different applications. 

Additionally, the development of Neutrosophic Fuzzy Numbers (NFNs) and their 

associated matrices has further expanded the tools available for managing complex 

uncertainty across various fields. This ongoing evolution highlights the continuous effort 

to refine mathematical frameworks to better address real-world problems, where 

information is often uncertain, incomplete, or inconsistent. 

 

2. Neutrosophic number 

Samrandche first proposed a concept of neutrosophic number which consists of the 

determinant part and the indeterminate part. It is usually denoted by 𝑁 = 𝑎 + 𝑏𝐼, where 𝑎 

and 𝑏 are real numbers and 𝐼 is the indeterminacy such that 𝐼2 = 𝐼, 𝐼. 0 = 0 and 
𝐼

𝐼
 are 

undefined. We call 𝑁 = 𝑎 + 𝑏𝐼 as a pure neutrosophic number if 𝑎 = 0. For more details 

discussions see. 

For example, we consider a neutrosophic number 𝑁 = 5 + 3𝐼. If 𝐼 ∈ [0,0.02], 
then it is equivalent to 𝑁 ∈ [5,5.06] for 𝑁 ≥ 5. This means the determinant part is 5, 

whereas the indeterminacy part is 3𝐼 for 𝐼 ∈ [0,0.02], which means the possibility for 

number 𝑁 to be a little bigger than 5. 

Note that this number looks like a complex number, but, see that here 𝐼2 = 𝐼, not 

−1 like a complex number. 

The three basic operators defined on neutrosophic numbers 𝑃 = 𝑝1 + 𝑞1𝐼  and 

𝑄 = 𝑝2 + 𝑞2𝐼 are as follows: 

(i) 𝑃 + 𝑄 = (𝑝1 + 𝑝2) + (𝑞1 + 𝑞2)𝐼 

(ii) 𝑃 − 𝑄 = (𝑝1 − 𝑝2) + (𝑞1 − 𝑞2)𝐼 

(iii) 𝑃 × 𝑄 = 𝑝1𝑝2 + (𝑝1𝑞2 + 𝑞1𝑝2 + 𝑞1𝑞2)𝐼 
 In real neutrosophic algebra, we denote 𝐾 as the neutrosophic field over some 

neutrosophic vector spaces. We call the smallest field generated by 𝐾 ∪ 𝐼 or 𝐾(𝐼) to be 

the neutrosophic field for it involves the indeterminacy factor in it, where 𝐼 has the special 

property that 𝐼𝑛 = 𝐼, 𝐼 + 𝐼 = 𝐼 and if 𝑡 ∈ 𝐾 be some scalar then 𝑡. 𝐼 = 𝑡𝐼, 0. 𝐼 = 0. Thus, 

we generally denote neutrosophic field 𝐾(𝐼) generated by 𝐾 ∪ 𝐼, i.e. 𝐾(𝐼) = 〈𝐾 ∪ 𝐼〉. 
Thus, for different fields of algebra, we can define several types of neutrosophic 
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field generated by the field of neutrosophic vector space. 

  

a) 𝐑 be the field of real numbers, then the neutrosophic field generated by 〈𝑅 ∪ 𝐼〉 is 

𝑅(𝐼) and 𝑅 ⊂ 𝑅(𝐼).  

b) 𝐐 be the field of rational number, then the neutrosophic field generated by 〈𝑄 ∪ 𝐼〉 is 

𝑄(𝐼) and 𝑄 ⊂ 𝑄(𝐼).  

c) 𝐙 be the field of integers, then the neutrosophic field generated by 〈𝑍 ∪ 𝐼〉 is 𝐙(𝐼).  

 

So several types of neutrosophic numbers are available in the literature. However, many 

authors are confused about this classification. In this chapter, we will discuss first 𝐈(𝐼), the 

fuzzy neutrosophic numbers (referred to as FNNs), and then we consider the matrix over 

real neutrosophic numbers (RNN) 𝐑(𝐼). 

 

3. Real neutrosophic matrix 

Here we consider the neutrosophic matrix over real numbers based on the work of 

Smarandache [30]. So it is referred to as a real neutrosophic matrix and is abbreviated by 

RNM. For details of this matrix see [12,13]. 

The neutrosophic number over the field of real/complex numbers is defined in the 

form 𝑎 = 𝑎1 + 𝑏1𝐼, where 𝑎1, 𝑎2 are real or complex numbers and 𝐼 is the indeterminacy 

[6]. 

An RNM is defined as in FNM, i.e. of the form 𝑀 = 𝑀1 + 𝑀2𝐼 where 𝑀1 and 

𝑀2 are real matrices. The set of real matrices of order 𝑚 × 𝑛 is denoted by ℳ𝑚𝑛
ℝ  and that 

of order 𝑛 × 𝑛 by ℳ𝑛
ℝ. The identity RNM of order 𝑛 × 𝑛 is denoted by 𝑈𝑛, all diagonal 

elements are 1 and all other elements are 0. 

The null and identity matrices of order 3 × 3 are  

 𝑂3 = (

0 0 0
0 0 0
0 0 0

) ,   𝑎𝑛𝑑   𝑈3 = (

1 0 0
0 1 0
0 0 1

). 

The basic operations on RNMs 𝑀 = 𝑀1 + 𝑀2𝐼 and 𝑁 = 𝑁1 + 𝑁2𝐼 are 

(i) 𝑀 + 𝑁 = (𝑀1 + 𝑁1) + (𝑀2 + 𝑁2)𝐼 

(ii) 𝑀 − 𝑁 = (𝑀1 − 𝑁1) + (𝑀2 − 𝑁2)𝐼 

(iii) 𝑀𝑁 = (𝑀1𝑁1) + (𝑀2𝑁1 + 𝑀1𝑁2 + 𝑀2𝑁2)𝐼. In this case also, 𝐼𝑛 = 𝐼2 = 𝐼 

for any positive integer 𝑛. 

Assumed that the order of RNMs is compatible with the appropriate operations. 

This matrix looks like a complex matrix, but see that here 𝐼  represents 

indeterminacy, not complex 𝑖 = √−1. Also, 𝐼𝑛 = 𝐼 for all positive integer 𝑛, which is 

not true for complex numbers. 

Let 𝑀 = 𝑀1 + 𝑀2𝐼 be a RNM, where 𝑀1,𝑀2 ∈ ℳ𝑛
ℝ . Then its determinant is 

denoted by 𝑑𝑒𝑡(𝑀) or |𝑀| and its value is given by  

 𝑑𝑒𝑡(𝑀) = 𝑑𝑒𝑡(𝑀1) + 𝐼[𝑑𝑒𝑡(𝑀1 + 𝑀2) − 𝑑𝑒𝑡(𝑀1)].  

 

Note that this formula is unlike to the determinant of conventional matrix. But, this 

definition follows the rules of conventional matrices. 

 

4. System of linear equations 
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Let us consider a system of linear equations  

 𝑀𝑋 = 𝑁, 𝑖. 𝑒. (𝑀1 + 𝑀2𝐼)(𝑋1 + 𝑋2𝐼) = (𝑁1 + 𝑁2𝐼) (3.1) 

where 𝑀1,𝑀2 ∈ ℳ𝑛
ℝ, 𝑋1, 𝑋2, 𝑁1, 𝑁2 ∈ ℳ𝑛1

ℝ . 

The ijth element of M is 𝑚𝑖𝑗 = 𝑚𝑖𝑗
(1)

+ 𝑚𝑖𝑗
(2)

𝐼, jth element of X and N are 

 𝑥𝑗 = 𝑥𝑗
(1)

+ 𝑥𝑗
(2)

𝐼 and 𝑛𝑗 = 𝑛𝑗
(1)

+ 𝑛𝑗
(2)

𝐼 respectively. 

Then the matrices 𝑀1  and 𝑀2  are 𝑀1 = (𝑀𝑖𝑗
(1)

)𝑛×𝑛  and 𝑀2 = (𝑀𝑖𝑗
(2)

)𝑛×𝑛 

respectively. The vectors 𝑋1, 𝑋2, 𝑁1, 𝑁2 are 

𝑋1 =

(

 
 
 
 

𝑥1
(1)

𝑥2
(1)

.

.

.

𝑥𝑛
(1)

)

 
 
 
 

,𝑋2 =

(

 
 
 
 

𝑥1
(2)

𝑥2
(2)

.

.

.

𝑥𝑛
(2)

)

 
 
 
 

,𝑁1 =

(

 
 
 
 

𝑛1
(1)

𝑛2
(1)

.

.

.

𝑛𝑛
(1)

)

 
 
 
 

,𝑄1 =

(

 
 
 
 

𝑛1
(2)

𝑛2
(2)

.

.

.

𝑛𝑛
(2)

)

 
 
 
 

. 

From Eq. (3.1),  

  𝑀1𝑋1 + [(𝑀1 + 𝑀2)(𝑋1 + 𝑋2)𝑀1𝑋1]𝐼 = 𝑁1 + 𝑁2𝐼 (3.2) 

  𝑀1𝑋1 = 𝑁1               (3.3) 

 (𝑀1 + 𝑀2)(𝑋1 + 𝑋2) − 𝑀1𝑋1 = 𝑁2,   or  (𝑀1 + 𝑀2)(𝑋1 + 𝑋2) = 𝑁1 + 𝑁2 (3.4) 

 

Eq. (3.3), gives the vector 𝑋1 and Eq. (3.4) gives 𝑋1 + 𝑋2 and the final solution 

of the Eq. (3.1) is given by 𝑋 = 𝑋1 + 𝑋2𝐼. 
 

 The Gauss-eleiminaion method is used to solve the system of Eqs. (3.3) and (3.4). 

 

5. Gauss Elimination method 

It is a direct method used to solve systems of linear equations. Its primary goal is to 

transform the system into an equivalent upper triangular form through a sequence of row 

operations. Here’s a brief introduction to the method: 

Let a system of linear equations represented as 𝑀𝑋 = 𝑁 , where M is the 

coefficient matrix, X is the vector of unknowns, and N is the vector of constants on the 

right-hand side. 

The augmented matrix is [𝑀|𝑁]. We obtain the solution by the following way-   

a) Forward Elimination: Reduce the augmented matrix to upper triangular form 

(also known as row echelon form) by eliminating coefficients below the main 

diagonal. This is done by subtracting suitable multiples of one equation from 

another.  

b) Back Substitution: Once the augmented matrix is in upper triangular form, 

solve for each unknown starting from the last row and moving upwards. This 

involves substituting back the values of the known variables into earlier 

equations to find subsequent unknowns.  

 Once back substitution is complete, the resulting matrix X provides the solution 

to the system of equations 𝑀𝑋 = 𝑁. Gauss elimination is a numerical method in numerical 

linear algebra due to its simplicity and effectiveness in solving systems of equations, 

including those with many variables and equations. 

Note: Pivoting: To ensure numerical stability and avoid division by zero or small numbers, 
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pivot elements (the main diagonal elements) are often selected as the largest available in 

the column being operated on (partial pivoting) or throughout the matrix (complete 

pivoting). 

 

General form of the equation 

Let’s consider a system of linear equations with neutrosophic coefficients:  

(𝑎11
(1)

+ 𝑎11
(2)

𝐼)𝑥1 + (𝑎12
(1)

+ 𝑎12
(2)

𝐼)𝑥2 + ⋯+ (𝑎1𝑛
(1)

+ 𝑎1𝑛
(2)

𝐼)𝑥𝑛 = 𝑏1
(1)

+ 𝑏1
(2)

𝐼 

(𝑎21
(1)

+ 𝑎21
(2)

𝐼)𝑥1 + (𝑎22
(1)

+ 𝑎22
(2)

𝐼)𝑥2 + ⋯+ (𝑎2𝑛
(1)

+ 𝑎2𝑛
(2)

𝐼)𝑥𝑛 = 𝑏2
(1)

+ 𝑏2
(2)

𝐼 

 ⋮ 

(𝑎𝑚1
(1)

+ 𝑎𝑚1
(2)

𝐼)𝑥1 + (𝑎𝑚2
(1)

+ 𝑎𝑚2
(2)

𝐼)𝑥2 + ⋯+ (𝑎𝑚𝑛
(1)

+ 𝑎𝑚𝑛
(2)

𝐼)𝑥𝑛 = 𝑏𝑚
(1)

+ 𝑏𝑚
(2)

𝐼 
  (3.5) 

where 𝑎𝑖𝑗
(1)

, 𝑎𝑖𝑗
(2)

, 𝑏𝑖
(1)

, 𝑏𝑖
(2)

 are real numbers and I represents the indeterminate component. 

The Eq. (3.5) can be written in matrix form  

 

[
 
 
 
 𝑎11

(1)
+ 𝑎11

(2)
𝐼 𝑎12

(1)
+ 𝑎12

(2)
𝐼 … 𝑎1𝑛

(1)
+ 𝑎1𝑛

(2)
𝐼

𝑎21
(1)

+ 𝑎21
(2)

𝐼 𝑎22
(1)

+ 𝑎22
(2)

𝐼 … 𝑎2𝑛
(1)

+ 𝑎2𝑛
(2)

𝐼

⋮ ⋮ ⋱ ⋮ ⋮

𝑎𝑚1
(1)

+ 𝑎𝑚1
(2)

𝐼 𝑎𝑚2
(1)

+ 𝑎𝑚2
(2)

𝐼 … 𝑎𝑚𝑛
(1)

+ 𝑎𝑚𝑛
(2)

𝐼 ]
 
 
 
 

[
 
 
 
 𝑥1

(1)
+ 𝑥1

(2)
𝐼

𝑥2
(1)

+ 𝑥2
(2)

𝐼

⋮

𝑥𝑚
(1)

+ 𝑥𝑚
(2)

𝐼]
 
 
 
 

=

[
 
 
 
 𝑏1

(1)
+ 𝑏1

(2)
𝐼

𝑏2
(1)

+ 𝑏2
(2)

𝐼

⋮

𝑏𝑚
(1)

+ 𝑏𝑚
(2)

𝐼]
 
 
 
 

 

 

 

 i. e.    (𝐴1 + 𝐴2𝐼)(𝑋1 + 𝑋2𝐼) = (𝐵1 + 𝐵2𝐼) 

 

From this equation, we get two equations (3.3) and (3.4). Solving these two 

equations by Gauss elimination, we get 𝑋1 and 𝑋1 + 𝑋2. The final solution of the Eq.(3.1) 

is 𝑋 = 𝑋1 + 𝑋2𝐼 

 

6. Illustration 

Let us consider the following Neutrosophic system of equations: 

 

(0 + 2𝐼)𝑥1 + (1 + 3𝐼)𝑥2 + (5 + 𝐼)𝑥3 = 3 + 2𝐼
(4 + 6𝐼)𝑥1 + (2 + 4𝐼)𝑥2 + (0 + 7𝐼)𝑥3 = 4 + 𝐼
(5 + 2𝐼)𝑥1 + (0 + 4𝐼)𝑥2 + (0 + 3𝐼)𝑥3 = 5 + 3𝐼

} (6.1) 

By Gauss elimination method. 

The given equation is written in matrix form  

 [

(0 + 2𝐼) (1 + 3𝐼) (5 + 𝐼)
(4 + 6𝐼) (2 + 4𝐼) (0 + 7𝐼)
(5 + 2𝐼) (0 + 4𝐼) (0 + 3𝐼)

] [

𝑥1

𝑥2

𝑥3

] = [
3 + 2𝐼
4 + 𝐼
5 + 3𝐼

]  

 

That is 

[

(0 + 2𝐼) (1 + 3𝐼) (5 + 𝐼)
(4 + 6𝐼) (2 + 4𝐼) (0 + 7𝐼)
(5 + 2𝐼) (0 + 4𝐼) (0 + 3𝐼)

] [

𝑥1
(1)

+ 𝑥1
(2)

𝐼

𝑥2
(1)

+ 𝑥2
(2)

𝐼

𝑥3
(1)

+ 𝑥3
(2)

𝐼

] = [
3 + 2𝐼
4 + 𝐼
5 + 3𝐼

] 

That is,  
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 (𝑀1 + 𝑀2𝐼)(𝑋1 + 𝑋2𝐼) = (𝑁1 + 𝑁2𝐼) (6.2) 

 

 

 i. e.       (𝑀𝑋) = 𝑁 (6.3) 

 where 

𝑀1 = [
0 1 5
4 2 0
5 0 0

] ,𝑀2 = [
2 3 1
6 4 7
2 4 3

] , 𝑋1 = [

𝑥1
(1)

𝑥2
(1)

𝑥3
(1)

]𝑋2 = [

𝑥1
(2)

𝑥2
(2)

𝑥3
(2)

] , 𝑁1 = [
3
4
5
] , 𝑁2 = [

2
1
3
] 

The real system of equations are  

 𝑀1𝑋1 = 𝑁1 (6.4) 

 (𝑀1 + 𝑀2)(𝑋1 + 𝑋2) = 𝑁1 + 𝑁2 (6.5) 

 

From equation (6.4), 

[
0 1 5
4 2 0
5 0 0

] [

𝑥1
(1)

𝑥2
(1)

𝑥3
(1)

] = [
3
4
5
] 

By Gauss Elimination method, 

[

0 1 5 | 3
4 2 0 | 4
5 0 0 | 5

] 

We multiply 3rd row by (−4/5) and add to the 2nd row. Then the augmented 

matrix becomes, 

[

0 1 5 | 3
0 2 0 | 0
5 0 0 | 5

] 

Again we multiply 2nd row by (−1/2)  and add to the 1st row. Then the 

augmented matrix becomes, 

[

0 0 5 | 3
0 2 0 | 0
5 0 0 | 5

] 

Therefore, 

 

 5𝑥1
(1)

= 5 

 2𝑥2
(1)

= 0 

 5𝑥3
(1)

= 3 

 i.e., 𝑋1 = [
1
0
3/5

] 

From equation (6.5), 

[
2 4 6
10 6 7
7 4 3

] [

𝑥1
(1)

+ 𝑥1
(2)

𝑥2
(1)

+ 𝑥2
(2)

𝑥3
(1)

+ 𝑥3
(2)

] = [
5
5
8
] 
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By Gauss Elimination method, 

[

2 4 6 | 5
10 6 7 | 5
7 4 3 | 8

] 

We multiply 1st row by (−10/2) and (−7/2) successively and add to the 2nd 

row and 3rd row respectively. Then the augmented matrix becomes, 

[

2 4 6 | 5
0 14 23 | 20
0 10 18 | 19/2

] 

We multiply 2nd row by (−10/14) and add to the 3rd row. Then the augmented 

matrix becomes, 

[

2 4 6 | 5
0 14 23 | 20
0 0 11/7 | −67/14

] 

Therefore, 

 

 𝑥3
(1)

+ 𝑥3
(2)

= −67/22  

 𝑖. 𝑒, 𝑥3
(2)

= −491/110 

 

 

 14(𝑥2
(1)

+ 𝑥2
(2)

) + 23(𝑥3
(1)

+ 𝑥3
(2)

) = 20  

 𝑖. 𝑒. ,   𝑥2
(1)

+ 𝑥2
(2)

= 283/44  

 𝑖. 𝑒. ,   𝑥2
(2)

= 283/44  

 

 

 2(𝑥1
(1)

+ 𝑥1
(2)

) + 4(𝑥2
(1)

+ 𝑥2
(2)

) + 6(𝑥3
(1)

+ 𝑥3
(2)

) = 5  

 𝑖. 𝑒. ,    𝑥1
(1)

+ 𝑥1
(2)

= −27/22  

 𝑖. 𝑒. ,    𝑥1
(2)

= −49/22  

 

i.e, 𝑋2 = [

−491/110
283/44
−49/22

] 

Then the final solution is  

𝑋 = [

𝑥1
(1)

+ 𝑥1
(2)

𝐼

𝑥2
(1)

+ 𝑥2
(2)

𝐼

𝑥3
(1)

+ 𝑥3
(2)

𝐼

] = [

1 − 49/22𝐼
283/44𝐼
3/5 − 401/110𝐼

] 

 

Verification of the solution 

 The given equation (6.1) can be written as 

 

 𝑀1𝑋1 + [(M1 + 𝑀2)(𝑋1 + 𝑋2) − 𝑀1𝑋1]𝐼  
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= [
0 1 5
4 2 0
5 0 0

] [
1
0
3/5

] + [
2 4 6
10 6 7
7 4 3

] [

−27/22
283/44
−67/22

] 𝐼 − [
0 1 5
4 2 0
5 0 0

] [
1
0
3/5

] 𝐼  

= (
3
4
5
) + (

5
5
8
) 𝐼 − (

3
4
5
) 𝐼 = [

3 + 2𝐼
4 + 𝐼
5 + 3𝐼

]  

 

Lemma 1. If 𝑀1 and 𝑀1 + 𝑀2 are non-singular then the solution of Neutrosophic 

system of equations is unique.  

Proof: Assume that 𝑋1
(1)

, 𝑋2
(1)

 be two solutions of 

 

 𝑀1𝑋1 = 𝑁1  
 

Therefore, 

 𝑀1𝑋1
(1)

= 𝑁1  

 

and  

 𝑀1𝑋2
(1)

= 𝑁1  

 

Now, 

 

 𝑀1(𝑋1
(1)

− 𝑋2
(1)

) = 0 

 

Let, 𝑋 = 𝑋1
(1)

− 𝑋2
(1)

. 

So, 𝑀1𝑋 = 0. 

Since, 𝑀1  is non-singular then the homogeneous system 𝑀1𝑋 = 0  has only 

solution 𝑋 = 0. 

Hence, 𝑋1
(1)

− 𝑋2
(1)

= 0 

i.e, 𝑋1
(1)

= 𝑋2
(1)

. 

Then, the solution 𝑋1 is unique. 

Similarly, let 𝑋1
(1)

+ 𝑋2
(1)

, 𝑋1
(2)

+ 𝑋2
(2)

 be two solutions of 

 

 (𝑀1 + 𝑀2)(𝑋1 + 𝑋2) = 𝑁1 + 𝑁2  
 

Therefore, 

 (𝑀1 + 𝑀2)(𝑋1
(1)

+ 𝑋2
(1)

) = 𝑁1 + 𝑁2 (6.6) 

 

and  

 (𝑀1 + 𝑀2)(𝑋1
(2)

+ 𝑋2
(2)

) = 𝑁1 + 𝑁2 (6.7) 

 

Subtract (6.7) from (6.6), we have 

 

 (𝑀1 + 𝑀2)((𝑋1
(1)

+ 𝑋2
(1)

) − (𝑋1
(2)

+ 𝑋2
(2)

)) = 0 (6.8) 
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Let, 𝑋1 + 𝑋2 = (𝑋1
(1)

+ 𝑋2
(1)

) − (𝑋1
(2)

+ 𝑋2
(2)

) 

So, (𝑀1 + 𝑀2)(𝑋1 + 𝑋2) = 0. 

Since, 𝑀1 + 𝑀2 is non-singular then the homogeneous system 

  (𝑀1 + 𝑀2)(𝑋1 + 𝑋2) = 0 has only solution (𝑋1 + 𝑋2) = 0. 

Hence, (𝑋1
(1)

+ 𝑋2
(1)

) − (𝑋1
(2)

+ 𝑋2
(2)

) 

i.e, 𝑋1
(1)

+ 𝑋2
(1)

= 𝑋1
(2)

+ 𝑋2
(2)

 

Then, the solution 𝑋1 + 𝑋2 is unique. 

Therefore, the solution of the Neotrosophic system of equation is unique. 

 

Lemma 2. If 𝑀1 and 𝑀1 + 𝑀2 are non-singular. Then 𝑀2 may or may not be non-

singular.  

Proof: Let 𝑀1 and 𝑀1 + 𝑀2 be non-singular, i.e. |𝑀1| = 0 and |𝑀1 + 𝑀2| = 0 

Let 𝑀1 = [
1 0
0 1

] and 𝑀1 + 𝑀2 = [
3 1
1 3

] 

Here 𝑀1 and 𝑀1 + 𝑀2 are non-singular. 

In this case, 

𝑀2 = [
2 1
1 2

] |𝑀2| = 4 − 1 = 3 ≠   0 

So, 𝑀2 is also non-singular. 

Let 𝑀1 = [
4 0
0 3

] and 𝑀1 + 𝑀2 = [
2 0
0 3

] 

Here 𝑀1 and 𝑀1 + 𝑀2 are non-singular. 

In this case, 𝑀2 = [
−2 0
0 0

] |𝑀2| = 0 − 0 = 0. 

So, 𝑀2 is singular. 
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